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Adaptive control via consistent estimation for deterministic systems

HAN-FU CHENY and LEI GUO¥

For multidimensional discrete-time deterministic systems the optimal adaptive
control has been derived by use of a probabilistic method so that when the reference
signal is an arbitrary bounded random sequence, the tracking error and the
estimation error based on a projection algorithm go to zero with a near-exponential
convergence rate. For this, the basic step is to prove the consistency of estimates
when the condition number of the matrix consisting of regressors diverges to infinity;
in other words, when the persistent excitation condition is not satisfied,

1. Introduction

For a linear deterministic system with known parameter one can easily define the
optimal control depending on the system coefficients in order that the output of the
system tracks a given reference signal. Controlling systems with unknown parameter
is the purpose of adaptive control. Considerable progress has been made in recent
years (see e.g. Astrdm 1984, Anderson et al. 1986, Anderson and Johnson 1982,
Bitmead 1984, Goodwin et al. 1980, Goodwin and Sin 1984, Kosut et al. 1985), but to
the authors’ knowledge the problem of simultaneously determining optimal adaptive
control and consistent parameter estimates is still open. This can be explained as
follows. In the analysis of the existing recursive algorithms estimating unknown
coefficients of a linear deterministic system, for convergence of the estimates to the
true values the persistent excitation (PE) condition is normally required, meaning that

n
the ratio of the maximum to the minimum eigenvalue of the matrix ) ;¢! is
i=1

=
bounded as n— o0, where @; is the regression vector with components being the
input—output data of the system. However, the PE condition is not usually satisfied
for systems with unknown coefficients and with adaptive control derived from the
optimal control with system coefficients replaced by their estimates. Hence the
convergence of parameter estimates is not guaranteed, and as a result, the adaptive
control obtained in this way may be far from the optimal one.

To overcome this difficulty, in the consideration of stochastic linear systems (Chen
and Guo 1985 a, b, 1986 b) some consistency results on parameter estimation were first
established under a condition allowing the ratio of the maximum to the minimum

n

eigenvalue of } ¢;¢] to diverge to a certain extent. It was then shown that this

i=1
condition was met when a sequence of independent random vectors with covariance
matrices tending to zero was introduced to disturb the adaptive control. Since an
attenuating dither cannot change the long-run average-type loss function, it is thus
possible to derive simultaneously the optimal adaptive control and the consistent
parameter estimates.
In this paper we consider the linear discrete-time deterministic system with
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2184 H.-F. Chen and L. Guo

unknown coefficients, which are estimated by the projection algorithm. We prove the
convergence of the parameter estimates with a near-exponential rate, if the input
satisfies a condition which is shown to hold when the attenuating excitation technique
mentioned above is applied to the control. The proof is essentially based on estimation
for the random matrix sums truncated at stopping times, Then, an adaptive tracking
control is defined such that the parameter estimation error converges to zero with a
near-exponential rate, and the tracking error between the system output and a given
bounded reference sequence also goes to zero with a rate of convergence which we can

also indicate.

2. Parameter identification
Let the [-input m-output system be described by

A(2)y, = 2*B(2)u,, d=1
with unknown matrix coefficient 0
=[-4, .. —A, B, .. B]
in the matrix polynomials
AZ)=1+Az+ ... + A,z pz0
B(z)=B,+Byz+ ... +B;z2*"!, g=1

written in the shift-back operator z.

The orders p and g as weli as the time-delay d are assumed known.

We estimate @ by a projection algorithm

L
0,,,=0,+ ———(yi,, — .8,
| n+1 1+||<P..||2(y"+1 ©30,)
en=0[y - VYips1 Un—geg - u::—q+2—d']
with arbitrary initial values #, and @,.
Set
é:l=6_9n
and
: CnPr ; .
Yn+l,i)=|1—-———= |¥(ni), Wi i)=I!
Then

~ PutPrn N7 o
G, =1—-—22" 16 =¥n+1,00
i ( 1+nwn||2) ( )6o

We list the conditions used subsequently.

(@) A(z) and B(z) are left-coprime and A, is of full rank.

