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STRONG CONSISTENCY OF PARAMETER
ESTIMATES FOR DISCRETE-TIME
STOCHASTIC SYSTEMS

Curx Han-Fu Guo Lm

{Institute of Systems Science, Academic Simica, Deijing)

l. INTRODUCTION

Strong consistency of parameter estimates for the linear stochastic system was first studied
for the uncorrelated noise case on the basis of the least squares method™" by invoking the
persistent  excitation-like conditions. When the system neise is an MA sequence and the pera-
meters 1o he estimared are contsined in the noise model as well, the sufficient conditions for
strong consistency of the estimate were given in[12] for the approximate maximum likelihood
algorithm, in[2] for the modified least squares algorithm and in[3] for the least squares
algorithm.

The stochastic adaptive control problem is a topie closely related to parameter identification;
its special case, the adaptive tracking, was considered by Goodwin, Ramadge and Caines™ and
Sin and Goodwin®, Later, the adaptive tracking was simultancously solved with the parameter
estimation problem by Caines and Lafortune®, Chen™, and Chen and Caines™ with the help
of a control disturbed by noise. In these recent papers conditions guaranteeing both strong con-
sistency of the estimates and the suboptimality of adaptive contrel were given.

This paper comsiders the stochastic gradient algoritrm, dealing sith a class of system noise
including martingale difference sequenice and other correlated random sequences. We give a necessary
and sufficient condition for strong consistency of the parameter estimates piven by the algorithm.
Then for the case where the noise is an MA sequence we give, probably the weakest, sufficient
conditions for the strong consistency of the algorithm estimating the unknown parameters appear-
ing in the system and in the noise models. A comparison between various sufficient conditions

is alsn demonserated in the paper.

2. Starement or ProsLEm

Consider the stochastic system with [-dimensional input {u.} and m-dimensional ourpur
{yﬂ}:
Vo + Ao+ <o F dp¥oor = By, + -+ + Bena_g + £a, (1)

where Ay Bigi = 1,+- syfyi =1,++-,4, are unknown matrices to be estimated.
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Ser
65 = [~y +—dA, B+ +B,], (2)
P = (o= Yo_psr #a" " “Mp_guls (3')
=14 2 @l =1, (4)

=
Given any deterministic gy and 85, we estimate 8 by the stochastic gradient alporithm

Baiy = B+ L2 (35, — @ifa). (5)

g

The system noise £, is not necessarily of zero-mean and is allowed to be correlated, bue
we require that the following Condition A be satisfied.

A, As n— 00, E B gt tends to a finite lmit S, and there exist ¢ = 0 and & = 0

imo Ty

which may dc'pﬂid upon such that

IS—Z"““-| < o3, | (8)

i=g J
We now give examples of {g,} satisfying Condition A.

Example 1. Let (@, .5 ,P) be the basic probability space and let {.5 ;} be a family
of nondecreasing sub-o-zlgebras of & and let &; and gy be 5 ;-mrasurable, Suppose that
E(g;0| F ;) =0 and that there exist ¢ = 0 and g€ [0, 1) (ey and & may depend on )
such that E([lg;|'| # ;) = eori. Then {g;} satisfies Condition A a.s.(It is worth remarking
i+1|||!|-F:‘J‘5§=

a® with constant ¢ since r; = 1, ¥iZ=0,)

Proof. We need the following fact™, Let 4, & 14 E a; with a; =0, Then

i=1

2_‘_,—!- <o, Ya>l1, (7)
=1 .'
and
i-"l ik, "
f:;j:—m iff &f—mm, (E-J

Since & << 1 we can find & = 0 so that 2 — & — 26 > 1, By (7) it is easy to see

‘.9' écuz-m—iim i.s,
F=

!l]ﬂ

Then by the martingale convergence theorem™ it Follows that as » — oo, Z PiSiss converges
i=13 l'
g, 5. Hence for fixed o for any = 0, if m is large cnough, we have

“s:l.l = 7,
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whenever n 2= my, where

“a 5o,

Then summation b'_l,r parts yields the desired result

(s =3 >, el Bisles )

J".E(Sl S"+1}"—“_'

<vrmid (-
& - adl

Example 2. If {g;} is an arbitrary random sequence with

'EE[H
b “
..-u Fi

st S (-2

=T Fity

)51::, Y = m.

