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Adaptive control via consistent estimation for deterministic systems

HAN-FU CHENt and LEI GUOt

For multidimensional discrete-time deterministic systems the optimal adaptive
control has been derived by use of a probabilistic method so that when the reference
signal is an arbitrary bounded random sequence, the tracking error and the
estimation error based on a projection algorithm go to zero with a near-exponential
convergence rate. For this, the basic step is to prove the consistency of estimates
when the condition number of the matrix consistingof regressorsdivergesto infinity;
in other words, when the persistent excitation condition is not satisfied.

1. Introduction
For a linear deterministic system with known parameter one can easily define the

optimal control depending on the system coefficients in order that the output of the
system tracks a given reference signal. Controlling systems with unknown parameter
is the purpose of adaptive control. Considerable progress has been made in recent
years (see e.g. Astrom 1984, Anderson et al. 1986, Anderson and Johnson 1982,
Bitmead 1984,Goodwin et af. 1980,Goodwin and Sin 1984, Kosut et al. 1985), but to
the authors' knowledge the problem of simultaneously determining optimal adaptive
control and consistent parameter estimates is still open. This can be explained as
follows. In the analysis of the existing recursive algorithms estimating unknown
coefficients of a linear deterministic system, for convergence of the estimates to the
true values the persistent excitation (PE) condition is normally required, meaning that

n

the ratio of the maximum to the minimum eigenvalue of the matrix L CPiCPi is
i= 1

bounded as n -+ DC, where CPi is the regression vector with components being the
input-output data of the system. However, the PE condition is not usually satisfied
for systems with unknown coefficients and with adaptive control derived from the
optimal control with system coefficients replaced by their estimates. Hence the
convergence of parameter estimates is not guaranteed, and as a result, the adaptive
control obtained in this way may be far from the optimal one.

To overcome this difficulty, in the consideration of stochastic linear systems (Chen
and Guo 1985a, b, 1986b) some consistency results on parameter estimation were first
established under a condition allowing the ratio of the maximum to the minimum

n

eigenvalue of L CPiCPi to diverge to a certain extent. It was then shown that this
i=1

condition was met when a sequence of independent random vectors with covariance
matrices tending to zero was introduced to disturb the adaptive control. Since an
attenuating dither cannot change the long-run average-type loss function, it is thus
possible to derive simultaneously the optimal adaptive control and the consistent
parameter estimates.

In this paper we consider the linear discrete-time deterministic system with
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unknown coefficients, which are estimated by the projection algorithm. We prove the
convergence of the parameter estimates with a near-exponential rate, if the input
satisfies a condition which is shown to hold when the attenuating excitation technique
mentioned above is applied to the control. The proof is essentially based on estimation
for the random matrix sums truncated at stopping times. Then, an adaptive tracking
control is defined such that the parameter estimation error converges to zero with a
near-exponential rate, and the tracking error between the system output and a given
bounded reference sequence also goes to zero with a rate of convergence which we can
also indicate.

2. Parameter identification
Let the I-input m-output system be described by

A(z)y. = Zd B(z)u., d ~ I

with unknown matrix coefficient fJ

(l)

fJ'=[-A I

in the matrix polynomials

A(z)=/+Alz+ + ApzP, p~O (2)

B(z) = 8 1 + 82z+ + B.z·- I
, «» 1 (3)

written in the shift-back operator z,

The orders p and q as well as the time-delay d are assumed known.
We estimate fJ by a projection algorithm

q>~=[y~ ... Y~-p+l U~-d+J ... U~-q+2-d]

with arbitrary initial values flo and CPo.
Set

{J. = fJ - fl.

and

Then

(5)

(6)

(7)

(8)- ( CPo cP~ ) - -fJ.+ 1= /- 1 + Ilcp.1I 2 fJ. = 'P(n + 1,0)00

We list the conditions used subsequently.

(a) A(z) and B(z) are left-coprime and Ap is of full rank.

(b) There exists a sequence of nonnegative numbers b. (possibly tending to zero)
and a sequence of integers r, with

(9)



such that

where
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r .. -r I

L UiU~ ;:, D.I 1/n ;:, I
i='n-t +mp
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(10)

(II)

Theorem 1

If Conditions (a) and (b) are satisfied and if there are constants V;:' 0, ). ;:,0, D;:,°
and c > 0 with 4(1 + ).)v + 2D + 5A. < I so that

then

1I1p. II = O(nV
) , d. = O(n).),

c
D. >.,

n
I/n (12)

1111.11 =O(exp(_ocn[[-2~-5)'-4(1+).)VJ/(l+)'»)), as n ..... co

where (J. is a positive constant.