()

3)

4)
5)

(6)

™

(8)

(b) There exists a sequence of nonnegative numbers &, (possibly tending to zero)

and a sequence of integers 7, with

To=l, dnét"—T”WIZmp

©
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such that
w1
Z UUizé,l ¥nzl (10)
iTth-y+tmp
where
U‘:é[u: u,?_l ven u:_mp—qi-l]r (‘1)
Theorem 1

If Conditions (a) and (b) are satisfied and if there are constants vz 0,120,620
and ¢ >0 with 41 + A)v + 23 + 54 < 1 so that

o, = O@"), d,=0(n), é..>§, Vn (12)

then
10,1 = Ofexp (—ant! =267 S48+ 20V 2 ) a5 1 o0 (13)

where « is a positive constant.

This theorem says that the parameter estimate remains consistent even if the input
and output of the system grow as fast as r”, if in (10) 8, — 0 with rate O(1/n®) and if the
number of summands is allowed to grow as fast as n*,

Corollary 1
If Conditions (@) and () hold and if

sup |@,ll <o, supd,<oo, infd,>0

then there is a constant y (0, 1) such that
16,1l = 0G"), as n— o (14)

This conclusion actually follows from (13) by setting v=0,A=0and §=0in it.

Corollary 2 (Anderson and Johnson 1982)

If Condition (a) holds, {y,} is bounded and there are constants N >0, 8, > f, >0

such that for any n2 0
n+N

i< ) UUishl

i=nt+1
(a sufficiently rich condition) then (14) is valid.
To be convinced of the assertion one need only take r,=n(mp+ N)+ 1 and

8, = f, in Corollary 1.
To prove Theorem 1 we present some lemmas.

Lemma |
If Condition (a) is satisfied, then there is a constant ¢, > 0 such that

i N Co 2 N_iﬂ UU s
i il ——— min i ,r
min izk Di@; N——k-—mp-'-l i=k+mp—d+1 ) ( )
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for any N2 k+mp, Vkz=0, where and hereafter A, (X) denotes the minimum

eigenvalue of a matrix X and U, is defined by (11).

Proof
Let
det Az)=ag+a;z+ ... +app2"", app#0
and
Yo = [det A(2)]e,
Then

¥, = [((adj A(z)B(z)z%,)" ... (adj A(2))B(z)z°* 4~ 1u,)'z%" ! det A(Z)ut ...

4% 2 det A2t ]

For any x € R™*" from (17) it is easy to se¢ that

N N N mp 2
xt( > ‘/’.'fff)X= xy)= 3 Y a,x‘(p,_l)
i=k+mp i=k+mp i=k+mp =
mp 2 N mp 2
<) a ¥ (xg;-;)
ji=0 i=k+mp j=0
mp N
SIN=k—mp+1)} a y x'¢0jx
ji=0 i=k

so we have

N 1 N
Ami“(_‘; w;«p,’) > —Tim(,mz wiw:)
i=k (N—k) a} i=k+mp

i=o

Hence for (15) we only need to show that

N N-d+1
A'min(' ) !l’;'ll.’) chimin( Y UiU,?) for some ¢, >0

k+mp i=k+mp—-d+1
Write x € R™7*!9 in the vector-component form
x =[x, xfr xptlr  xerarcye

with ‘e R", x'e R, 1<igp, p+1<j<p+q
Set

H, (z) = x'*(adj A(z))B(2)z* + ... + xP'(adj A(z))B(z)zP*4~!

+xPFU Gt A(z) + ... 4 xPHOLAE2 det A(z)

s "E! i+d—1
& ,Zo gi(x)z'
£

(16)

(17

(18)

(19)

(20)

210
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Then from (18) and (21) we see that

N N .
x :'=kz+mp wiw:x - i=kz+‘mp (HX(Z)uf)~

= Zo 80— g g Uiy g 18(%)

=g'x) Y Uil

i=k+mp—d+1

N—d+1
> min ||g(x)”2;‘mm( U.-Uf) (22)

flxtl=1 i= k+rnp d+1

where by definition

g0x) = [£5(x) ... 8mp+q-1(X)]°
Thus for (20) we only need to show

min jlg{x)|| #0 (23)

lIxll=1

Suppose the converse were true. Then by continuity of g(x) there exists some x
such that g{x)=0 and ||x|| = I. For this x by (21) H (z)=0, i.e.