el <o led,  viso,

where ¢, = 0, #> 0 and they may be w-dependent, then Condition A is satisfied,

Proof. Seming
I
Ty = gﬂ %{':
we have
. Ejx Az _TEgl
n?._": o] l‘écr ?:_; r}"'m 2

=yl i (T;' Tin) ==

= F"’

< rd” [ E Tis ( ~

-

)] é ".I. Aa
which goes w zero by (7). Hence Condition A holds with § == §/2,
Section 3 will only consider {g;} satisfying Condition A, while Section 5 will deal with
noise of other types,
3. A Necessary AND SUFFICIENT CoNDITION

We now prove a necessary and sufficient condition for strong consistency when {g;} satisfies
Condition A. -

 Let macrix @(#,4) be recursively defined by _
®(n + 1,5}-(: _ft:_i'_ﬁ.)@(,,, i), @O(i,i)=1, N C))

Lemma 1. For any = = 0 the following inequality 1kes place
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==

EI["("':"I‘{" Deil? = d (10)

i=n

with d = mp =+ lg,

Proof. The assertion of the lemma is verified by the following chain of inequalities and
equalities:

dw=tP{n, n WP (n,n) = tr ‘Z_i [@(n, i+ 100(n,i+ 1) —@P(n,i)0(n, i)]
]

a=1

wtr 9 @Cn,i+ 1)1 — @i + 1,0 + 1,i)10°(n,i + 1)

=

LR

—tr >, ®(n,i+ 1) [I — (I — E'EL)(: —5'1‘-"1)] @ (nyi+1)

i
imn L] re

o ﬁ ®(n,i+1) [%£+%@,-(I —i"ﬁi)m:]-ﬁ‘(u, i+ 1)

i=n Ty

S 3 00+ DB (i 4 1) = 3, 10 ¥ Ll

=iy F=0 ¥

Theorem 1. Let {g;} satisfy Condition A on a subset © of Q, Then for any initial
palue B, the estimave B, defined by (5) conperges to 0 on 0 if and only if

®(a, 0)——-=0 Veed, (11)
Proof. Set
O =8 —B,, (12)
Sinee

Yokl ™ 'P:ﬁ + Efiis
from (5) and (12) it follows that

oy = Gy — 2 (@B, + €511)

or equivalently,

o= (1 — 222)5, — o1, (13)
Then
ﬁ,+l—@|:n+l,ﬂ)én-—gﬁ(n-i—l,f-l*l}%':ﬂﬂ. (14)
Necessiry.

On O for any 04,0, converges to 8, Hence For any gﬂ,é. tends to zero for any o€
L', MNotice that the second term on the right=hand side of (14) is independent of 8,3 so for
aoy fly we have

ﬁ{n‘ +1, ﬂ)ﬁq -:;'-'ﬂ' Yo & O°
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and this means
®(n+1,0)—=0 Vwel,
=00

Sufficiency.
It is clear that we only need to prove
20+ L+ D) By ——0  Vuco, (15)
i=b LE]
Set
S¢=Zﬁ5}11: E.I-HS——S.= 2 Tiﬁ., Fa=0D (16)
i=p 7§ imagl i

Assume w€ &, Then E,,m* { and Hi,u_l” = cr7%, Hence we have

]
|
=

>0(n+ 1,7+ 1) Hej, E¢Cn+1,i+1)(s,-—s,-_1)|rf
i=0 i i=a :

Sa— 2, [Pla+1,i+1)— Pn + 1,7)18

i=n

+ D [@0Cn+ 1,i + 1) —&(a + 1, 11§,

F=u

Sa— S8+ @(n+ 1,008 + >, ®(n-+ 1,j + 1[I — ¢{f+1,r'}I§;_.H

F=0

SISl +10Cs + 1, 0)s) + ¢ 3 18Cat 1o+ Vel gl

i
ri 10348

Tj

< 5]+ 10Cn + 1, 03] + ¢ 310G+ Li+ Dol e

e

4 f( > e n + 1,1‘.+ 1}wll’)”‘f’ E IIEII’)’*‘,

. i 18
jmN$1 Ti T r}i

which tends to zero by Lemma 1 and (7) if we first let # — oo and then let N — oo,

4. A Comparison BETWEEN SurrciENT ConniTions
In this section we give some sufficient conditions guarantecing ®(n, ﬂ-)m 0, We
first list three different conditions usvally used for proving consistency.
2) There is a positive definite matrix R such that™
L3 e R,
b) ra—— > ® and the ratic of the maximum to minimum eigenvalues of

