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Abstract

For the discrete-time stochastic system withont monitoring, the sirong consistency of the
estimate giver by the stochastic gradient algorithm is considered when the persistent excitation
condition is possibly not fulfilled. In addition, the convergence rate is given for a specific class of
system noises, while in the adaptive tracking case the convergence rate for the parameter estimates
a8 well ag the tracking error are obtained when the reference signal is disturbed by a “dither”.

§ 1. Introduction

For stoobastic linear control systems considerable attention has been paid to
parameter estimation given by various recursive algorithm, among which the
stochastio gradient algorithm is probably the simplest one. Goodwin, Ramadge and
Caines 7 have proved the global convergence of the system and the asymptotic
optimality” of adaptive tracking when the stochastic gradient algorithm is applied. In
this case, using a method that combines the probabilistic method with the ordinary
differential equation treatment (Ljung®’, Kushner and Clark™’), Chen and Caines™
bave shown results similar to those obtained by Chen® for the modified least
squares algorithm, namely, the sufficient conditions for strong consistency of the
estimate for systems without monitoring, and consistency of parameter estimates and
asymptotic suboptimality for systems with adaptive tracking. Recently, for a class
of noises including the martingale difference sequence and other dependent random
sequences as special cases, Chen and Guo'® have obtained necessary and sufficient

conditions for strong consistency of the estimate given by the stochastic gradient

algorithm.

However, for this algorithm there are still some questions left open. For
example, can the estimate given by the algorithm remain consistent if the wusual
persistent excitation condition is not satisfied7 And what is the convergence rate in
the case of convergence? Further, for adaptive tracking how does the tracking error
depend on time? These problems are discussed in the present paper.

Consider the. multi~input and multi-output system-

yn+ -Alyn—1+ "ee +Apyn—9= -Blun-1+"' + -Bqun—q+ &n (1)

where ¥, and u, denote the m-dimensional output and the !-dimensional input
respectively, 4, B;(6=1, -+, p; j=1, +-+, ¢) are the unknown matrices to be identified.
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&, is the m~-dimensional system noise driven by a martingale difference sequence
{w,}, that is
E(w,| F-1) =0, Vn>1, (2)
_ 8, =w, +01w,_y1+ - +Cw,_, 3)
where {#,} is a family of nondecreasing o-algebras defined on the probability space
(@, #, P) and Oy (k=1, -+-, r) are unknown matrices.
Let z be the shift-back operator and set

07 = [~ Ay---— A,ByBOy+0,], - 00

0(z) =I+0gz+---0. ®)

Denote by 6, the estimate for § at time n» and let it be given by the stochastio
gradient algorithm:

0n+1 =0,+ Z’" (y:u_ 9’:9;') (6)

where [
Or=ynYi-ps1, Un " Us_qs1, Yr— Pi-10n_1, ***, Yrrs1—~ @r—10n_r], - (D
n=1+§!|¢e!|9, ro=1. (8)

The initial values #y and @, can be arbitrarily chosen.
Assume that @, is #,~measurable and that w, is such that

E(” Wy ”2 l yﬂ—i) <00’r;—1 ' (9)
with constants ¢,>0, ¢ € [0, 1). It is worth noting that condition (9) is weaker than
the uniform boundedness condition F(|w,|?|.#,)<<¢® since r,=1 by (8).

Let matrix @ (n, ¢)be recursively defined by ‘
B (n+1, q;)=(1—"’;_¢’5)-@(n,q;), DG, ) =1. - (10)

We shall see in the sequel that the properties of di(n, i) are of great importance
for the convergence of the parameter estimates.

§ 2. Strong Consistency of Parameter Estimates

For strong éonsistency of parameter estimates the so called persistent excitation
Condition a) or b) is commonly used (e.g., Ljung™, Moore' and Chen™?),

1 v
a) Ei—g PiPs —nK) R>0 a.s.

b) r,—> o0 and
Aex/Mmn Sy<oo, VYn=0, a.s.
. where A”  and ALy, denote respectively the maximum and minimura eigenvalues of
the matrix é Pipr +% 1, d is the dimension of @, and y may depend on w.
It is easy to see that Condition a) implies Condition b), which means that the
matrix i} pipf will never be ill-conditioned. We now show that, if it is ill-

conditioned, #, given by (6) still can be consistent.
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Theorem 1. Provided that O(z) ——I ig strictly positive real, 7,—>c0, lim 7,/

n—oo

ro_3<oo and that there exist constants N, and M (which are allowed to depend on
) such that

Aax/Mon <M (logr,)** as. Va=N,

then §,—0, ag n—>00. a.s.
‘We first prove some lemmas.