(13)

This theorem says that the parameter estimate remains consistent even if the input
and output of the system grow as fast as n" if in (10)D.-+ 0 with rate O(I!n~) and if the
number of summands is allowed to grow as fast as n)..

Corollary 1

If Conditions (a) and (b) hold and if

sup 111p. II < 00, sup d. < 00, inf D.> 0
• •

then there is a constant y E (0, I) such that

IJI1. II = O(y'), as n -+ 00 (14)

This conclusion actually follows from (13) by setting v = 0, A. = 0 and D= 0 in it.

Corollary 2 (Anderson and Johnson 1982)

If Condition (a) holds, {y.} is bounded and there are constants N > 0, {J2 > {JI > 0
such that for any n ;:,0

.+N

{J[I ~ L UiU~ ~ {J21
i=n+ 1

(a sufficiently rich condition) then (14) is valid.

To be convinced of the assertion one need only take T. = n(mp + N) + I and
D. = {J I in Corollary 1.

To prove Theorem I we present some lemmas.

Lemma I
If Condition (a) is satisfied, then there is a constant co> 0 such that

(
N) C ( N-d+ I )

A.m•n L Ipilp~ ;:, N k 0 + I A.min L UiU~
i==k - - mp i=k+mp-d+ 1

(15)
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for any N ~ k + mp, 'V k ~ 0, where and hereafter Amin(X) denotes the minimum
eigenvalue of a matrix X and Vi is defined by (11).

Proof

Let

and

t/Jn = [det A(z)]lpn

Then

t/Jn = [«adj A(z))B(z)Zdunl' ... «adj A(z))B(z)ZP+d-tun)'Zd-l det A(z)u~ ...

Zd+.-2 det A(z)u~]'

For any x E R'np + I. from (17) it is easy to see that

(
N ) N N emp )2

x' L t/Jit/J: x = L (x't/Jif = L L ajX'lpi_j
i=k+mp i=k+mp j=k+mp ·=0

mp N mp

~ L aJ L L (X'lpi_j)2
j=O i=k+mp j=O

mp N

~ (N - k - mp + 1) L aJ L X'lpilp:X
j=O i=k

so we have

Hence for (15) we only need to show that

(16)

(17)

(18)

(19)

(
N ) (N-d+ t )

Amin L l/Jit/J: ~ C t Amin L ViV:
i=k+mp i=k+mp-d+ 1

Write x E Rmp+l. in the vector-component form

for some C t > 0 (20)

with Xi E Rm
, x j E R', 1~ i ~ p, P + 1~j ~ p + q.

Set

H.(z) = x1'(adj A(z))B(z)Zd + ... + xP'(adj A(z))B(z)ZP+d-l

+X(p+l)'Zd-t detA(z)+ ... +x(p+.),z<+d- 2detA(z)

mp+q-l
~ L gf(X)Zi+d-t

i=O
(21)
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Then from (18) and (21) we see that

N N

x' L "',"'ix = L (HAz)uY
j=k+mp i=k+mp

N mp+q-l mp+q-l

L L L g;(X)U'_'_d+ I Ui-'-d+ Ig,(x)
i=k+mp r=O 5=0

N-d+l

= g'(X) L U,Uig(x)
j=k+mp-d+ 1

(

N-d+' )
;;. min IIg(x)11 2

) ' min L U,Ui
Ilxll= 1 i=k+mp-d+ 1

where by definition

2187

(22)

(23)

g(x) = [go(x) ... g;"p+q_ 1 (x)]'

Thus for (20) we only need to show

mm Ilg(x)1I of- 0
IIxll= I

Suppose the converse were true. Then by continuity of g(x) there exists some x
such that g(x) = 0 and IIxll = 1. For this x by (21) HAz) == 0, i.e.