P , g ‘ ,
Y xadj A(z))B(z)z' = — ). xPT)det A(z)[z/7} (24)
i=1 j=1
Setting z =0 from (24) we see xP*! =0, and (24) can be rewritten as
P , 4 A .
Y x"(adj A@E)B(z)z' = — Y, xP T det A(z)fz/ ! (25)
= i=2

By coprimeness of A(z) and B(z) there are matrix polynomials M(z) and N(z) such
that

A(Z)M(z) + B(z)N(z) =1

Hence from (25) it follows that

‘i x(adj A(z))2' = Z’:l x"z'(adj A(2))(A(z)M(z) + B(z)N(z))

= det A(z)( i xitzl M(z) — Xq: x?* I N(z)zi~ 1)
S

ji=2

i q
= z(det A(2)) (Z x"Z T IM(z) - Y, x“’”"N(z)zj'z)
= j=2
Noticing
=1

deg (i x*(adj A(z))z") =mp <mp + | = deg (z det A(z))

we conclude that x'=0, 1<i<p, then x'=0, p+1<j<p+4q by (25). This
contradicts ||x{| = 1 and thus (23) is proved. 0
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Lemma 2
If
- @ 0]
=8, 6>0
Z T+ o:l?
then
52 1/2
YN S|l = ——=
I¥(N, B [ “N_k),]
Proof

Let x, be the unit eigenvector corresponding to the maximum eigenvalue p of

VN, kY¥(N, k).
From the difference equation

P9 ‘
Xi+1=(1—¢wi”2)xi, Xy = Xp, kSIQN—l

it is easy to see
xy ="W(N, k)x,
and
(12 = x5 WH(N, k)N, k)xp = p

From (26) we have

. ' lopxill?
Xiy1Xivr S XX — T+ lo?
then by (27) and (28) we see
Nob lgixidl®
<l-p
Z T+ Jo?

For any integer i € [k, N — 1] by (26) and (29) we get

Sl leg)2

< [Z oI ]‘” . [Z 5,1 ]”2
=L+ ol? AL+ o)l

<(N—K)2(1 )2

flxi = %ol <

Thus, by (29) and (30) we can estimate as follows:

N—-1
@i9;
0<% X TH o™

o el Na ledl?
loix:ll + 2, ————lx
Z T+ llgl* Z 1+ lg:0?

SN = K21 = )2 + (N = K*2(1 - p)'"2
SAN - 2(1 - p)'?

X; — Xo|

(26)

(27)

(28)

(29)

(30)
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Hence finally we conclude that
52
Sl———=
PSETUN =7

Lemma 3
If Conditions (a) and (b) are satisfied, then

1=

19(z, +d— 1,0)] <exp (—cl |

&
T d?) 6

where

M,= sup g*+1 and ¢, >0

n-.Ser.'—l

Proof
By Lemma 1 and Condition (b) it is clear that

tntd=2 PiP; €l
=
= Sha-1 1+ @I~ M,d,

Then using Lemma 2 we know that there is a constant ¢) > 0 such that
52 1/2
W, +d—1,1,_,+d—1) < [l—c’lMT"ds] (32)
From (7) and (32) it follows that

||lP(rn+d_ 1:0)" s H ”\P(t('*'d_ lat(’—l +d_ 1"
i=1

s (1o )
= il;[l I—CIW (33)

Finally, taking notice of the elementary inequality | —x <e ™, 0< x < 1, from (33)
we conclude (31) with ¢, =4¢). O

Proof of Theorem !
Since d, = O(n*) we can find f > 0 so that 4, < fn*. Then

mp-n< Y di€n+fnt=pnttt

it

i=1

or equivaiently,
mp-n+1<t,<pn't+1 (34)
By (12) we see [l@,, | = O(r;), then by (34) and the definition of M; we find that
M} =0(") = Oi*" * 1) (35)
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So (12) and Lemma 3 lead to

n 1
”q’(T”+d— 1, 0)" £ exp (—Cz '_Zl m)

= —_ €2 ( 1-26-53—4v(l+4)
O(C"p( T—25—si—ais T )) (36)

for some ¢, > 0.
Since 7,,, < 1,— 00, for any n there exists k such that

L+d—1<n<,, +d—1 37
Then by (34) and (37) it follows that

e —1_ n—d
(k+1)1+12 k+1 >
B B
or
— 1/(1+4)
"z(nﬁd) -
and by (36)

¥ (n, O} < ['¥(e +d =1, 0)]
=0 exp| — ©2 (k + ])1-25—51—4v(1+;,)
1—25—51—4dv(1+4)"

—O ex Cy n_d’ {L=28—5i—4v(l +2)/(1+4)
STP I —si—a1+ )\ g

= Oexp (—anl! ~26=3A-HUFINA+AY)  with ¢ >0 (38)

which together with (8) gives the desired result.