Sww+ 1
= .|:£
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is bounded:
lx.uglfl-l-;!n é Tj vﬂ ; U'
where d denotes the dimension of @; and ¥ may depend on w!¥,

c) There exist @4 and T which may depend on w0 and T > 0,0 < e <{co and 0 <

g < oo such that@*3
mii4 a) .
> B =, We=T,

d=misy Tj

where
m(s) = max[m; 1, = 1], 1= 0y

o=
o= > Bis ta= 0, F = llg;lP/rs.

i=o
In [4] it is proved that Condition &) implies Conditiion b’} which in turn implies Condition
c). The next theorem establishes the relationship between Condition <)) and (11).

Theorem 2. For any fizxed o Condition ¢) implies
O(n, 0) 52 0.
Proof. We notice at ooce that if Condition ¢ holds, then e o @ since otherwisc

t, goes w0 a finite limit as m — 00 and m(s) equals oo for sufficiently large s, Bur this
will make Condition ¢} impassible.

It is cbvious that ®(n, ﬂ')—-:;- 0 is cquivalent to =, - 0 for any x, where r,

denotes the solution of the difference equation

T
‘-._H.-.(f_—ﬂﬁ) Kyu {]?)
r.
Tt is easy to see that [|=,|| converges to a finite limit as # —+ 20 and
E ”E}-A’."] = oo, (18)
i=o ri
since by (17)
T 3
a7 — el
We now rewrite (17) as
Xpey = 23— Jas1» (19}
where
Il+l-ﬂE£;E:-_zt'l (2{].}
P=Q I

Denote by J(&) the lincar interpoleting function of {J.} with interpolation length equal
to {fa}s 1. e

Ba Ba (21)

{Jm -ttt Ty tElman 1),
_ﬂ:-'} = Juu
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Similarly, #(¢) denotes the linear interpolation of {z,}. Then

x(e) = x5 — J(£). (22)
It is worth noting that
wle,) =z, (23)
Define a family {r,(#)} of continvous functions by
z,02) = 2{s + n), (24)

Since [|x,| converges, the family {r.(¢)} is vniformly bounded. We prove that it is
equi-continuous.
By (8), from r, ~+co it follows that r, = 2> ond hence m(y) ——= oo, For an
¥ — y
tE [tastas]s From (21) it is known that
_ T T
17> = 1)l =42 U = 21l < |22t s | < izl

Then for any ¢ = 0 and A == 0 we have
"#n(; + -ﬁ) - I-(I}H é “I('! +n -+ -ﬁ-) - j(ru{:+1+.ﬁ.))l"
+ ll.f(f =+ ”:} - J(‘uiﬁll)" + HI{'mfﬂ-i-lnn‘.l) - J(-'-(H-})ll

= ”Em{m-n-nalrnuﬂq-m” “'-'F:n[m-u‘.fntr“;"
ru':{r+n+a. fﬂfiﬁ al
[f4m4a)-1 n{.r-l--+a.} =] e 'i‘
+( 2 3} ( —CE‘—‘J—I L)' —>o, (25)
L A= =
jermied 1) JFenrl s}

The last convergence follows from (18) and m(t,—;:;' oo,

Completely similar result cam be obtained for A < 0, Then by the Arzela-Ascoli theorem,
from {z,(s)} we can select a subsequence {x,,(#)} which uniformly converges to a continuous
function 2"(¢#) in any finite interval. Again by (25) we ses that the limit function +%(¢),
in fact, is a comstant wvector x°(¢) = 17,

We now show =% =0, For any integer £€ [O,m{s 4+ ny + &) — m{z + n;)] we have
for t =1

t— 1 = fagmpn — By — 1 = tnirraginn = Bmisrep — M

= ‘m1:+l‘:1 — My = I!I{i-l-uil-H' — Wy

miidmp)+i—1
'-'E Poir s Py -+ ﬁj - #t
i—n[l-ﬁ-t}
il g +al
5;!,,;”."_}4' ﬁi—nk£l+ﬂ+2,
f-uEH-I.u

i.e.
: 1m1#*—n&1+f_ﬂtE[‘—'],f+d+ ?].
Theo the convergence

— 1) ——= 20

#:*(’m[:-l--ﬂﬁ’ Py

or

Loletnglti *_.m" x®
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is uniform in the integers 7 belonging to [0.m(r 4+ ny +a) — m(e + 5, )],

