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Convergence rate of least-squares identification and adaptive control
for stochastic systemst

HAN-FU CHEN] and LEI GUO}

The strong consistency and the convergence rate of least-squares identification for
the multidimensional ARMAX model are established under some decaying excit-
ation conditions which are satisfied if both input and output do not grow too fast
and the attenuating excitation technique is applied. The parameter-identification
results are applied to adaptive-control systems with a quadratic loss function. The
rate of convergence of the loss function to its minimum is also obtained.

1. Introduction

Consider a stochastic system with m- and I-dimensional output and input
respectively that is driven by an m-dimensional martingale difference sequence
{w,, #,}, where {&,} is a family of non-decreasing g-algebras:

A(2)y, = B(z)u, + C(2)z,, nz 0} 0

Vo=, =w,=0, n<0
where A(z), B(z) and C{z) are matrix polynomials in the shift-back operator z:
AR)=1+Az+ ... + A,2"
B(z)= Bz + Byz* + ... + B¢
Czy=T+Ciz+ ... +C="
with unknown matrix coefficient
6=[—-4, .. —4A, B, ... B, C, .. (I (2
which may be estimated by various recursive algorithms.
For consistency analysis of the estimate #,, the matrix i:l ¢} consisting of the

stochastic regressors for system (1) is of great importance. In earlier works (e.g. Ljung

1976, Moore 1978, Solo 1979) the persistent excitation condition—that the ratio of

the maximum to the minimum eigenvalues of Y ¢,¢; is bounded—is the key to
=1

guaranteeing strong consistency. In Chen and Guo (1985 a) we have shown that for

strong consistency of €, given by the stochastic-gradient algorithm this ratio should

n 1+4
not grow faster than { lo l; 112 with 6 > 0, and if it does not grow faster than
g g2

n 1/4
(log _);l ;s ||2) then 8, converges to & almost surely under some reasonable
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conditions on the system noise C(z)w, (Chen and Guo 1985 b), But, as pointed out in
Chen and Guo (1985 a), this does not exclude the possibility of strong consistency of
estimates given by algorithms other than the stochastic-gradient one under a growth
rate faster than that mentioned above. In fact, the least-squares estimation is such an
algorithm (Chen 1982, Lai and Wei 1982). Lai and Wei showed that for a single-
input-single-output system with uncorrelated noise the least-squares estimate is

n
strongly consistent if the minimum eigenvalue of z ¢,9] goes to infinity faster than the

logarithm of the maximum eigenvalue of Z ¢;¢f. This is probably the weakest

condition for strong consistency of estlmates for @ (Lai and Wei 1982).

In this paper we first give results similar to those given in Lai and Wei (1982), but
for the multidimensional system and with correlated noise. Then, using these results,
we show that the least-squares estimate converges to the true parameter if both the
input and output do not diverge too fast and if the attenuating excitation technique is
applied to the control. Finally, we apply parameter-estimation results to an adaptive-
control system with quadratic cost and give the rate of convergence of the cost to its
optimal value.

In the present paper we mean by the least-squares estimate the one given by the
following recursive algorithm (Chen 1985):

Ouv1 =0, + P, by (ynr1 — $105) (3}
Ppiy=P,—a,P.$,$:P,, a,=(1+,P,0,)"" (4)

Gr=0Lya o Ya-per Un o tpegey VamPaoibe o Vi i —GhBuri]
(5)

with Py =dI, d =mp + lg + mr for convenience and with 8, arbitrary.
It is clear that

P=(S o 1) ©

We introduce the vector

T

¢E=[J’: v Yrop+a T “:—q+1 wy o owi, I M

which, in contrast with ¢,, is unavailable but is free of the estimate {6,}.
n—1

n=1
Denote by A%, and A%, the minimum eigenvalues of Y ¢;¢f+I/dand Y ¢ ¢?"
(=0 i=0
+ I/d respectively, and set

n—1 n—1
=1+ T As0A =1+ T 1601 @

2. Convergence rate

In this section we first express the estimation error 8, — 0 in terms of r, and A7;,
with no condition imposed on the growth rate of Amm or r,. Then we derive the similar
expressions with A", and r, replaced by 127, and r?
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Theorem 1
For system (1) assume that (a) the driven noise {w,, #,} is a martingale difference
sequence with respect to a family of non-decreasing s-algebras {#,} and

sup E[|w,s 1?1 # ] <0 as. withf>2

nz0

(b) u,is Z,-measurable; and (c) C~'(z) — 11 is strictly positive-real. Then as n — oo the
estimation error produced by (3)—(5) is expressed by

