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Consider the multi-input multi-output stochastic system

Yo+ AYaa+ oo+ Apyyp =Bty + -+ + Bty g+ w, + Cw,_,
+ oo+ Cw,,, ¢y

where the orders p, g, r are assumed known but the parameter
6 =[—A4,--- — A4,B,-++B,C,---C,] : @)

is unknown. Arbitrarily given initial values 6, and @,, the estimate 6, for @ based on {u;,
i<<n—1} and {y;, { <<} is recursively given by the stochastic gradient algorithm

9n+! = 9,, + ((Pﬂ/rn)(y;+l. - d’:en)’ (3)
(P; = [}'; S Y paalhnt t UpegyYy — (p;—l:en—-l' Yo — (P:—reu—r] ’ (4)
ra=1+ 237 lgilfy ro=1, (5)

i=1

Let z be the shift-back operator and let
C()=I1+Cyz+ -+ + C,2", (6)
Then C(z)w, is the system noise. Assume that w; = 0, { << 0, w; is & ,~measurable and
EWo|Fa) =0, E(IWal//F not) < Cpr% 1, Co>0,6€[0,1), Vr =1, (7)
where {(#;} is a family of nondecreasing o-algebras.

For the case r = 0, the system noise is uncorrelated, then @, does not contain the last
elements ¥ — @;_fiy, n<<i<n—r+1,

In the sequel 2,,,(X) and 1,i,(X) always denote the maximum and minimum eigen-
values of a matrix X respectively. In the consistency consideration of 8, the persistent excitation
condition is usually invoked™™4, i.e.

Amax (é <P,-qv.'-)/1min (Z:Z qv.-q)?) <k< o, (8)

with & possibly depending on w. For the simple case r = 0 even if the above mentioned ratio
of mayimum to minimum eigenvalues diverges with a certain rate the least square estimates can
still be consistent for single-input and single-output' and for multi-input and multi-output sys-
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tems respectively!®. For the # = 0 case the authors have proved”® that the estimates given
by the stochastic gradient algorithm are strongly consistent for a class .of systems not persistently
excited. Hence, we cite some results which will be needed in our discussion. Set

Pa= [Yne Vo poathhs " thy_ gy Wil (9)
oot ’
On + 1, ) = (1 = #E0) 0%(n, ), 096, ) = 1 (10)
ram 14+ Dl r5=1, (11)
i=1
a>(n+1,i)—_-(1—M)a>(n,i), oG, i) =1, (12)

Theorem 1. (i) If C(z) — % 1 is strictly positive real, then ®(n, 0)—>0 is equivalent

to P(n, 0)—>0, (i) If C(z) — —;— 1 is strictly positive real and ®(p, 0) —> 0 (or @° (n,

0) —>0), then 6, — 0 a.s. for any 8,, where 0, is given by (3). (iii) For the case r = 0,

0, —>0 a. s. for any 6, iff ®(n, 0) —0,
Theorem 2. Suppose that r,—> 00, limr,/r,_, << 00, and that

Tnne (Z‘ #:51) / duie (;} #i9}) < M(logra)}, Vi >N, (13)
i=1 =1

' for some N, and M possibly depending on w, Then ®(n, 0) =0,

Theorem 2 is an algebraic result which is true for any vector sequence {¢,} only if ®(#,
i) and 7, are defined by (5) and (12) respectively, for example, @,,®(n,0) and r, can
be replaced by @5, ®°(n, 0) and rJ respectively. This theorem shows that the estimate given

n

by the stochastic gradient algorithm converges to 8 if the condition number of E: @, ] increas-
i=1
es as #— 00 not faster than (logr,)*, The question is in order to guarantee ®(n, 0) —> 0
n—90

”
whether the condition number of Z @:@; can be allowed to grow faster than the rate men-
i=1

tioned above and what the limit is. The following theorem asserts that in order for Theo-~

rem 2 to hold the order% of logr, on the right-hand side of (13) cannot be enlarged to

greater than 1.

Theorem 3. For any 6 > 0 there exists a vector sequence {@,} such that

o (33 9108 /e (35 i0) < M Clog 1), (1)
=1 i=1 .

and ®(n, 0)—7‘-:0, where r4 and ®(n, 0) are defined by (5) and (12) respectively.