P qL x"(adj A(z))B(z)z' = - L x(p+ il' det A(z)Izi- 1

i= 1 j= 1

Setting z = 0 from (24) we see x p +1= 0, and (24) can be rewritten as

P qL x"(adj A(z))B(z)z' = - L x(P+ il' det A(z)Izi- 1
j= 1 )=2

(24)

(25)

By coprimeness of A(z) and B(z) there are matrix polynomials M(z) and N(z) such
that

A(z)M(z) + B(z)N(z) = I

Hence from (25) it follows that

P P

L x"(adj A(z))z' = L x"z'(adj A(z))(A(z)M(z) + B(z)N(z))
i= 1 i=1

= det A(z:{t, x"z' M(z) - it x'P+ il' N(Z)Zi- l
)

= z(det A(Z))Ct X"Zi-1 M(z) - it2 x'P+ il' N(Z)Zi- 2)

Noticing

deg Ct, x"(adj A(Z))Z') = mp < mp + 1 = deg (z det A(z))

we conclude that x' = 0, 1~ i ~ p, then xi = 0, P+ I ~j ~ p + q by (25). This
contradicts Ilxll = 1 and thus (23) is proved. 0
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Lemma 2
If

then
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[
,52 J'/2II'P(N, k)II"':; 1- 4(N _ W

Proof
Let Xo be the unit eigenvector corresponding to the maximum eigenvalue p of

'P'(N, k)'P(N, k).
From the difference equation

_(I qJjqJi)
Xi+[ - - 1+ IlqJjf x., (26)

it is easy to see

and

IlxN 11 2= Xo 'P'(N, k)'P(N, k)xo = p

From (26) we have

then by (27) and (28) we see

N-I IIqJixdl 2L 2",:;I-p
j=k I + I/qJdl

For any integer i E [k, N - I] by (26) and (29) we get

11

; - 1 qJjqJj II
Ilxj-xoll"':; jf:

k
I + IIqJ

jl12

X
j

,::: [if IIqJjl12 J[/2. [if IIqJjxjl1
2 JI/2

'" j=k I + IIqJjl12 j=k I + IIqJjl12

",:; (N _ k)1/2(\ _ p)1/2

Thus, by (29) and (30) we can estimate as follows:

N-l t

<,::: ," qJiqJi
u '" Xo L.. I II 112 Xoi=k + qJj

N-l IlqJill e N-IllqJil1 2
",:; if:k 1+llqJ;1121IqJ;Xjll+ ;f:k 1+llqJdI2I1 x;-xoll

",:; (N - k)1/2(1 - p)I/2 + (N _ W/2(\ _ p)I/2

",:; 2(N _ k)3/2(1 _ p)1/2

(27)

(28)

(29)

(30)
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Hence finally we conclude that

,F
p~ 1- 4(N-W

Lemma 3

If Conditions (a) and (b) are satisfied, then

where

M i = sup II<iJjf+1 and c1>0
tj-t:5ij':::;;tj-l

Proof

By Lemma 1 and Condition (b) it is clear that

Then using Lemma 2 we know that there is a constant C'I > 0 such that

11'P(r. + d - I, r._ 1 + d - 1)11 ~ [I - C'I ~~d; J'2

From (7) and (32) it follows that

•
11'P(r. + d - I, 0)11 ~ n1I'P(ri+ d - I, ri-l + d - III

i= 1

2189

o

(31)

(32)

(33)

Finally, taking notice ofthe elementary inequality I - x ~ e-X, 0 ~ x ~ I, from (33)
we conclude (31) with CI =tC'I' 0

Proof of Theorem 1

Since d. = O(nA
) we can find P> 0 so that d. ~ pn A

• Then

•
mp . n ~ L d, ~ n • p . nA =pn 1 +A

i= 1

or equivalently,

mp . n + I ~ r. ~ pn 1
+A + I (34)

By (12) we see 11<iJ,. II = O(r~), then by (34) and the definition of M, we find that

(35)
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So (12) and Lemma 3 lead to

11'J1(,. + d - 1,0)11 ,,;exp ( - C2 it, i2H S'~4'('+A))

= o(exp (_ C 2 (n+ 1)'-201-5.-4,(1 +A))) (36)
1- 28 - 5A - 4v(1 + A)

for some C2 > O.
Since '.-1 < r ......00, for any n there exists k such that

,.+d-I ";n";'k+' +d-I

Then by (34) and (37) it follows that

r 1 n-d
(k + I)' +';" k+P- ;" -p-

or

(
n - d ) ' /(' +' )

k;" -p- -I

(37)

and by (36)

11'J1(n, 0)11"; 11'J1(,. + d - 1,0)11

= o(exp (_ C2 (k + 1)'-2~-5'-4'(' +AI))
1- 28 - 5). - 4v(1 + A)

= o(exp ( C2 (n - d) 11-2~-5'-4,(I +'1I/(I +"))
I - 28 - 5). - 4v(1 + A) P

= O(exp (_cwll-2oI-5.-4'(I +A11/(1 +A))), with ex> 0 (38)

which together with (8) gives the desired result.