Hence we conclude that

173" 2 (- | <SS i, —

immmif k] ry immled W)

max Ix ;=2 (2 +a)——1D
Hi‘{n(:-ut-z-q]—mi:-l-u]l' mirtaghte ” ( ) koo "

From here, Condition <) and (18) we have

il 4ng $a) r
Bt < » , L

T T B

il a2 I mlida

),
— Z mx.-'l—xu' g —‘E&(zu-—:ﬁ)

[ELITEE Ty ri dmmlr gl ri

melttmyd @} IERE!
<lelvzra( > deul)

LTy Fi

Im{i*i-'-ﬂ_l{.lip!
; {‘-'_’"}H—’Hm 0,

il mg) ry

+ ||+

+

This means that % == 0 and
(a5 0.

Then we can select a subsequence {xn,} from {z,} so that xp, e 0, This together
oD

with the fact that ||zl tends to a finite limit shows x, —= 0. By the arbitrariness of x, we

conclude
Pa, 0) —==0,

Thus, we have proved that if one of Conditions a}, b}, <) holds, then 8, given by (5)
is consistent,

5. Oruer Tyres oF System MNose

We now discuss the case where &, s driven by 2 martingale difference sequence
Ep = g + Cowg_y+ - + Covye, (25)
with unknown matrices Cp.k = 15--+,rs which we also need to estimate,
For the present case we change the notations introduced in (2)—(5) to the following:
0 = [—dAy - -—dpBy---BeCi -+ C.1, (27)
pa = [¥a-~Vaoputin* tngn¥a — Paabacss Voo — @a-Fe ], (28)
Then Algorithm (5) will give estimates for all of A;,B; and Cppd = 1, p0f = 1y,
gok = 1y-v-5r,

As in Example 1 of Section 2 we assume that {5 .} is a nondecreasing family of sub-
a-algebras of F ,w, and @, are F ,-measurable and that
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E(w,l?,_l) =0, E(Hﬂ'u”:lﬁ-t—l.) = gl (29}
where ¢, and & may depend on @ and ¢y >0, 6€ [0, 1), (29)
Set
En =V, — e — Do iiPey; (30)
Pr=L¥e ¥aess¥n " Hosgrfns  Whop s {31)
@i = [00+-0 0e--DEI--+ED ], (32)

Obviously, we have
Ps = P + @i, (33)
Theorem 3. If r=10, or + =0 b C(z) — % 1 is serictly positive real, then @ n,

[l}—#_h—l- 0 implies 6, —> 8, where the transfer matrix C(g) v defined by
Clzl =]+ Ciz+ - 4+ C,2",
Proof. From Lemma 1 in[5] we have

Zt:l‘}f'i{m, a. s, (34}

For &, expressed by (26) we have

Yas = E:TE + 1.

Then
Ouss = Oa + L= (970 + wis — pi8)
=8, 4+ —?‘L (pif — ¢¥6 4+ wi — pifl)
=8, + —T—"- (pifa — @50 + win),
and )

. LA #r
By = (; — _'Fiﬁ.)ﬁ!‘ 4 Pofe g Pa g

Fa Fn Fa

From here it follows that
- - -1 . [ H il N
Bpn=@(n + 1,008, + >, @(n + 1, + 1)3‘1;5"1- B— 3 (s 1,i + 1) Bl o,
i=0 i i=n ri

(35)
It is easy to see that if i, is defined by (28), then (10) still holds true with & = mp+
I + mr, Thus, by (34) and @(n,U}T_:::- 0 we have

|
|

3 0 + 1, + IJMH
=0 Fi

<(. 3 II¢(n+__1_=r:'+1Jq=;5|=)*( 3, leflyt

—_Tre j=pNel Tj
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= t
+| S e(n+1, ;+1}'Pf‘?’=H
= Fi

E_Eﬂl)

Jomi ]

év’rdk

EQ(n+1,i+l}Efﬂ:H—rD (36)
i=o 1

as n—* o0 and then N —» 00,

From Example 1 in Section 1 we know that there are ¢ == 0 and & = 0 such that
155 % .

Then in the sufficiency part of Theorem 1, if g, is replaced by w,,(15) is still valid, i.e.