Let _
_5 lod?
n A g 7 -
m(t) =max[n: $,<t], Vi=>0. (12)

Lemmsa 1. TUnder the conditions of Theorem 1 there are positive constants o,
B, N (which may depend on w) such that

m(N +ia)—1

Op; DPy -
‘=m(N+2(7r—1)a) T 'B I 2.8, (13)
Proof. We first show that .
m(t) —=> (14)

Tt is known from Lim rr,./r,...1<oo that there ex1sts a constant 1€ (0, oo) such
that

'rn/’rn-:lgl, V’n}l. . ' (15) '
Then ' )
LS el 1%
" & r(log fr;_1)1/4 1. & ria(logr_q)t/t
=_1__n—1 Jr. dt ' ' -
1 &J)rn rica(logrey)/*

1 K I _d 1 j’ dt
“t(og )+ Cbdn t(logtivlfz

= —l- [log®/4s,_1—1log3/4r,]. - (16)

By (16), from s,—>co it follows that ¢,—>oc0 and hence m(t)—>eo.
From (14) we know that there exists N such that m(N) >N, and

(log r)4>1, (logr)A/re< %=, Vi>m(N). .

1
' 2M
For any k=1, by summation by parts we have
M(N-I:_k%m) -1 m(N +ka)

> Pupi > NE ool _ 7
s=m(N+ -1 Ty s=m( T—1)a) /r‘

m(N +Fka) "_ 1
e m(NZ(k —Day Ty <; Pipi— ;%‘P;) -1

1 m(N +ka) 1 m(N+FE=1a) -1
- ; Q= ; Psp5
Tm(Nekay I=1 T ¥ 4(k—~1)a) =1
m(N +ka) < 1 1

+ 2 ——)-1
$=m(N+T~La)+1 ?:Pi T2 T
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m(N +ka) [

lod® o
= c=m(N+§1)a)+1 Eltpﬂp, Ti-1°Ts

> " (xm, )I—ﬂ——‘f"" o1

$=m(F+G=1+1 \ Tty _
g Mok ). r e’
) max —=).T -7
t=m¥ +GE— D) +1 ( Mogri_1)*t d To_goty - :
""N’f’““’ Te1 I
_— 1) 27
= 6—m(N+ —1a)+1 d ( M(lOg ’)"5_1) 1/4 ) Ti_1°7;
1 m(N+ka) ( (log ’rC—l) 1/4 ) . ” ¢’” 2 —aT
T m(N+(lc a1 \M Ti-a ri(log req)*/*

= 2Md (tM(N+ka)+1 - t"'(”+(k—1)a)+1) I — 21

2Md [N +ka— (N+ (k—Da+1)]1I-21I

[ sirg @D 2]r.

Then we take

a>4Md+1, B= 2&‘1 (a—~1)—2

and Lemma 1 holds.

Lemma 2. Under the conditions of Theorem 1, for any %>1 the following
egtimate holds

B (¥ +he), m(W+ (b= Da)) <1 - B

‘where ¢, is some constant independent of % and B is given by Lemma 1.

Proof. Denote by p; the maximum eigenvalue of matrix &% (m (N +ka),
m(N4+ (k—1)a)) @ (m (N +ka), m(N+(k—1)a)) and 2,(N+(k—1)a) the unit
eigenveotor corresponding to py.

By the definition of matrix norm we have

|®(m(N+ka), m(N+(k—1)a)) | =~p : (18)
For i € [m(N + (k—1)&),m(N +ka) —1], define =, recursively by

2isa=( I——q);—f?‘r—>w‘. (19)
It is easy to see from (10) that
G +iay =P (m(N +ka), m( N+ E=1)&)) * Ty o130
and then _
B (N 400y T ¥ 2y = T 4oy * DT (M (N + k), m( N+ (k—1)a))
‘ (MmN +ka), m(N+ (k—1) &) Tm s o-1ya

= BN +(k-1a) * Pl Tm( ¥+ (k=1)a) = P (20)