3. Parameter identification for systems with attenuating excitation control

Let {#,} be a family of non-decreasing g-algebras. Take a sequence of I
dimensional i.i.d. random vectors {¢,} such that ¢, is #,-measurable and is independ-
ent of #,_, and that

E(sn ’ ‘%! - l) = 0! ESHE:‘ = N’: Hsn ” s M (39)

where u >0, M > 0 are constants.
Let ¥ be a %,_,-measurable desired control. We add to «? a dither v, tending to
zero:

1
S (" e—m) 0
and the resulting control

u,=ul +u, 41
is called attenuating excitation control.

In this section for systems with attenuating excitation control (41) we establish
consistency of parameter estimation without requiring any condition like (10).
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Lemma 4
Let ¢ >0 be a stopping time with respect to {%}. Then
niaﬁvir — o(nl. —2{1 +3(mp+q))£) (42)

for any %, _,-measurable f; with || f;|| = 0(i*) and 0 < v < ¢, and

1
(n+o0) " *—g

ntao

= 2 >, ;>0 (43)
i=n

for ¥ n 2= n, where ny and ¢, may be w-dependent.

Proof

Since | f;|| = O(i*), there exists w-dependent &{w) so that | fi|| < &,
Clearly, for ¢ < 1/[6 + 12(mp + g)]

& FAK <y %
I,Zl 20 F3mprane ¢ ,Zl 2= a1 ¥ 3mpFae < ®©
£ £

Then by the martingale convergence theorem
o Si'v; <
_Zﬂ i1—2(1+3(mp+q))a ©
i=

and (42) follows from the Kronecker lemma.
For (43) we first show

1 n+a . u
(n+g)1'2‘—gl_z‘ i=;1 (U;Ui_iz—al):;) 0, a.s. (44)

Since (v; 4,54 o — (/i + @)% 1), #..,) is a martingale difference sequence and

by E{[ / ("+0)“3‘T|9';H_,}

= 1
<26M* + 2 —_—
M*+4) 2, oo
Apgain by the martingale convergence theorem and the Kronecker lemma we obtain
1 n

_ . __H
(n+o) i;] (U.'+alis+a —(i—f—a)z‘l):o 0, as.

which implies (44).
Noticing the elementary inequalities for n > n,

1 e P U R S B Y P =L L
o= [T R T a-T [ HeE [ &

i
— 1
i+ a)?

T
vi+ovi+a’_(

< 0

i=no Ji X i=nol i=ng Ji—11 i=np Ji—1 X
— 1 1-2¢ 1—-2¢
= T 1) 7% = (g — 1) %] @9)
we see
1 "ETou u

Lady SR

(n+o)~2—g! 204 0% o] —2¢

which together with (44) proves (43). (]
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Lemma 5

Let {r,} and {5, } be two sequences of finite stopping times with respect to {%,},

G Z2T,>0,_,.
(i) If there is a sequence of real numbers b; > 0 so that

1 S 1
T pe —
b7y Y

then for sufficiently large k

Tk

S, vpfz Bz *—op 2 for some >0

i=oK-1
(i) For any %;_,-measurable f; with | f;|| = 0(*), 0<v<e
1 wo
A o T R log y - S s
e 1
whenever B, > 1, Vk and k; 7 < o0.
Proof
(i) From (45) we see
1 LSO | 1

So for (47) it suffices to show
1

dE—ol

— 0, as.

k=«

Tic
Y (v,-v,f— %l)
i=egp-y+1 i

for which we only need to prove

1 L u
- — vf — I |— 0, a.s.
s LT W W BT e

Set

1
_("+°k—1)l_25'5§—_12£’

E=T,—Gk-y, &

Ea.‘_l+i5;.‘_.+|'_nu1 a
’ Sn_ Z Xi

X, = =
‘ (Gk-1 +i)2¢ i=

-

For any n > 0 by the conditional Markov inequality we have
Z,

Th . ‘u
Z (U.‘Ui _I’) D‘k-l)
i=gp-1+1 !