= crats Yn,

E'p(ﬂ'l‘lg f+lJ_JELWH]_'_}“

F=0

Hence from (35} (35) we assert that 9..,.1 —_— ),

1 — 0a

Remark. It is worth noting that all conclusions including Theorem 2 in Section 4
remain valid if @, is given by (28).

By definition . depends upen past estimates 8;,i ==n — 1, and so doss @(n,0), We
now give a condition which is independent of the estimate and is equivalent to @{r,0)——=

0, )
Consider
ﬂﬂ+1ri,}_(1-’yir¥')ﬂ#1£): ﬂilf}ﬂf (37}
where @3 is defined by (31) and
=1+ 3 et (38)

Theorem 4. If C(=) — -;— { s strictly posttive real, then ®(n,0) - 0 sff
@ p, 03 el X
Proof. Suppose ${n, I:I-]—h-ﬂ We brst show r, — =,
o ]

Without loss of generality assume |l 2 1, From the following chain of equaliries

dad(n + 1, 0) = f[ det®(i + 1, i)

= T eee(r —22h) = (1 — pguiy T (1 — L)

- (1= ™) TT ric

F=1]

= (1= [lpll*)/ra
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we conclude r, oo by @(n,0)—0.

From (331), (34) and the Kronecker lemma it is easy to see

re—23 gigf + E e

o EH —E (39)
Then
> 1ol < o, (40)
i=0 Fi
Noticing
mﬂ(nﬂ-l,ﬂj—f:—ﬁﬁ)ﬂn,n)+[5ﬂi—ﬁﬂ)ﬂn,u}
', ra Fa 2
we obtain

P(n +1,0)=00s +1,0)+ 3 0(n + Lui + D 21— 99L) 0%1,0)

i=D

—Mﬁ'l' 1y l.‘l}+- i.@(ﬂﬂ- l:]+ 1)31!"?’1!'_;:-0(_;,0)
i=0 Ty

+ 30+ 1,i+ 1) HE 0 0)

- O(n 4+ 1, 7+ gy E“JE =087 10
+§ i ( i rE) v " (41)
By (34), Lemma 1, 0(n,0) ——2> 0 and the fact hae [0%7, O) <1, it is clar
that

}:'_‘,.p(n i+ 1)-‘Eigf—¢°{f,u)‘|

=

é ®ln+ 1,7+ 1) ‘f’-ﬁf:- @"(r',n)H

+( P LCEABE 1:@."*)*(’_ % lﬂmgt)*:.:n_ (42

imN+L i Nt oo

Since

d =t OT(N,0)P(N,0) = i} tr[ @Y (7,0)0%7,0) — @ + 1,000% + 1, 0)]

= S 107600 (43)
;- ri

by (40),(43) and the fact that @(n,0) ——>0 and ||@Cnsi)||== 1 for » = § we find that



42 CHEM HAM-FU GUO LEI Vol. 5

:;w(ﬂ+1,f+:}fﬁrf§1wn{j,n)(f=g‘42 ¢(n+1,j+1)£§§1¢“(i,u)”

u—-m

i1 T' -
! f N—+oo

By (39) it is immediate that for all 1 = N,

if N is large cnough; then

|1E¢(n+l,j+1)w[ \/_; E{ooETl”
ﬂ”im{ﬁ-i}j‘kl}%[ L@(TE;F)

IETTE Ty fan+1

(45)

Combining (42),(44) and (45), from (41) we conclude that @*(a, D)—.—_:;: 0, if
P(n,0) esal

Conversely, if ﬁ"‘(ﬂ,-ﬂ]m 0, then a similar argument leads to rE—‘—_:;- o, and

this implies ;r.,-———i-nc:l, since if the limit of ro a5 7 —~ o0 were finite then by (34) the

series Z llgfll? amd E gip! would converge and this contradicts rﬂ—-——!- o0 because

F=i

9= ra—2 ;5: wigf + le It (46)
Thus, (39) still holds, and by the expression
O(n+1,0) =®(n+ 1,0)+ 2@”(3+ 1, i+ L)(EEF{--—M)@“,HJ,
i=n ry ry

an argument similar to that discussed above proves @(n ,ﬂ)—ﬂ—_;:" a,

In this paper we have only considered the discrete-time system. Similar results for the
continupus—time system will be published elsewhere,
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