By (19) we have -

[ 7

m
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‘ T 7
wf+1zt+1=¢f< I PP )( I 2P )ﬁc
T T4

=i — a7 B g gy (20 _ _oilo]el )
Ty T i

- "’*‘P* o - (21)

<xim— ‘
- From here and (20) it foll.ows that
‘_”::vik:_ :)G)Jﬂ,i<mf,,(“(,,_l),)mm(mw_ Doy — T kTN ekay =1—pu.  (22)
For any ¢ € [m(N + (k—1)a), m(N +ka) —1] we have from (19) that
P97 m,”

—1
b= Zmcrs-nor | = N I=m(1\§(k—1)a) Ty
S Lol

<{10g Tmew ray-1}5¢ NE - ; e “
A +Ha) §=m(N +(k~1)a) fr}"-{log ’I‘;_1}1/8 T}/"

<108 Ty ey 2} { m(N+2ka)—1 Ak }1/2. { m(l\;ia)—l ﬂgfauﬂﬁ}l/:
=m(fTho—130) 71 (1OZ T'5—1 1/4 $=m(N+k~1)a) T3

<{10g T akey-1}/8+ a1 /T —py. (23)
The last inequality follows from (11), (12) and (22).
By using Lemma 1, (22) and (23) we have

tp;tpf
¢=m(N+Z=-Da) Ty
m(N +kax)-1

T
BT e PF (4 e _,,-"
n(N+(k-1)e) e R T ( m(N +(k-1)a) ‘)

m(N +ka)—1
T
B<Tm¥ +t-12°

<

m(N +ka)~1

o
E=mN+E-1a) T
m(N+ka~—1 ”¢ ”2

<SU0g rmawvsinr-} e D rTlog e TF
{log m(N+ka) 1} t=mv§@-1w 1o {log ri_1}V*

mvg-t [l e
= Th-ney 1% (logriog)¥® i

+ ” TN +(k-1ya) *

[ ®mew £ cie-tymy — ﬂhﬂ

+{ 10g Tmvskay-1}1/8+

< {108 Tmwvinay-1} 4+ (14 ) {108 ey iay-13%  Va+1e NI—p;
+{10g Tmew skar-1 Y8 VIt V1= pr
= {10g*® 1 m(xshay-1°* (@+1) 3/2 | Jog/8 Fmexvnay-1 (1+a)/2} - V1=py. (24)
From (12) and (16) we see that

t>tm(g,/—l[10g3/4'r,,.(,)_1—10g3/4 T1] (25)
and consequently
3l 1/2
10g%/8 F o 4110y -1< {T(N + ko) +-log®* 7y } ’ (26)
1 3l asa, |0
log'/® ’l'm(N+ka)—1<{T (N +ke) +1og¥*ry } ’ 27

From (24), (26) and (27) we obtain
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<{(a+1)8/2+(a+1)1/2[i4l‘(N+ka)+10g"/4/r1]_1/3}

1/2
{3‘1"‘ b+ 3L N 10gver } 3V rrw
Clearly, we ocan find a positive constant ¢, which is independent of % such that

B< (cok) V2 (1= o) V2,
Then 0 ) A-pw)

BQ
o <1— o (28)

and the conclusion of Lemma 2 follows immediately from (18) and (28).
Proof of Theorem 1.
From (10) it is easy to see

0<|2(nt1, 0)|<|D(n, 0)] (29)
and therefore
19(n, 0)|——>1>0. (30)
In view of 2 k =oco and Lemma 2 we have
k=1 Co
N ,
[2(m(N +ka), 0) | <IT|@(m(N +ia), m(N+ (i~ 0l
_ BQ }1/2 R

<{a(-L)} oo 31)

From here, (80) and m(N+ ko) ———>c0 we conclude that
D(n, O)———> 0 : (32)

and hence 4,— @ by Theorem 3in [6].

§ 3. Convergence Rate of Estimate

In this section we disouss the convergence rate of the estimate for a specific class
of system noises.