1/2
(i) ue,,-eu:o(("’f’") ) as. iff>2 ©)
.. log r,(log log r, ) \!/? .
(@) 1,— 0l =90 o as, Vex>1, iff=2 (10)
Proof
Set
B,=0-9, (11)
It 1s clear that
N T
16411 gwtr9n+lpn+19n+l (12)

s0 to prove the theorem it is sufficient to show that

~ 4 oA Ologr,.y) as. iff>2
&, PG, = " ) 13
1P o {O(Iogrm(loglogrm)f) as. ifp=2
The proof is divided into 3 lemmas.
Lemma 1
Under the conditions of Theorem 1 there is a constant &, > 0 such that
tr & Potib,,, <O(1) ‘ko_zo Gy ill? Z_Zowfngfﬂdji as. fornz0
Proof
Set
Cat 1 =Vnt1 = War1— Onv 1 @s (14)

By (3) and (4) it is easy to see that
Yat1r = Onbnsr = You1 — G110, + 6P @u(Viv 1 — B28,)]
=(1=a,0, P, bp)(yns+1— 000:) = a, (Y1 — #,6,) (15)
By (1} and (5) we have
C@)ns1=Yns1 +(CE) = D(Yas1 = Oni190) — Oy b, — CIW, 4,
= ~(A(2) = Dyn+y + B2y +(C2) = INYui1 = 041 00) — 6,11 @,
=00, — 051 10.= 0,4, b (16}
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Since C~'(z) — 41 is strictly positive-real, there are constants ko >0 and k, >0
such that

éz .101 x+1_%“+k0)0’|{+1¢5)+k1?0 Ynz0 (17)

By (13) we can rewrite (3) as
o1 =8, = PodhnlCi s + Wiat) (18)
From this and (6) it then follows that
te 0y Pt Oy =0 B 030, + 5y  PUM0L
= 1i0ce 17+ tr [0 — Pudhul&ier + Wi )T PL
X [0 — Pl vy + Wiy 1))
= Npi0ka s (1> = 2&w 1 + Wi 1 )b+ SLPedillEnt + wir |
+tr P70,
= 1k0r 1 1 = 2E oy + Wew )0is 1 + Pedhil & s + Wit )10
+ G PedlEirs + Wi IP + 0 G P71,
Str 0P O+ 1641 dull® — 28041051 i — 29041 O 1
=tr 0Py 0= 2501 (G s =1+ ko) 1 )] — ko I 41 41
— 2w 1 B e (19)
Summing both sides of (19) from 0 to # and using (17), we conclude that

tr §;+IP;+lUn+l tr 0' Py l80 2s, + 2k, —ko'z, ||€:+1¢i||2“2‘ZOW§+13~:+1¢.‘

1)_"02” +l¢”2—2zwa+l .+1¢’ O

Lemma 2
Under the conditions of Theorem 1,

tr 0y Pt 0,ey SO(1) +0(Z aii Pidillwia |l ) a.s. (20)

Proof

From Lemma 2 of Chen and Guo (1985 ¢) for any %,-measurable matrices M, we
have

ioM.-w,-+.=0((i||Miu2)”2(log(i||M.-||2+e))”“") as, 1>0 Q1)
i= = i=0

(sce also Lai and Wei 1982). This estimate will be used in the sequel without
explanation.
Set

M= VYnst —0:¢n—wn+1 )
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Obviously, n, is #,-measurable and
B~n+1 = Bn - anPn¢n(W;+l + '7:)

Then we estimate as follows:

Y Wi 1 (6 — awis s + 100 Piby

i=0

§+19§+1¢i‘=
=0

i=0

€ Z: a9 Pidillwie, 2+ 'Zo W?+1(f7.'-—as'1.-¢§P.-)¢."