Y (uiv,?—%l)
i=or-1+1 i

1
=WE[¢1.IIS:|I2I9’.,.‘-1]

1
P >
((rz TE_GiZr) b, !

1 1
< bf’,’ﬂ EI:T:_R—OJ_ZB

k=1

)

(46)

(47)

(48)

(49)

(50)

(51
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'%k-l]

If ¢ is a bounded stopping time, t < ny, then we have

Ao no
E[ﬂxlls‘llzlgﬂk_.]=5[z Iy ? fk_l]stf EI:Z Iy=ia;S;S;
i=1 i=1

]

=1 .;1 E|:I[r=i] ;-; (@;8;5;—a;-18;-18;-1) | Z,

ng
=) E[Zl Tmn tr(a;(S;— 1 + X))(S; -y + %)
=

i=1
T - l}
Tae — l:|

ng
= _Zl tr E[I,» 5(2a;8;- x5+ a;x;x)H %, ] (52)
=

-18;-185- )| %

< [Z Z‘I{, gt (20;8;- X5+ a;x;x5) | Z,

Noticing the properties of stopping times (cf. Lipster and Shiryayev 1978, Chow
and Teicher 1978), we see

—_ —_ 9%
Iejy=1 =l cap4j- 116 Fo_ +j-1

(== 2=
€EFp s EF g yvi-1r Sjm1€F4, 41

and E(x;| %, _, +;-1)=0, we then have

E[lyz a8, x| %, _.,1=0
and
tr ELL» jy %, %5 | Foy - ,]szr(M“wl)E[—arJu il Zan ]
(0k-1+J)
then we continue to estimate (52):
a;

2 <AM +u) S E|1, —H
Ela IS || &, -, ] < 2kM? + 1 ),-;1 |:['2”(0u-1+j)“

< 2(M* + 2 )E|: Zl(a_aﬁf%k_,:l (53)

= 2U(M* + 25[' 4
( ) J’Zl(ak—l"'f)‘“

Thus we have proved (53) for bounded ¢, but it is also true for unbounded ¢, since it
holds for t(n) = min [¢, n], then the Fatou lemma yields the desired estimate. Then by



2194 H.-F. Chen and L. Guo

(53) we continue to estimate (51):

1 L u
= =1} >
((Tl - 2¢ a.l_—lle)l,'Z R bk i=a'kz_'1+1 (U.U, ize )H n

4 w .
2(M* + ) |: a; 9‘;“_1]

by SO +i)¥
2M* + ) @ 1
B bin? Sl +)) =0 28 Now— + )"
< 2!(M4+,u2){ 1
bin* [(L+0x-1)' "2 =0 T8N ou—y + )™

dx }
L (O )Y+ o) T =0 2]

<ol gEma)  AM ) dy
TUNBE afe, (1 —2e)bin? T Wy + o) = 26)2010 - 25
o LY, 2t ) 1 dy
- bt (1 -2 b,fnz g Wy + o} — 3T s G- 22}
(M + d
o( ) L+ 2N 5 ) J‘ L
b l—zeb +1)1 2 Jzy y .Uk—l
-0 . 2M* + u?) . 1
b 26(1 = 2)bi %02 [(of-y + 1) 72— 0 T

ol LY 4 of @)™ (1

oo | Gl 3
b2 bia{*) I\ b}
where ¢; > 0 is not dependent on k.

Since ) (1/b%) < co, then by the Borel-Cantelli-Lévy lemma (Chow et al. 1971)
k=1
we conclude (50) and hence (49).

(i) For (48) it suffices to show

1
(T,: —t+v __ l c+v)l/2ﬁ ]0g :Bk = UZ fl[llf:llﬁ(lf-‘sﬁ.)t] : Ul{m 0 (54)

since ,— co.
k=vao

The proof of (54) is similar to that for (50). [nstead of g;, x; and S, we should set
1

(' + o.k_l)l—t+v_ o.;_—f+v

PPN
xl — fﬂ'k— 1 +il[||f-..|+1|| < (log )0y +)']) sﬂk— 1+
' (04—, +i)

=i§1x
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p( ! z )
(e =g ZfT)V2 - By log By et

1 o0
S5 Y trE[ly» (26,8 X+ ax;x[)| %, 1 (55)
nzﬁflogzﬁkj; [LE)] f i il S| JE

Then (51) and (52) is repdaced by

Tk

. E
Y fdyacoogsan U
+1

i=0x-1

>

Again we have

a;€ #,

T N & ' gF -
oxer & Farovj—10 Sjm1€Fg_ 4j-1, E(le‘/au_|+j—1)_0

‘d/-ak— l}

and

og B oy + 1)

ﬁﬂ'h*l]

tr E[ I, ya;x;x} | &,

110 k-1

Then (55) is estimated by

(55) < IM? [i aj

UZBEE =iloe-, +].)2£—2v
IM? = 1
N 'lzﬁf =1{ok—, +j)2(£_v)[(ak—1 +j)] Tt — U;—_fﬂ]
< IM? ) 1
T o T (o + )T —ai D]
. IM? —["’ dy
PRA—e+0) ) YO F Ol e
1
Scd,ﬁ (56)
where ¢, > 0 and is independent of &.
Again by the Borel-Cantelli-Lévy lemma the conclusion (48) follows. O
Define
To=1
k=1
inf{k>t,,_1:" Y UEUEZI}
7, = S (57)
oo, if A"’i"(;=<,..z.+mp U,-U,F) <1, Vk>r1,_,

where U, is given by (11).