Again, we consider system (1) but with (4) and (7) replaced respectively by
= ["' Az "‘A-pBl a] (33)

¢Z= [yn yn—p+1u’n * n—q+1] (34)
The system noise {&,} disoussed in this section is characterized by the following
Condition A.

and

A. The series 2 em converges a.s. and there are constants ¢>0 and 3>0,

possibly dependmg on w, such that
HZ P 811

¢=n

<er?, * Vn>1. (85)

The authors have proved in [6] that the noise satisfying Condition A covers the
martingale difference sequence and other kinds of dependent random sequences. It is
also shown in [6] that for strong consistency of 8, the condition @(n, 0)—ﬂ_)—°°> 0 is

‘/



No. 2 STRONG CONRSISTENCY OF RECURSIVE IDENTIFICATION... 139

necessary and sufficient. .
Lemma 3. The followmg estimates take place

1) [(@(n NI, 0<j<n, n>0.

2) —=0(|®(n+1, 0)[*), Vn=>1 (dis the dimension of g,).
3) Il@(n 'm+1)ll=0([l Vn=>0, Ym>0.
4) 2 ”fﬂ” 32, vn>o.

j=n+l q

Proof. .A.SSOI‘"JIOI! 1) follows immediately from (10).
To prove 2) we denote by A (é=1, -+, d) the eigenvalues of ®(n+1, 0)«
@*(n+1, 0) and seb Apgy=max{M}. From (10) we have
]

det & (n+1, 0) =det f1 B(i+1, é,)=_f[det< I-MZ)

=122 ol = -~ o)

and then

- "¢0"9)9=det [@(n+1, 0)+-D°(n+1, 0)]

11 7<Maz = (1, 0) | (38)

Since the initial value @, can be arbitrarily chosen, we may assume that |go] #1,
-and therefore 2) is valid.
Again by (10) we have

[6(s, m+ D I<[6@, 01167 (m+1, O]<IB0, 0] T 197G, i~

<I® (2, {1 | ( 7—-2=22E2)”

Te-1

S T T -1
: H T_" (I —pops) 1|
=2, 1.
Hence 8) holds true.

Recalling (8) we have

3 ded® _ " _dt

J=n+1 ’I'l'” i< n+1J':- +d —n+1 41 gi+o
< dt
<J it 21F R "'n .
This completes the proof of the lemma.
Theorem 2. If {g,} satisfies Condition A, then for any initial value

0,—— 6 a.s.
n->o00

if and only if ‘
@(n, 0) — = 0 a.s.

and in this case s
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16.,—6| =0([|@(n, 0)]|****) a.s. asn—>co.

Proof. The first assertion of the theorem has been given in [6], so we only
need to prove the second part.

Set .
0,=0—0,. @37)

From (1), (33), (84) we know that
' Ynr1=0"@n+ 8pa. : : (38)
From this and (8), (87) it follows that
§n+1= gn - '%h_ (szgn_l- §:+1) .
Then
a - i) fl_l N 5 L4
€.=d5('n, 0)90— E}@(ﬂ, j+1) —%- Ei41e (39)‘
Set '
a(t) =max[m: r,<t], =0, (40)
A(m) =a(|D(n, O)[" ), n>0. (41)
By Lemma 3, 8) it is easy to see that
_ [®(n, A(n) +-1) | =0(|@(n, 0)]+ram) =0(|P(n, 0) |l°’“°) (42)
From this we see that A(n) <n—1 for all large n.
© Bet

Y
S"—' (ZO %874_1, Sn= ‘go '%‘87+1, S”=S—‘Sn, S—1=0° . »
By Lemma 3 and (40)—(42) we have the following estimates: -

| S o5+ 2 ea) = | S o, 441 -89

n—1

= Sn—l— % [¢(n: j+1)_¢(n: j)]sl—i

~ S0, j+D1-(n, 18

.

+ 3 100, +1 -8, D181

<I8al +12(r, 0S| + 33 [B(n, j+1) (T=BG+1, H)Srcal

—1

<O(r?) +0(|@(n, 0)[/+*) +er' S |B(m, j+1) ] -2

= 1+15

2

=0(|%(n, 0) 11°/1+°>+c-’g o jroi-lell @

and

gndxn j+oi-Ledt

<2106 2@ +D1-18(a( +1, j+ 1) -L24>

{ /

R
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n—1 2
o]
+1=z(n)+1" i
=0(|®(n, 0)|¥1*?) . S !”2+ "21 le]?
’ ; T e
- 8/148 ng(mu 2 S P4 ik
O(H¢('n 0)] )+ i !_,'%4_2 it

=0(|®(n, 0)[****)+0 (rmm)
=0(|@(n, 0) [****) +O(|P(n, 0) |***°)
=0([@(n, 0)[*/***). (44)
Hencs it follows from (39), (43) and (44) that
8l =0(|@(n, 0) |***?), n—>co.
We now give results on the rate of convergence for both cases with and without.

persistent excitation condition, and we shall see that the rate can be expressed via.
simply characterizable quantities.