IIM;

= 3 adiPidilwe I +0(

i=0

1(0; — aim:d; P)p; IIZJ )

IIM=

= _Zn:oai¢;Pi¢i1lwi+l I +0( 18+ 1 + awisy PO, Ilz] )

= zn: a; ¢ Pidilwis 1?40 Li ||g§+|¢i||2:|a)
i=0 i=0
+of| 5, @orrer i)

whenever ae(4, 1). Since ;¢ P;¢; < 1, from this we have

Z Wn+10 +1 ¢'.‘ (I:_go 1641 ¢ “{r) + 0(_20 a; ¢ P llwisy ||2) (22)

and by Lemma 1 and (22) it follows that

/_\

tr 6, P8,
<O —ko 3. 1051l + 0([20 1.1 ||2D +0(Zo aBiPbilw ||2)
e
Noting that & < 1 and kg > 0, (20) follows from (23). O

Lemma 3
Under the conditions of Theorem 1, (13) is true.

Proof

By Lemma 2, we only need to estimate the last term of (20). For a matrix X we
denote det X by | X|. From (6) we have

PLhY=P '+ i =P (I + P,¢9})
[P = P74+ Piidll = 1P (1 + ¢ Pig)
Hence

BPiby= (22)
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Then, from the definition of a; and (24) we see that

i
[~

P | |+l

(P2
< J g P, | +dlogd
IPg|
since Py ! =1I/d.
A similar calculation leads to the conclusions

& Pig;
fi 1
Z Og‘IP,+1|<OO or any ¢ >
o0 lTP
Z 491 Pid: <oo foranyc>1

log 1P1+l|(]og lOg |P|+1|)t

1 d—1 1 d
|Pn+1 j':.ll‘:)(l (d) 2 rn+1(5)

logr,,, —dlogd<log|P,} | <dlogr,,,

Also, we note that

Hence

Case |

If lim r, < oo then it follows from (25) and (28) that

n=+x

I|M3

a PP < 00
Then by the martingale convergence theorem we have
'Z‘o a;d; Pidi(llw; 4, 1% - E[llw;+y ””-%]] <o

Hence

al¢.P Gillwesa 12 =0(1)

llMs

Then from Lemma 2 we know that
tr &y Pyt 0,0 =0(1)
which verifies (13).

Case 2

" |Pl“ | P"1| L] PeAL dx
¢, = Z ;_ Z —_
i=0 |P|+l| i=0 '

{25)

(26)

27

(28)

We now consider the case where lim r, = c0. If § > 2 then it follows from (26) that

n=co

a;$; P9, 2 2
———(llw; — El|lw; FF12F
log IP.-+'1|(“ w1l Lilwis 15151

|

7| <w
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whenever § (2, min (8, 4)]. Then by the martingale convergence theorem

%, og|Pi+?'1(" Wee I = ECwi o 21 1) < 0

From this, by the Kronecker lemma, we have
S adiPidwie, 1= 3, adiPdiElwer 17171 + ollog [P )
Hence, by (25) and (28), we conclude
3 audiPidilies I = 0log ryy ) @9)

which together with Lemma 2 implies (13) for the case where 8 > 2.
If p =2 then by (27) and the martingale convergence theorem we see that

;i ai¢rP ¢| ”2

—E[wisy P1FD <0

{log 1P, log log P TF 14+
Noting that sup E[[|Wpsy 1?1 Z.] < o0 and (25), then again by the Kronecker lemma
we have
_Z a;$; Pid:|lwiy 1 |1 = o(log [P, | (log log [P/ 1)) (30)

which, together with Lemma 2 and (28), yields (13) for the case f=2.
This completes the proof of both Lemma 3 and Theorem 1. d

Denote by ¢¢ the difference ¢, — ¢2; then by (14)
$:=[0 .. 0 & .. & Y

Thearem 2
Under the conditions of Theorem 1| as n— co:

(i) if B> 2 and log r? = o(42%.) then

I o\ 1/2
16, — 8| =0(( OB ) ) as
'i'mm /

(i) If B =2 and log r2(log log r0)¥ = o(42%,) for some ¢ > 1 then
1 U 1 | Oye\ 1/2
PR(CL T K
Amin
Proof

Since C~!(z) is strictly positive-real it must be stable; then by (16) and (23), and
noting that tr &, P;)\8,,, =0, we have

PR =°(.Z"~0 819 “2) =0 + 0(_2\":0 aidiPiiWi nz) G1)
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(i) Let B> 2; by (29) we see that

'S, 19417 =Oflog )
Hence
<2+ 2T, 14§17 =20+ oflog )
and
r,=0(r?) (32)

Further, for any xe R? with | x| = 1 it is clear that

a=1

Z (x*¢?) = Z X'~ x"¢fY <2 Z (x'¢))? +2 Z 1

<2'Y, (x°¢)? + Oflog %) (33)

Hence
At < 22040 + 0(A50)
and then
Aot = Odgsin) (34)

log 7, 0 log r?