Lemma 6
If u, is defined by (41) and |u®|| =0(n*), 0<v<eg then 1, <0 as. ¥Yn=1.

Proof
Let S be the set where the conclusion of the lemma does not hoid.
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To be precise, assume
nt+a
imin(z U.-U;) <1, ¥nz0onS (58)

nt+eo

for some ¢ & 1, + mp.
Let x"=[x}"... xp+4,]" be the unit minimum eigenvector of Z U, Ui, where
i=a

x’eR'and |x"||=1.
Clearly, |u;|| = O("), then by (42) and the boundedness of x{, i= L, ..., mp + g, we

find that (no measurability of x" is required):

n+a
at, O Rt RT
Z Ui(xl ui +x2 ui'-l + ... +xmp+qui—mp—q+l)=0(n

i=o

and by (43) for we S,

1—2(1 + 3(mp +q))=), a.s. (59)

nto
1> Y (U,
i=a
n+a n+o

Q n nt
2 Y xXTuoix] +2 Y xXTu (XU 4 xF Uy e X Ui mp—g+1)
i=a

2 ey XV 12((n + 0)' "2 — @ T2 4 of || x2 || n! T2 H Imp ey
= ¢ XTI [+ )12 = g1 =2) 4 ofn? =20+ 30mp o) 0)

From here it is easy to conclude

n1—2(1+3(mp+q))z o N
no_ _ ~6{mp+ q)e
<7 _0((n+a)1'2‘—0'1_2‘) = ofn prae) (61)

We now show forwe S
X7 | = o(n~8tmeta=UINE=k) - j=1 . mp+gq (62)

The estimate (61) shows that (62) holds for i=1. Let it be held for i=1,..., s,
s < mp+ q. Then we have

n+a
1> Y (x™U,)?
I=0
n+o n+o
Z X541 Ui—sVi X541 + 2 Z Xg5 10— (KT w4 o+ XU )
i=a

nte

+2 Z X5 O g Xg s F U XS g+ o Ui mp-g+1Xmp+q) (63)

Noticing there is a w-dependent » such that

nto n+o V
Z Xe% ViU + o + X )| Snllxs |l Z ‘I‘( il + ... + IxEl)
1=a

=0(||x:+1 H e pl=6lmp+g=(1/3)s— l))a)’ weSs

Then by (59) and (43) from (63) we have
1> cy{(n+0) "% =o' 2) Ixgy |* +

+o(lx34 [l = n
=((n+0)' "2 =072 | x0y, ey 1xTe | + ofn ™ SlmpHa={L/3siey)

O3 st ~Smp+a= /32 1k

1-2(1 +3(mp+q))£)
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and from here
X541 | = o(n=8mpHa=(382) e §

Thus, (62) is valid on S, but (62) means

n___ L0
n—

X

this contradicts with [|x"| = 1, ¥ n, hence P(S) = 0. This proves the lemma. O

Lemma 7

Assume |ju,| =0(n"), 0<v<e Then for {r,} defined by (57) the following
estimate holds:

(14— R = O T — I UD), as, (64)
Proof
Suppose (64) does not hold on a set I'. We have to show
I =

For w e T, there is a subsequence {1, } such that

(t;k— 2e 1 - 25)mp+q .
1—z+v 1- £+v mp+q-(1/2) &
- ; >2 (65)

Ay T’lk -

Let x* = [x%" ... x¥,,,]° be the unit minimum eigenvector of

Ty =2

Y UL Ixl=1 xeR
i=t, ,t+tmp
By definition of {r,} and (47), (48) with b, = 2¥/™P*9_and B, log B, = 2* we have