Proof. Suppose the contrary is true, i. e. (14) implies ®(n, 0) — 0,

Let p=1,9=r =0 and 4, be stable in (1). For {w,} in addition to (7) we suppose that
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suipE(”fu,-“’/‘?,-_,) < oo, ’l‘im 1 i w;wi= R >0, 15)

~o 7

Let {{s} be a sequence of iid random vectors independent of {w,} and with the same
dimension as w,, such that Ef, == 0, EL, 0% =1, ||L,]l < ¢ with ¢ being a constant, Vp=

1, Set
Vs = Ca/(logn)1*¥, 5 >0, (16)
P =1y, 721, @' = [0, 7]], _ 17)
Take B; of compatible dimension and set
6" = [—4,, B,], (18)
Then .
}f-+1 = 07(@n — @2) + Wy, (19

We now estimate 6 by the algorithm given by (3) and (5) with ¢, defined by (17).
It is clear that 6, remains invariant whatever B, values, since the right-hand side of (19) is
independent of B,, Hence 6, cannot converge to 0 given by (18). Then the theorem will
be proved if we can show 6,86 — 6, —> 0, under the converse assumption. It is obvious

n>o

that

s =0, — (Pul 7a) (@30 — @20 — L0, + why)) = @(n, )6+ D>, ¥(n + 1,

i=0
i+1)9’i‘f_"£e+2”]¢(n+1,i+1)"’—":”_7‘+—‘, (20)
i i=0 i
We first prove
lim % (logn)‘“lmu('_z:; <p,-q>.’) >0, (21)
If (21) were not true, there would exist {a@s4},{Bnx} such that (22)
lloaell? + IBaell? =1,
;1; (1087'0”8 é (a:kyi + ﬂ:k”i)zk:(). (23)

Let {8,} be a Martingale difference sequence, &, and x,4; be S ,-measurable and supE

(le&ll3/ F n-1) < o0, Then the following estimate takes place'™

3 wet= o([Sat]), ve>1. (29)

Since A, is stable from (15) we know

> lilP = oG, (25)

By (24) there is a constant ¢, > 0 such that

nk ny
8
| St = 0 (X Inh) <et, L<p<n,
i=1 i=1
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Hence by (23) we have

nk nk

1 4 T

;— (log nk)“" [ank z : Yi¥itay + Fok Z ”i”zﬂuk]k_’ 0.
& i=1 i=1 -

(26)

By the Burkholder inequality and the C,-inequality we know that there exist constants

c3>>0, ¢c3 >0, such that

E

> Gof — (1 g )1

. 28 2
< c0%E ) lloio} — (1/10g™)I1| 72 < o™,

=2

By (27) and the Borel-Cantelli lemma it follows that

1 Z (v.0F — (1] log**%i)I) >0,
"Ti-z n>
for any
re<<2+i)/(2+ﬁ), 1),
4 2
Consequently,

n”

i 1485 hid
Efllnﬁn ((log1+5"/n) :E] ”ﬂé) = EHl [lmh (JE&__JE.:E: (”i”;_—'_—____

F=2 i=2

+ log**n < 1

145
n i=2 log'*™%

1]21

which together with (22) and (26) implies that ||l =0, ])a,,k[]r 1,
1 &L »>x
By (24) and (25) it is easy.to see that

lim daia (5 33 919%) 2 Zaia(R) >0,
n>D i=1
Hence for the sufficiently large %
ng
;}1— (logny) Hoary z Vi¥itay = —21‘“ 2mia( R) [leng [|*Clog ”k)Hsk“’ 00,
k i=1 »+>0

which contradicts (26). Thus (21) is verified.
From the boundedness of ||;|| and (25), it follows that

35l = 3 Il + 1) = 0Go),

Then there is a constant ¢, > 0 such that

n n
Ama (Z <P.-qof) / Ainin (Z qv.-q)?) < ci(logn)'*e,
i=1 i=1

which would yield @(n, 0) — 0 by the converse assumption. From [7] we have

45 id ]
% <k (3 ot — (o 1)
. i=2

@7)

(28)
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20 @G + 1,5 + DeilP/ri < d,
i=0
where 4 denotes the dimension of @,, Then for the sufficiently large n, it follows that r, =

Z lly:lI* = % Amia(R), and that
f=1

2llgfl 7 < (267 Amin(R)) 35 1/flog™*%j < 0o,

i=n j=n
since ||v,|* << ¢/ log'*®n, Therefore, the second term on the right-hand side of (20) tends
to 0 as @ -—> o0 while the third term also goes to 0 as shown in [7]. All of this would
imply the impossible convergence 0, — 0, Thus the theorem is proved.

n->o
Remark 1. ‘The result of the present paper does not exclude the possibility that an esti-
mate given by an algorithm different from the stochastic gradient one can converge to the true
value under the condition number growing faster than that mentioned in Theorem 3.

Remark 2. ‘There are two open problems: (i) We conjecture that ®°(s, 0) —>0 is

nro

necessary for consistency of 8, for any 6, when r > 0 and C(z) — —;—I is strictly positive

real. (ii) Write the right-hand side of (13) as M(logr,)®, We guess that Theorem 2
remains valid for a < 1,
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