T O\ 2%,
The first assertion then follows from Theorem 1.
(ii) If B =2 then from (28), (30) and (31) we have

By (32) and (34) we have

'S 16117 = Oflog , log g 1,Y)

Hence (32) remains valid, and (33) becomes

Z(x'¢° Z (x*¢;)* + Olog r¢ (log log r®¥)

Therefore, under the conditions of the theorem, (34) holds true. Then

logr,(loglogr,) (log r? (log log r°)‘)
An. =0 ,1011

'min min

and the second conclusion follows from Theorem 1.

3. Convergence rate of parameter estimation for systems with attenuately excited
control
In a stochastic adaptive-control system a performance index of the long-run
average type 15 frequently used (see e.g. Goodwin et al. 1981, Chen 1984, Chen and
Caines 1985), for which an external decaying disturbance added to the input or to the
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output of the system does not change the performance index. This is one of the reasons
why we introduced a random dither with covariance matrix tending to zero (Chen and
Guo 1985 b, ¢) to the system in order to get both optimality of the control and
consistency of the estimate. To be precise, this treatment, called the attenuating
excitation technique, consists of the following. Let {v,} be an /-dimensional mutually
independent random vector sequence and let {v,} be independent of {w,} with
properties

0_2

1
Ev,=0, Evyi=—l fv.l*<

1
) se|:0, m), t=max(p,q,r)+mp—1

(33)

where o? is a constant. {v,} will serve as the attenuating excitation source.
Without loss of generality, we assume %, = ¢{w,, v;, 0 <i < n}. Set
Fooy=0{w,0<i<nv,0<j<n—1}

Let #,_ ,-measurable i be the desired control. The attenuating excitation technique
suggests that we take

U, = U, + 0,
instead of u, = ul.

Theorem 3

Suppose that

(a) (w,, %#,) is a martingale difference sequence with

sup E([wa+, [P 1 F) <0, f22 (36)
-
lim-3Y wwi=R>0 (37
n—wMNi=0

{(b) C~1(z) — i1 is strictly positive-real;

(¢) A(z), B(z) and C(z) have no common left factor and A, is of full rank with 4, =1
by definition;

(d) The output of system (1) under control
u,=u, +v,

has growth rate

-3 Il =0 (8)
where «, in &, _ -measurable and

L3 a2 = 00 (39)

and where v, is defined by (35) and

1— 2t + 1)
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1/2
o(("’i") ) as. if f>2

c\1/2
0((————l°g rlog log n) ) ) Ves1 asiff=2

Then

16, — 61l =
n

for any ae(3(1 +8), 1 — (¢t + 1)(e + 8)].

Proof
We first note that

(t+1)(e+6)+12—5<([+1)|:8+1_25(“' 1)] =2t +1) _

2t+3 22t + 3)
so the interval (3(1 + 8), 1 —(t + 1)(¢ + J) is not empty. We also note that
L 2t+1)
—_— 2
A T

so we can take ye(1/(l1 — ¢), 2] such that

1
o plowi— Il
o LA

Hence we have

—

TS P el —¢
we conclude that
l—eg &
1-z Z !),'U: — I
n i=1 n-—w

By (21) and (39) it follows that

i = 0((22 a1 2)1,2(108 (Zz )2 + e))”“")

=O(n(l+6)/2(]0g n)l/2+rp), n>0
Then from (37)-(39), (41) and (42) we know that

0 = Ofn' %)

e

If we can show that for sufficiently large ng

Ao Zeon®, >0, Vazn,

(a1)

(42)

(43)