-2

1> ¥ (U
it +mp
1.2 t“-l
k t. .k kt Otk T k k
2 Y uaid 42 Y Andxl buio x4 X Miempage1)

i= 1ty +mp =1,  4mp
2 Blx 17 (a2 — 1h 220 + ol (e, o — 5 )H22Y

Similar to (60) and (61), we hence conclude

Tl—e+v 1 s+v)l/22k
n
”X’ill:O( * 1-2¢ 1—2: ), k“’w, wel (66)
rnk _Tn;‘—l
Assume
1—e+v 1 5+v: 1/2 , »nk
T - ) 2
k nx
x| =0 67
Ixf] ( Ty ) 67)

have been proved for i, 1 £i<s <mp+ g, we now prove it for i = s + 1, noticing (66) is
only (67) with i=1.
Paying attention to (40), (45) and ||u; | = OG*) we see

Tp—2

z O Ui

f=t _ +mp

L—g+vy 1—-g+v
= 0(1,, — T, 0

nx -
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and then proceeding as for (63) and making use of (47) we have
P> Blixges 12" — 1,2%)
+ 0115+ ¢ I (lx |I+ D E T )
R UE Y LA Hutrad W) (68)

Noting the elementary inequality ¢’ — ¥ <a*—b*, ¥x2y20,a> b> 1, by the
induction assumption from (68) we find

1—eg+v 1- £+v s+ 1/2 , 7k
- Toy — Tp 1) +2
1> BixEs (12 (5, * = Ta,” 2f)+o(|]xs+1ll T Ty )
Tnk Tnk—l

+O(||x3+1"(‘fl ety le :+v)l/2 zk)

and from where it follows that (67) is valid for i =5+ | and w € I'. Further, from (65)
we have

1=-g+v 1= e+v mp+ 1/2 , 9k
(tm( — Tpy- ) pra- <2 <1
1-2¢e __ . 1=-2eymp+q =

(Tm, tnk-l)

then (67) says that
lx*Il=0(l), ask—oo, forwel

However, ||x*|| = 1, ¥ k, this means P(T}=0. o

Theorem 2
For the system and algorithm described by (1)—(5) with attenuating excitation
control defined by (41), if Condition (a) is satisfied and

. 1 —(64 12(mp + g))e
= v th
l@ull = 0", with ve [o, g —2 N (69)
then
”Bn _ 0” = O(exp (~czn1 —12{mp+q)e+v)—6e+ Zv)), a.s. (70)

as n— o0 with a > 0.

Proof

We note at once that for ¢ defined by (40) the interval for v is not empty and
1 —12(mp+ g)le+v)—6e+2v> 0.
The estimates

z) —e+v_1.1 ety < 2(,[1 2e ,L.l ZE)T::,+V (1)
Ty — Ty S 2T 78ty — gl 28ty (72)
are derived from the inequality
-2 - b, Vax>b>0, 0<y<x<y
which comes from the identity

q Zy—x
e T (N
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By (64) and (71) we find

1 -+ 1-ct+v _ 1—-ztv 1 -eg+viimptgq—(1/2))/(mp+g)y e+v
AT T = Of(Th T - gk I me A (U me )

T 1

hence
T,], —g+v _ T::f+v — O(T,%(MP+")(E+V))
which together with (72) imply
Ty~ Ty = Oz, MPFOETVTETY) (73)

Then we conclude that
n
T,=To+ Z (ti—T;_1) = O(nggimpFaETITEmY)
i=1

and hence
T, = O[n(l—Z(mp+q)(£+v)—e+v)"] (74)
Putting (74) into (73) we finally obtain
‘l',,, — 1."_1 — O(H(Zlmp+q)(e+v)+c—\')](1 —2{mptgietv)—e+ v))
Then the conclusion follows from (13) if we set 4 =0 and

_ 2Amp+ge+v)te—v
T 1=2mp+g)le+v)—e+v

4. Adaptive control

Let {y*} be an arbitrary bounded random reference signal. We want to design
adaptive control so that the output y, of the system (1) follows y¥ and 8, given by (4)
converges to the true value.

We note that in the model reference adaptive control case y¥ is generated by a
reference model

AN2)yy = B*(2)uy

with a monic matrix polynomial 4*(z).
So

ya =1 = A*2)yy + B*(2)uy

and the problem is reduced to the previous one.
Write 0, in component form

O=[—A.... —Ap Bj,... B,]
and form A4,(z) and B,(z) as follows:
AZ)=1+Az+ ... +A4,,2°
B.(z)=B,,+ B3,z + ... + B,,z2*"!
For any stable monic matrix polynomial E(z) there are G,(z) and F,(z) such that
Fo(2)A,(2) + 2/G,(2) = E(2) (75)

since A,(z) and 241 are coprime.
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Define adaptive control
u,=ul +v, (76)
with 12 generated from
Fo(2)B,(2)up + G,(2)yn = E(2)Yx+4 77

and with {v,} given by (40), but we take {¢,} independent of {y*} and with con-
tinuous distribution.