Theorem 3. Let Condition A be satisfied by {e,} and let r, —> oo and

Iim r,/r,-1<o. Then

fi~yoe

1) 16.1 =0(r;*) a.s. with 8,>0 as n—>oo (45)
if '
Abax Amp<y<oo, Vnz=Q.
2) 18.] =0 ({log ra}~*) a.s. with 3,>0 as n—>o0 (46)
if

Max/?»&m<M(10g ’I’n) 1"4, Yn=N,,
where y, M and N, are all positive constants possibly depending on w.
Proof. 1) By Theorem 2 in [5] we know that there exist a, 8, N € (0, o) such:

that
m(t+a)-1 .
N e g1, VisN (47
¢ =m(l) 1"
where
m(t) =max([n:{,<t], =0, (48)
S ”<Ps” _ .
ta= izo S §=0. (49)

Following the notations introduced in the proof of Lemma 2, it is eagy to see
that (18)—(22) still hold with m(¢) defined by (12) replaced by m(t) defined by
(48).

By (19) we have for 1€ [m(N + (k—1)a), m(N +ka) —1]

-1
1o~ T - | = “ > O] “

i= m(N+(k—1)a) Ty
m(N +ka)-1 1/2 / m(N +ka)-1 " ‘pfa,’!Iﬁ 1/2 _ —_
S 1. - 0% - 50)
<—m(§k—1)a) ) (—m(N+2(k—1)a) T ) <\/a+ \/1 P ( )
From (47), (22) and (50) we obtain
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m(N+ka)-1

T .
<O w1y PP i
B m(N+(k-1)a) l=m(N+2(7c— Day T m(N+(k~1)a)

m(N+ka)—-1 2 m{N+ka)—-1 . T,
< "V el —al+ ST Lol ol

t=m(NTG-1a) T4 ¢ =m(N +(x~1)a) T
<(g+1)Vat+l-I—p; +/ITFa-~/T—p;

=~at1(a+2)vI—ps.
From here we see that

G B
sl (@¢+1) (a+2)?
and
| 5
ﬁ.di(m(N+lca),m(N+(k—1)a>)[]<~/l—m—2)T.v ()

Hence, for any k>1

18V +Ea), ) |<TTIB(n(N +ia), m(N+ (1= D)) |-

% a 172 Co
<1~ rarer)) (52)
It is easy to see from (49) and r,—>oco that {,—> oo and then m(#) —> co. Therefore
for any n=>m (N + &) there exigts a positive constant & such thab
m(N+ka) <<n<m(N+ (k+1)a). (563)
By the monotonicity of ¢, we have '
L <tmw+aerna <N+ (F+1)

&(m(N), 0)|

and then
> =N —a | (54)

From (52)—(54) we obtain
[P (n, 0) | <[P (n, m(N+ka))]

d

O(m(N+ka), 0)]

<IPm(@ k), <6 (p=(1- (a+1)%+2)2 )md)
<o =) (55)

It follows from lim 7,/r,_;<oo that there exists a constant [ € (0, o0) such that

n—sco

TofTaa<l, Vn>1,
Thus we have

n—1 2 n=1 fr,
S el LS
= 2 2

Ty Sl i

1 %Sy de 1 j”"‘ di 1
>— — — MNe= L]
T &) =T T o8

From here and (565) we have
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N4a&
102 7y .

ngzs(n,O)ug(%)-”—IL,p N ) <00=(%> )

=coo %" =co+r77  (m=—1logx/p >0)
<Co'lm .,r;'m =O(¢;7Ix) .

Hence by Theorem 2, (45) holds with 8;= 16118 .

