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Another way  to avoid conflict between  the structures  at infinity of full 
and reduced models is to extend li, in a nonoptimal  way; see  [4]. 
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Fig.  1. Gain  and  phases  of full and  reduced  models.  Solid  line: w. Dashed  line: Gzk. 
Dottedldashed  line: 6,. Dotted line: GJH. 
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Fig. 2. Absolute and  relative  errors of reduced  models. DoWdashed line: CJH, 

Dashed line: C,. Solid  line: Cm. 

and Gi(ejs) are plotted versus 0 in Fig. 1. The absolute errors I w(ej‘) - 
a(ejS)I and the relative errors I(w(ej8) - fi(ejS))/w(e-jS)l are plotted 
versus 19 in Fig. 2. Clearly,  the  removal of the white noise component 
results in a drastic  improvement of the phase matched reduced model. Yet 
it appears,  for this particular example, that +zk is a better reduced model 
than GI, although 12, is better than 122. over  a  narrow low frequency band. 

III. CONCLUSION 

It appears that in  order to  make the phase approximation procedure of 
Jonckheere and Helton [l]  competitive with the procedure of Zhou and 
Khargonekar [ 2 ] ,  it is imperative to remove the white noise component 
before approximating the phase of the outer spectral factor. In the 
continuous-time case,  a  similar  recommendation applies; see [3]. 

With this technical fix, the  reduced  model of Jonckheere and Helton [ 11 
yields an L ” bound on the relative error  on the spectra (see 151) as well as 

Interestingly, among all reduced models derived from suboptimal 
extensions lies the Desai-Pal  reduced  model [4]. 

A fairly exhaustive treatment of the structure at infinity of the full order 
spectral factor  and its phase matched reduced models  is  to due  Green  and 
Anderson [8]. 
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Consistent  Estimation of the  Order of Stochastic Control 
Systems 

HAN-FU CHEN AND LEI GUO 

Abstract-A consistent estimate of the  order of feedback  control 
systems  with unknown matrix coefficients estimated  by  the  least-squares 
method is derived  by  minimizing a modified version of the  Bayesian 
information criterion. 

I. INTRODUCTION 

Over  the  last few years considerable progress has  been  made  in the 
order estimation problem in time  series analysis (e.g.,  Ill+]). But  to the 
authors’ knowledge there is no consistent estimate for the order of a linear 
stochastic system with feedback control which, obviously, depends on the 
driven noise. 

In this note a multidimensional stochastic feedback control system with 
unknown coefficients and order  is considered and the system  noise is 
assumed uncorrelated. 

The  unknown coefficients, the number of which is obviously defined by 
the order ( p , ,  q,) of the system,  are estimated by the least-squares 

an L” bound  on  the error on  the  phases of thespectral factors (see [6] ,  
[7], and [9]). Further,  Green and Anderson [lo] derived an L”-error Manuscript  received May 30. 1986; revised  January 15, 1987. Paper  recommended by 
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method.  Then  we introduce  an information criterion denoted by L n ( p ,  
q), minimizing  which  gives  estimates pn , 4" for p ,  and q,, respectively, 
where n denotes the  data  size. It is shown  that  for  consistency ofp, and 4, 
the key condition  is  log hPz(n)/X%fn(n) " ~ 0 ,  where X%g(n) and 
Xk;(n) denote,  respectively, the maximum  and  minimum  eigenvalue of 
the  matrix  consisting of stochastic regressors. As is known from [6] this 
condition is satisfied  when we apply the attenuating  excitation  control 
which  leads to consistent parameter estimation  and  simultaneously to  the 
optimization of  the quadratic  loss  function.  In other words,  combining this 
note  with the results  given  in [6] we  thus  have  designed the optimal 
adaptive  control  minimizing  the quadratic index and have  developed an 
estimation  method  giving  consistent  estimates for both  the order  and  the 
coefficients  of the  system. 