(44)
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then (43) and (44) guarantee the conditions in Theorem 2, and the conclusion of the
theorem follows from Theorem 2.
Clearly, (44) is equivalent to

lim infn~ %223 #0 (45)

n—w

We now prove (45) along the lines of the argument used in Chen and Guo (1985 ¢).
Note that the full rank of A, implies deg A(z) = p, deg[det A(z)] =mp and
deg [Adj A{z)] = mp — p, since A(z)[Adj A(z)] = det A(z)!. Set

W, = (det A@)$7
det Az)=ay +a;z+ ... +a,,z™
By the Schwarz inequality and the fact that ¢ =0 for i <0, it is easy to see that

Am(,_i wi)_ inf 3 Y <omp+ 1) af A8,

xli=1i=1

where 4.,
show that

(X) denotes the minimum eigenvalue of a matrix X. So for (45} it suffices to

lim mfn“’lmm( Y ¥ IIJ') #0 (46)

n—w
If {(46) were not true then there would exist a vector sequence {1, },
114 -1 Q0 0 - d
RN AR A N A P A XY

such that ||z, | =1 and
lim ng“(z (n;k'ﬁ,-f) -0 (a7)
n— oo i=1 k=
Let

p—=1

H,(2}= } a.z'(Adj A(Z)[B(z) C(z)]

+q_i mZ [det A(z)l, 0]+ Z vezZ'[0 det A(z)],,]

A Y [W: ghlz; t=max(pqnr+mp—1 (48)
ji=0

where ki, and g/, are I- and m-dimensional vectors respectively. Clearly, hi, and gi, are
bounded in k and w (sampling points).
Then (47) means

lim n;? Z RS+ o + WS, + 80w 4 L+ g )2 =0 (49)

k—wm

By (21) and (39), it is easy to see that

T
i

e

ui_ 5| = Ot * 92 (log )12 *7), i >0 (50)

i=1

TR

i 05| = Ot * 2 log m) 12+ ), >0 (s1)

1
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=0(n'?(log n)*?*"), j=0 (52)

-

\3
Wi

i=1

Because gJ, and hj, are bounded and « > §(1 + &), from (50)-(52) we know that

iy t ny 1 R
nf“{h,‘,’; Y wothS 4+ Y RS u ik + Y gt S w, jv;hg’k} -0 (53
i=1 i=1 i=1 j=0 i=1 k-
From this and (49) we have

e “‘_; (hnsvi)® 20 (54)

K
hadiv o}

nk'“‘; (hofuf+ w4 o+ R 80w+ L+ gEw_ ) > 0 (55)

x ny
k=

Relationships (39), (41), (54) and (55) imply that

12 (12 = ofng ' =5~ (56)
H;“ +8)+1-¢e—a i (h,(.):u.‘;)z - 0 (57)
i=1 k- m

ngeEtd _Zl (hatuy oy + oo+ Wi+ 80w+ L. +g’,,‘kw,-_,)2k—v 0 (58)
= =

Comparing (58) with (49}, we note that n, ® in (49) is replaced by n,*"¢*® and the
term h%°u; disappears. Continuing the same argument, we obtain

(LN R U VAN A (59)

Mic
nyserd) _Zl (hSugo s+ o+ M+ g%w, + ... +g’,,‘kw,-_,)2k—> 0
&

Vintegersse[1,t+ 1] (60)
Since a < 1 —(t + 1)(g -+ &), it immediately follows from {59) that
Al = 0, O0<i<t (61)

k- co
For s =t + | we have, from (60),
ppa- G+ et -21 (howi+ o giw ) = 0 (62)
By (37), from (62) it is easy to conclude that
gl, = 0 Vintegersje[0, (] (63)

k-

and by (48), (61) and (63) we see

H,(z) = 0

k- x

From here, by use of Condition (c), exactly the same argument as used in Chen and
Guo (1985 c) leads to a contradiction. Thus (46) is verified and the proof is completed.
O
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4. Application to adaptive control
We now apply the results obtained to the following adaptive-control problem with
quadratic loss function:

n—1

J) = Tm J,(u), J,.(u)=% Y (ViQryi+uiQou) (64)