3. Parameter identification for systems with attenuating excitation control
Let {3';,} be a family of non-decreasing IT-algebras. Take a sequence of t:

dimensional i.i.d. random vectors {6.} such that 6. is 3';,-measurable and is independ­
ent of 3';,_, and that

(39)

where Jl > 0, M > 0 are constants.
Let u~ be a 3';,- ,-measurable desired control. We add to u~ a dither u. tending to

zero:

and the resulting control

6 E (0, -:---:-:-:-1_---,-)
6+ 12(mp+q)

(40)

(41)

is called attenuating excitation control.
In this section for systems with attenuating excitation control (41) we establish

consistency of parameter estimation without requiring any condition like (10).
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Lemma 4

Let a >°be a stopping time with respect to {ff,}. Then

.+aL !.vi = 0(n l - 2(1 +3(mp+ q»,)
i=a

for any ff,_,-measurable!. with II!. II = OW) and °~ v < s, and

for Vn ;" no where no and c2 may be co-dependent.

Proof

Since II!. II = OW), there exists w-dependent ~(w) so that II!.II ~ ~iv.

Clearly, for e < 1/[6 + 12(mp+ q)]

00 II !.1I 2
:;:: 2 00 i2

'L ·2 - 4(1 + 3(mp+q)), -c ~ L'2 4(1 + 3(mp +q)), < 00
i= 1 I i= 1 I

Then by the martingale convergence theorem

00 f/V j

i~a i1 2(1 +3(mp+q»t: < o:

and (42) follows from the Kronecker lemma.
For (43) we first show

2191

(42)

(43)

a.s. (44)

Since (vi+avi+a - (J1./(i + u)2' f), ff,+a) is a martingale difference sequence and

Again by the martingale convergence theorem and the Kronecker lemma we obtain

1 .(' J1.)(n + u)' 3' i~' Vi+aVi+a - (i + ufJ ;;::;-;;: 0, a.s.

which implies (44).
Noticing the elementary inequalities for n > no

1 .-1 fi+' dx .-1 1 .-1 fi dx .-1 fi dx
__(nl - 2£_n l - 2£) _ L -~ L -- L -~ L -
1-28 0 - i=no i XlI.: -...:;:: ;=no ill: - i=",o ;-1 il e -...::: i=no i-I X 2e

we see

(45)

(n + U)' 2, - u'

which together with (44) proves (43).

• +a J1. J1.
" -f---+--f

2,. L. 1'2, a-e co 1 - 2e
1=0'+ 1

o
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Lemma 5

Let {to} and {Uk} be two sequences of finite stopping times with respect to {~},

Uk~tk>Uk-I'

(i) If there is a sequence of real numbers b;» 0 so that

then for sufficiently large k

r

L Vivi ~ fJ(tt - 2, - ut~ t')/ for some fJ> 0
j=Uk-1

(ii) For any ff,_I-measurable /; with II/; II = OW), 0,;;; v < e

(46)

(47)

00 I
whenever s,» I, '<I k and L fJ2 < 00.

k= 1 k

Proof

(i) From (45) we see

.. -I I 1
L ->--

T~ 2£-ul_rei=Gk_ti2e 1-2e

So for (47) it suffices to show

tl - 2, ~ 0'1 - 2, 11_ I (vivi - ,~J)II~ 0, a.s.
Ic Ie-ll-l1k-l+l

for which we only need to prove

I r (,jI.)
(t1 2,_ 0'1 2')1/2. b ._ L ViVi - ,'2,1 tz; 0, a.s.