2) Making use of (81) and the following inequalities
l-az<<e™®, Vz>=0,

S islogl41), Vi1,
=

we obtain
~E Bl B gkt -2 '
12 (m(N +ka), 0)|<e oo #¥<<e %0 = (k+1) . (56)
For any n>m (N +a), by (14) we know that there exists some 4>1 such that
m (N +ka) <n<m(N + (k+1)a). (57)
Then

tn<tm(N+(k+1)a)<N+ (k-i—l)a
and therefore :

FRELRL (58)
From (16), (66) and (58) we have
Jid i
- TZeg B 7Ty
(B (m (N +Fa), 0) [|§(t" ) <o -{—:T(logs"ft'ﬂa—logsﬂh)“N} :
=0({log rs-1}"™) =0({logr.} ™), n—>co 59)
where 7, i3 some positive constant.
From (57) and (59) we have
|9 (n, 0) | <|D(m(N+ka), 0) | =O({logr.} ™).
Hence, by Theorem 2, we see that (46) holds with 8= 18128 .
Remark. 8; in Theorem 8 should lie in the interval <0, %—) since 5;1/0=

O([®(n+1, 0)]) by 2) of Lemma 4 and |@(n+1, 0)] —~0(r;®) from the proof of the
first part of Theorem 3.

§ 4. Convergence Rate in Adaptive Tracking Case

In order to track a deterministic reference signal y; by the output of the systen.,
the Z,~measurable feedback control u, is selected to satisfy the following equation
(the existence of such a u, will be discussed elsewhere)

0ripn = Yns1+Vn (60)
where {v,} is a disturbance sequence gpecially introduced for the consistence of 4,
and &, =o{w, w, i<n}.
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We shall use the following conditions:

1% y, is a bounded deterministic sequence.

2% {w,} and {v,} are two i.i.d. sequences with independent components and with
continuous—type distributions, and their moments are as follows

Fw,=Ev,=0,
Ewwi=R:>0, Howl=1By>0,
E|w,)*< o, Ejv.|*<o0.

3% B; and BfB, are of full rank, B{B (z) is asymptotically stable and is
left—coprime with Bf A(z) with p>1, ¢>1, #=0 and m<l.

Theorem 4. For the system aud the algorithm described by (1)—(9) let the
control u, be selected to satisfy (60) and let Conditions 1°—8° be fulfilled. Then

there exists §; € (O, -(%) (d=mp-+1lg) such that
' “ 8] =0(m™) a8 asn—oo (61}
and the long run average of the tracking errors has the expansion as follows

%,- g]lyg-—yf |*=tr(R:+Ba) +0(n™") as. n>o0, Vs€ (0, dy). (62

Proof. From the demonstration of Theorem 3 in [2] we know that there are
os=>0,>0 and N >0 such that

1/& .. 1 :
a11<-ﬁ_<§ Pips +E) <a21, Vn}N. (63)
Consequently
adn<r,<asdn, VYn=N. ' (64)

Hence (61) follows from (63), (64), 1) of Theorem 8 and the remark a$ the end of
Section 3.
In view of r=0, (1), (4) and (7) we see that

yn=01¢n—1 +w,.
This together with (60) gives '

Yn— ?/:= 55—1%-1 +w,.+ (e
Then N N
" Yn— ?/; “ 2= (07—1091:—1 +wn +lun—1> 4 (9n—1¢n—1 +wn + 'Un—l)

= “ ’éz—-llpn—:l"z'l' " 'wn“2+ " VUn-1 "2+2¢:—1§n—1wn+2¢:—1§n—1'vn—1+ 210:’”'!—1' (65}
From (61) we have

87 1. s
E” ‘q.l?;eln < 2 ,’.[‘1¢25i!6, <°°

and therefore

1 &z
FEHW_M-:H‘*WO a.9,

i.e.
L B apalr=o(n). )

By the Hartman—Wintner Theorem™% we have

-°

-

@,
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fim /2| L Sy pa—
E.lfg\/loglognl n E"Iw'" b Ra|=

2(“’“’;"2 tr Ry) i <o a.8.

\/ ne log logn |
Hence
13 2_ loglogn
= Sl =t R1+0(,/————-—n ) as. (67
Similarly,

13 - [Joglogn
; 21”'04”2_'&' .Rg‘l"o( __';L__> a.8. (68)
L S ufu,.=0(/2ELER) o | 9)

By (66)—(68) and the Schwarz inequality it is easy to see that

L i: Piabiawi=o0(n"%), (70)
n =1
71{ ;‘g tPf—1§«—1’Ut—1 =o(n"). (71)

Then (62) follows immediately from (65)— (71) and 0<6<51<-]—'<-—§— Thus the proof

is completed.
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