n—+w i=0

where 0, 20, Q, > 0.
We present System (1) in the state-space form

X1 = AXg + Buy + Cwy {65)
w=Hx, xp=[yo 0 .. 0] (66)
where
—A, R
—a, 0 -0 &
A=| B=| : 67)
: R |
B,
-4, 0 ... 0
c=[ ¢ .. Ci_y], H=[I 0 .. 0]}m (68)
1 1 }
ms

withs=pVgV(r+1)and 4,=0,8;=0,C,=0fori>p,j>q, k>r
Denote by A7, B} and Cj the estimates given by 6, for A;, B; and C, respectively,
i=1,..,p,j=1,...,qand k=1, ..., r, and estimate the state x, by the adaptive filter
fn+l = “injn + Bnun + én(yn+l - HA.n)En - Hénun)}
where A,, B, and C, are defined by (67) and (68) with 4,, B ;and C, replaced by their
estimates A7, B} and Cj respectively, i=1,...,p,j=1,...,qand k=1, .., r.
Set

(69)

L‘n= —(E;Snén+ QZ)_IB‘:SnA.n (70)
where S, is defined recursively by
Sn = ‘a:Sn~ l':in - /’i;sn— lén(QZ + E:Sn— IBn)— ! B:Sn— lAnn + H'QIH (71)

with an arbitrary initial value S,>0.
Define stopping times {1, }, {g,} with

l=1,<0,<1,<0,< ...

such that

=1
oy = sup {t > )y L& PPSG-D P H LR 17 Ve, t]} (72)
i=t
. Sy e A - L&, I
Ty =inf ‘{t >0, Y L& < —E _Zl %1% < th’—t;:—a <lp (13
1=t 1=

1 —2et + 1))

here d €| 0,
where e( 3
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We now define the adaptive control u} as

w=L% +u, (74)
with
o= L, ?f n belongs to some [z,, 0;) (15)
0 if n belongs to some [0, T4+ )
where v, is defined by (35).
It is worth noting that u2 can really be recursively computed in real time.
It is shown 1n Chen and Guo (1985 ¢) that
inf J(u) = tr SCRC™ (76)
uelU
where § is a positive-definite matrix satisfying
S=A'SA— A'SB(Q, + B'SB) " 'B*'SA+ H'Q,H an
and by definition
U= {u: Y [l =0(n), |lu,|> =o(n) as. as n—»oo} (78)
i=1

Theorem 4
Suppose that for System (1) the following conditions are fulfilled:

(@) {w,, %} is a martingale difference sequence with properties

sup E(Jw, 11 F,_)<oo as. iff>2

1z _
-Y wwi—R|[=0(n"*) as. asn-so0
Hi=]

where R is a positive-definite matrix and p > 0;
(by A, is of full rank (4, = I by definition) and A(z) is stable;
(c) C~(z) — 41 is strictly positive real;

(d) (A, B, D) is controllable and observable, where D is any matrix such that
D'D=H'Q H.

Then under the adaptive control {u3} given by (74), the following convergence rates

hold as n— o0:
l 1/2
o(( °ng,") ) as. if f>2 (79)

c\ 172
0((M) ) as., Vex>1, ifg=2 (80)

16, — 64 =
n

for any a € (3(1 +d), | — (¢t + 1)(s + 8}], and
I/, (t*)—tr SCRC*|| =Q(n-*9) as. (81)

where p A ¢ =min (p, &).
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Proof

By an argument similar to that used in the proof of Theorem 1 of Chen and Guo
(1985 ¢), it can be shown that the following properties hold true:

) » 3 IR =00) s G

(see Lemma 4 of Chen and Guo 1985 ¢);
(ii) S, = § as (83)

n—oc

(see Lemma 5 of Chen and Guo (1985 ¢);
(iii) there is a 7, such that

=L, as. Vnxt, (84)
(see Lemma 6 of Chen and Guo 1985 ¢);
P
(iv) X+ 1 "2 + | Xew 1 — Xps "2 = 1)+ O(Zl .uk_l(llwi-f-l ”2 + "1’1”2)) (85)

with 0 < u < 1 (see (57) of Chen and Guo 1985 ¢);
) =5 hal?=00) as (86)
i=1

(see {62) of Chen and Guo 1985c);
and finally from both (49) and (59) of Chen and Guo (1985 c) we have

. QL 1 = .
(v1) - 0% —x )% =00) + 0(; > WGP + w2 + ilvillz)) 87
i=1 i=1
Since A(z) is stable, from (82), (74) and (1) we see that
1 "
=2 Iyl =0(n’)
Hi=1

From Theorem 6.2-6 of Kailath (1980, p. 366) it can be concluded that the
controllability of (4, B) impiies that A4(z) and B(z) have no common left factor.
Hence Theorem 3 is applicable and (79) and (80} are verified. Thus we only need to
establish (81).