H. STATEMENT OF THE PROBLEM 

Let the I-input,  m-output  stochastic control system  be  described by 

~ " + l = ~ l ~ , + ~ ~ ~ + ~ , ~ Y n - p , + l + B I ~ " + ~ ~ ~ + B 9 , U " - q , + l + ~ ~ , + l r  (1) 

y,=O, u,=O, for n<O 

with  unknown order ( p , ,  40) and  unknown  matrix  coefficients 

e=[Al ... A ~ ~ B ~  ... B,J'. 

We list the conditions  used for  the  order estimation. 
H,: The system  noise { w,,} is a  martingale  difference  sequence With 

respect to a  nondecreasing  family  of a-algebras { 5,)  such  that 

sup E[ll ~ , l l ~ l 5 , - ~ 1 < - ,  8 > 2 ,  a s .  (2) 

H,: The  true  order ( p , ,  4,) belongs to a  known  finite  set M 

H,: A, and B90 are of  row-full rank. 
H4: A sequence  of  real  numbers (a,} can be  found  such  that a, > 0 

and 

a,+-, a.=o(n) 

and 

where XpA(n) and XP$(n) denote  the maximum  and minimum eigen- 
values of Cy:,' pi(p, 4)cp;(p, 4) ,  respectively,  and  where 

r~n@, q ) = [ Y s  ... YL-p+lui ... ~ ; _ ~ + l l ' ,  V@, 4 )  E M .  (6) 

It is obvious  that  condition H3 is automatidy satisfied for  the single- 

Remark I :  If there  are cI > 0, b > 0, and a > 0 (they possibly  depend 
input  and  single-output  systems. 

on w )  such  that 

(IIyiI12+ I I ~ ; I I ~ ) = o ( ~ ~ ) ,  a.s. 
;= I 

x z ( n )  2 c, log'+mn, a s .  v@, q )  E M  

then  condition & is satisfied  and we can take a, = (log n) loglog n. 
For any  fixed ( p ,  q)  the least-squares  estimate 

e,@, ~ ) = I A , .  ... A,,B, ,  ... ~ ~ " 1 7  (7) 

for 0 at  time n is given  by 

For estimating the unknown order ( p ,  , 4,) we introduce an informa- 
tion criterion L , ( p ,  q)  which is a  modified  version of BIC 

LAP, q ) = n  log on@, q ) + @ + q ) a ,  (9) 

where 

and a, is defined  in Hi. 

1.e., 
The estimate ( pn  , 4.) for ( p,, 4,) is given by minimizing L , ( p ,  q), 

The main  purpose of this note is to establish ( p,, q,,) nz ( p o ,  q,). 

m. MAIN RESULTS 

In this section  we give the main  results  of the note. 
Theorem I :  Under  Conditions HI-& the  order estimate ( p, ,  4,,) given 

by (1   1)  is consistent 

@., 4.) nz bo, a.s. 

As is mentioned  in the Introduction,  in order  to get  both  optimality of 
the control  and  consistency  of the  estimate,  we often  use the attenuating 
excitation control, by  which we mean  that  the  desired  control  action u', is 
disturbed by a  random  dither u, which  tends to  zero, namely, let { u , }  be 
an I-dimensional  mutually  independent  random  vector  sequence  and let 
{ u, } be independent  of { w, } with  properties 

E ~ , = O ,  E ~ , ~ ; = ~  r, 1 1 ~ ~ 1 1 2  8 n. 1 0 2  

where E E [0, 1/2(t + l)), t = mp* + q* - l , p *  = max { p : p  E P}, 
4* = max {q:q E Q}, and u2 is a  constant.  Without  loss of generality, 
assume 

5 , = u (  w,, u,, 0 Q i Q n} 

and  that the desired  control u', is u{ wi, u,- I ,  0 6 i Q n} measurable (v- 
= u, = 0). Obviously,  any  feedback  control is of this  kind.  Then the 
attenuating  excitation  control u, is defined as 

u, = u;+ u, (12) 

in  which the additive  disturbance u, , as is shown in [6] does not  influence 
the long run average loss  function  but gives sufficient  excitation to  the 
system for the estimation  purpose. 