It can be shown that B, is non-degenerate if m =1 (cf. Chen and Guo 1986 a).
Hence u? can be defined from (77).

Theorem 3

For the system and aigorithm (1)-(5) and control defined by (76) and (77), if
Condition (@) holds and B(z) is stable with m =/, then

(1) {y.} and {u,} are bounded as.
(i) ||y, — y¥ 1l = O(M/n®) + Ofexp (—an! "12Prak=6ey - g5,
(iii) |0, — 0|l = O(exp (—an!~12mp+ae=6eyy 4 g

where o > 0 and ¢ and M are given in (39) and (40).

Proof
From (8) it is easy to see that
161 1 < 16,1 < 18] < 00 {78)
and
v A
trc, 0, strﬁ'é,,—l"—"
T T+ eal?
Thus we have
T A
S _<tr 830,, as.
i=20 1+ [o:? oo
and
107 @il = o(l + ll@;|1?) as. asi—oo (79)

By {4) and (79) it is easy to see
0..,—0,=0(1), as.
and then
0,,:.—0,=0(1), as. asn— o0 (80)
for any fixed integer k= 1.
We define polynomials (4B),(z) and {4,B,)(z) as follows:

(AB)"(Z) = Z AinBj(n_i)Zi+j
fJ

(A,B)2) = T, AyBjuzs
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and write 8¢, as
0o 00 = Yner = 0n0n = An(@Ynrs = Ba(2y- g4 1
Thus by using (75)-(77) we have
Fn(z)g;(pn =(FA)(2)Yp+ 1 — (FB)o(2hty g4y
= (Fad)(@)ns1 + [(FA(2) = (FrA) (2] Yn s — (FB)u(2)p- g4 1
=(E(2) = 2°G(2))yn+ 1 + [(FA){2) — (Fr A X2) 1Y+ 1 — (FB)(2)ttp— g1
= E@)Yn+1 = Gpl2)n-ger = (FoBo) (e — gy + [(FA)(2) — (F A )(2)] Yo«
+ [F.B,)(2) — (FB)(2)Juty-a4,
= E(2)yp+1 — E@y7-1 — (FaBo)(2)0n g+ 1 + [(FAW(2) — (FoA) ()] Yn s 1
+ [(FaB,)(2) — (FB)a(2)]thn - a4 1 (81)
Combining (1) and (81) we get

[E(z) + [(FA)W(2) — (FA) D] [(F.B.)2)— (FB),.(Z)]] [ Ynt1 ]

By (80) it is not difficuit to see that
(FA)H(Z) - (FnAn)(Z) - 0: (Fan)(Z) - (FB)H(Z)_’ 05 as n— oo

so (82) is asymptotically time-invariant and stable since E{z) and B(z) are both stabie.

It is easy to convince oneseif that the matrix coefficients in F,(z) and G,(z) are
bounded since those of A4,(z) are bounded by (78). Then by stability of E(z) and B{z)
from (82) we know that

||<P..+1|I2=0(1)+0( sup ||67}¢,-||2)

0Sj<n+1
and by (79)
@nsy 1?2 =0(1)+ 0( sup ||fP,-||2)
0Sjsn+1
Hence

sup ”(Pj+1||2=0(1)+0 sup ||¢'j+1||2
OSj<n VESES)

which implies

sup ”ij"2=0(1), a.5. as n— oo
O0<jsn+1

This means that {y,} and {u,} are bounded. Then conclusion (iii) follows from
Theorem 2 by setting v = 0, while {ii) follows from (81}

Yrst TV8et TG (F @) @ + (FuBa)(2)0n- s
CLFAWE) = (FaA) D] yme = [FoB)E) = (FBL Ty gs1}
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if we use (iii) and (39), (40) and that E(z) is stable and ¢, and matrix coefficients in F,(z)
and B,(z) are bounded, and

(FA},(z) — (F,A,)(z) = Ofexp (—an' "1 2nrake=cr))
(FB),(z) — (F,B,)(z) = Olexp (—an’ ~ 1 2tmerar=oe)) O
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