By a standard treatment (see e.g. Chen 1985), from (65), (66) and (77) we have

n—1 a—1
Juu)= ‘Zo (Vi Q1 yi + ui Q) = x5 Sxg — X, 5%,, + ‘Zo Wi CSCw;y

n—1 n—1
+2 3 (Ax;+ Bu)'SCw;,, + 2 (u; — Lx,)(Q, + B'SB)(u; — Lx;) (88)
i=0 i=0
where
L= —(B'SB+Q@;) 'B'SA
From (35) and (85), we have

k i+1 2 {- 12
”x*“”2=0(1)+0(2u (E si Il T lwsl ))

i=1 i 1

=

—0(1)+0( k- ‘it,)=0(1)+0(k'-v)

Q
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hence

Ix.?

On~*) as. (89)

and

1n-1

- ¥ W, C'SCw;,  — tr SCRC"
ni=o
]n—l
=1 C'SC(; Z W,-.,_IWL_l —R) =0(n_p) (90)
i=0

Since ¢, — 6 and §, is bounded, it is not difficult to see that
S,v;—S=(A+BK,)(S,— SA+BL)+¢,
Here
K,=—-(Q,+ B'S,B)"'B'S,A
el =008, =o{

where the last estimate follows from (79), (80) and the fact that o> 1.

Noting that 4 + BLis stable and K, — L by (83), we have

n—o

1
IS, — St = o(—ﬁ) oy

1
119 - L= ;73 02

by (84).
We now estimate the last term in (88):

_ O(Zo hu,— Lx}llz)

"il (u; — Lx;)(Q; + B*'SB)(u; — Lx;)

i=0

= O("i1 (L2 — L)x; + LY (%, — x;) + v;[1%) (93)
i=0

in which

S lnl? = 00" ~) (04
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by (41), and

Z LY — L)x; ”2‘0(ng [1x; ||2)= (Z (Z ;12 Z llx; ||2))
oo llx; ) | "t (oo lxill®  Ei—ollx;lI?
0( o Z( e I )—||xo||2)
o\, )
0( l/2+ Z( 72 m)l—”xo” )

=0(n”2 +'E ,1;1/2) +0(1)=0(n"") 3)

Similarly, we have

,'lg IL2GR = xo)l* = 0( i 1% — ;I 2) = o(n'/?) (96)

by (87) and 3. 115, ||2—o( $ g, ||2) o',

Combining (88)-(96), we conclude that
J(u*)—tr SCRC*=0(n"*+n""+n" ")
=0n"*+n"5)=0(n""*"9) as,

5. Conclusion

We have presented the convergence rates of both the parameter estimate and the
quadratic index when the least-squares (LS) algorithm is applied. Comparing with the
stochastic-gradient (SG) algorithm (Chen and Guo 1985 b, ¢), we have found that the
LS algorithm is not as simple as the SG one, but gives better results in the following
sense.

(i) We have not given the convergence rate for SG algorithm; but we have done 50
for the LS algorithm.
(i) For strong consistency of the SG algorithm it is supposed that

n
Amax

in

‘min

= O((log Arax)'*)

which means that log A%,, and log A}, are of the same order, while for the LS
algorithm we only require that

log A,

o 'HwO for f>2

(iii) When adaptive control with the attenuating excitation technique is applied
for strong consistency of parameter estimates, the growth rate of (1/m)Z7-, (|| y;|I?
+ |lu; 1?) should be limited by O((log n)’) for the SG algorithm, but for the LS
algorithm the order is increased to n’. The covariance matrix of the excitation source
from I/1og® n for the SG algorithm is reduced to I/n* for the LS algorithm. This means
that the LS algorithm can give a better approach to the optimal value of the quadratic
cost.
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[t is clear that the LS algorithm can be used to solve the stochastic adaptive
tracking and pole—zero assignment problems,
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