Theorem 2: Suppose  that the attenuating  excitation  control (12) is 
applied to system (1) and  that  conditions HI-H3 are satisfied and 0 Q. 
If there  is  a  positive  number 6 E [0, (1 - 2 ~ ( t  + 1)) / (2 t  + 3)) such  that 

(1ly;ll2+ I I U ; I ~ ~ ) = O ( ~ * - ~ ) ,  as.,  n + w  (13) 
, = I  

then 

4") n: bo, 4 A  a.s. (14) 

e .@,- , ,  qn-d nz e, as .  (15) 

where On( pn - I ,  4" ~J and ( pn , 4,) are, respectively,  given  by (8) and 
(11) With a, = (log n) loglog n. 

w. PROOF OF THEOREMS 

We will  need the following  auxiliary  estimate for the  weighted  sum  of 
martingale difference sequence; for  the proof we refer to [7, Lemma 21. 

Lemma I :  Let H I  be satisfied  except  condition (3), and let random 
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vector p, be  measurable with respect to F,, V n .  Then as n + 01 

where X,.&) denotes the maximum eigenvalue of Cy:; pip; which  is 
assumed nondegenerate for sufficiently large n (say for n 2 no).  

Proof of Theorem I: We need to show that any limit point of ( p , ,  
qn) coincides with ( p o ,  qo).  Let ( p ' ,  q ' )  E M b e  a limit point of ( p , ,  
q,), Le., let it be the limit of a subsequence ( p n k ,  qnk) 

q n k )  k z  @ I ?  4').  (16) 

For our purpose it suffices  to prove the impossibility Of the following 
situation: 1)p' < p o ;  2) q' < qo; 3) p' + q' > PO + 40- 

We  note at  once that pnk and qnk are  integers,  hence (16) means that 

@ny, q n k )  @'> q' )  

for sufficiently large k.  
set 

e,@, q)=[Al-AI . ,  ... A,-A,,, BI-BI , ,  ... Br-Bm]' (17) 

whereAi = A, = 0 for i  > po and j > p ,  and Bi = Bj, = 0 for i  > qo 
a n d j > q w i t h t = q , V q , s = p , V p .  

We first show the impossibility o f p  ' < po . If p ' < p o  were  true, then 
from (10) and (17) it would follow that 

" k -  1 

( p n k ,  q n k ) = e  ' i k ( p ' ,  q')d(Po,  q o  q ' )  
i = O  

. (P;(Po, 40 v 4 '3kk@' ,  4 ' )  

+2e E q')vi(Po, q o  v q ' ) W ; + I  

" k -  I 

i = O  

"*-I  

. (5' pi@o, q o ) W ; + l ) +  I I w i + l l l 2  
i = O  i = O  

< 2nk tr R 

for sufficiently large k.  
As a consequence of (5 )  we find 

Then by (9), ( l l ) ,  (22)-(24) and Lemma 1 we  have 

by Lemma 1 and &. 
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We  now prove (25) is impossible by showing that the limsup of its estimate: 

Ifliminf,,, A T v q '  (nk)/nk = 0, then letting {mk) be  a sequence of i = O  

{ n x )  such that +@'+q'-Po-qo)ank 

and noticing log (1 + x)  = x + o(x), as x + 0, we see by H4 
+Go' +q'-PO-qOb)u"k 

[ 
tr A , ~ A ; , ~ ~ ~ ~ '  (mk) + o  ( h ~ ~ ~ ' ( m k ) ) ]  

Qtnk 2 m k  
= u , k ~ @ ' + q ' - P o - ~ o ~ + ~ ~ ~ ~ l  kz 0) 

8mk tr R 
i f p '  + q' > po + qo. 

Thus, we have  completed the proof. 
+ @ ' + q ' - P o - ~ o ) ~ m k = ~ p O . q O V ~ ' ( m r )  rmn Proof of Theorem 2: By (13) it is  easy to see that 

tr APoA;o 1 . [T +o( l )+@'+g"Po-qo) -  nun 

x E ( n ) = O ( n l i " ,  a.s. v@, q ) E M ,  

~ therefore - OD. k-ca 
log X z ( n )  

=o (2) =o(l). 
Impossibility of q' < q,, is proved in the same manner but with tr 

Thus what remains to show  is to prove the impossibility ofp' + q' > 

Since we have  proved p' >, p o ,  q' 2 q,,, it is reasonable to  set nz 0, V@, 4 )  E M ,  a.s 

a" loglog n 
AP,A~, replaced by tr Bq,B~, .  

P o  + 40. (log n) loglog n 

So for proving (14) by Theorem 1 we  need only to  show 

(27) 
h z  (n) 

@=[Al ApoO 0 . 0  OBI B q o O  . * * 01'. Let 
P' -Po 4' -40 

de tA(z )=uo+a~z+ . . .+U , , , zmPo 

From (8) it is easy to see and set 

"'-1 

and 

So for (27) it suffices to  show that 
Putting the last expression into (18) leads to 

which is clearly implied by 

which together with (23), &, and Lemma 1 gives us the following where cy E ((1 + 6)/2, 1 - ( t  + 1 ) ( ~  + 6)). 
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Let 

where t = t p *  + q* - 1 and hb, and  g6, are I- and  rn-dimensional 
vectors,  respectively. 

Thus, (30) can be  rewritten as 

k-= lim [ ~ ( ~ ~ ~ z ~ ( a d j A ( z ) ) B ( z ) + ~ ~ ~ ~ z ’ d e t A ( z ) I ,  4-1 ,=O 1 = O  
and 

Consequently 

On Bang-Bang  Solutions of Stochastic Differential 
Games 

YASUHIRO  FUJITA AND HIROAKI MORIMOTO 

Abstract-We consider two classes of scalar stochastic differential 
games  with  hard  constraints on controls. The solutions are found to be 
bang-bang,  by  extending  a  technique  developed  earlier for stochastic 
optimal control problems. 

I. INTRODUCTION 

In  this  note,  we are concerned  with two player  zero-sum  and  nonzero- 
sum stochastic  differential games with  constraints. Let U be the  set  of all 
Bore1 measurable  functions u = u(x) on P taking  values  in [ - 1 ,  I]. For 
each u, u E U ,  we consider  the evolution  of the  system described  by the 
stochastic  differential  equation 

dx,=nu(x,)dt+bu(x,)dt+dW,, &=o (1) 

where a and b are nonzero  constants,  and ( W,),20 is a  standard Brownia 
motion on a  complete  probability  space (a, 3, P ,  { S,},20) with W ,  = 0. 
Veretennikov [9] shows that (1) has  a  unique  strong  solution (x,)lgo. Let 
us denote by Cb(R) the  set of all bounded  continuous functionsf:R -P R 
with its norm l l f l l  = supxE3t If(x)l. Given CY > 0 andf,fi,fi E Cb(R), 
we  define the payoff  functions  by 

and 

a& kz 0, O i k  kz 0,O < i < ~ - 1 , o  < j  6 q-1.  J,(u, u)=E  e-”’{fi+(1/2)u2}(x,)ds [ s, 
This contradicts )I qnkII = 1, hence, (14) is valid. 1 
a direct consequence of (14) and [6, Theorem 31. J2(u, u)=E e-us{Ifi+(l/2)u2}(x,)  ds u,  u E U. (3) 

To complete  the  proof  of  the  theorem, we have to show  (15),  but this is 

[ si 1 
V. CONCLUSION 

The  purpose of  this  note is to  present  the synthesis  of  both  a  saddle 
For systems  with  uncorrelated  noise  we have given  a  consistent  point (a, 6 )  E U X U and  a  Nash  equilibrium  solution (u*,  u*) E U X 

estimate  of  the  system order. We  emphasize  that  the  system  input is a (I, satisfying,  respectively, 
general  feedback control; hence,  generally  speaking, it depends on the 
driven  noise. Also, the  process yn generated  by the system is not J ( a ,  u )  5 J ( a ,  G) s J ( u ,  G) (4) 
necessarily  stationary. It is desirable to generalize the results to systems 
with  correlated  noise and  to develop  a  recursive  algorithm  for  computing and 
the order estimate. Jl(U*, u*)  5 J,(u, u * )  
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