Ic Ie-I Ie 1-<1k_l+1

Set

I
t=tk-Uk- I, ai = ('+ )1-2, 1 2,' ao=O

I Uk- 1 -Uk-I

(49)

(50)

For any '1 > 0 by the conditional Markov inequality we have

pet 2,- uLt')1/2 . b
k
LJ.+ 1 (vivi - ~J)II > 'lIS-a,_,)

,;;; bfl'12E[tt 2'~ut_t,LJ'+I (vivi- ~J)r1S-ak-.J
I 2= b2 2 E[a,IIS,11IS-ak_,] (51)

k'1
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If t is a bounded stopping time, t .;; no, then we have

2193

- aj - ISj - I Sj - 1)I!F.. -I]

no

= L tr E[I[t~jl(2ajSj_lxj+ajxjxj)l§a._.J
j= 1

(52)

Noticing the properties of stopping times (cf. Lipster and Shiryayev 1978, Chow
and Teicher 1978), we see

aj E fFalt.-l c f?'"tTk_l +j-I' Sj-l E ~k-l + j-I

and

then we continue to estimate (52):

(53)

Thus we have proved (53) for bounded t, but it is also true for unbounded t, since it
holds for t(n)= min [t, n], then the Fatou lemma yields the desired estimate. Then by
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(53) we continue to estimate (51):

p(( '-2,_ ,1 2' ) 1/ 2 .b II. ~ (ViVi- ~,1)11 > '1 Iffa. _ . )
t k O'k-l k 1=0'/<-1+1 I

2/(M
4 + II) [00 aj I ]

~ bt'12 E Jdl1k- , +j)4' §;,._.

2/(M4 + JI2) 00
= bt'12 J,[(l1k- 1+j)' 2'-I1~_t'](l1k_,+j)4'

(
1 ) ((l1k - d

I2
' )' ) ( I )=a b~ + a bM2~): ~ CJ b~

where CJ > 0 is not dependent on k.
00

Since L (I/bf) < co, then by the Borel-Cantelli-Levy lemma (Chow et al. 1971)
k=1

we concl ude (50) and hence (49).

(ii) For (48) it suffices to show

1 ~

(~ ' ,+v_~' .+.)1/213 10gf3 _ L };l[IIf,g~IIO'P.Ji,)·vi~O (54)
~k Vk-I Ie k l-tJlc-t+1

since 13k --+ CO.
k-e co

The proof or (54) is similar to that for (50). Instead or a., Xi and S. we should set

, 1
a· = .,.---.,-,----,-,-----,--,---

I (i+O"k_d1 e+\I-u~_i+\'

n

S~= Lxi
i= 1
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Then (51) and (52) is repdaced by

pert ,+, - ut ~~: ')1/2 • Pk log Pk L.%, + I};Inf,n ';;(In,poli'] • viii> I}I ff..._,)

:0;;; 2 p2 I 2 P I tr E[lII~jJ(2ajSj_1Xj' + ajxjxj') Iff..._,] (55)
I} k log k j= 1

Again we have

and

Then (55) is estimated by

1M2 [f a'.
(55):0;;; 2p2 EL ( +J.)2'

I} k J=t Uk-I ]

1M2 co
~-L-;------:-=,..---c;-:::-:----,-,-,--,-:-;-c-;----;-:-c-:=
~ I}2p; j=1 (Uk-l +jfl' ')[(Uk- 1+j)I-t+'-ut_~+v]

1M2

:0;;; -I}2-p-( .,-(U-k-_-I-+---:Cl )"27:1,='):::[("-u-k-_-1-+---:CI )"l-=-:-t+:;:-';;-_-u't-=_:::~:;:-+=']

1M
2 fa:> dy

+ I}
2P; (l - 0+ v) I.,_,+J),-.. ·_.:c:··y(y+ut-~+')'-'+I'

I
:0;;; C4 P; (56)

where C4 > 0 and is independent of k.
Again by the Borel-Cantelli- Levy lemma the conclusion (48) follows. 0

Define

r o = I

{

inf { k > r n _ , : . _ kf UPi~[}
1-("_\ +mp

r
n = (k-l)

00, if Amin. L UPi < I,
1=t"OI-I+mp

where U i is given by (II).

(57)

Lemma 6

If Un is defined by (41) and Ilu~ II = O(n'), 0:0;;; v < 0, then r, < 00 a.s. Vn ~ I.

Proof

Let S be the set where the conclusion of the lemma does not hold.
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(

a+. )
Amia J. UPi < I, It n;;' 0 on S (58)

a+.
be the unit minimum eigenvector of L UiUi, where

i=o

for some a ~ Tao + mp.

L t a- [a, a, ]'e X - Xl'" X mp + q

xi E R' and Ilxall = I.
Clearly, Ilui II = OW), then by (42) and the boundedness of xi, j = I, ... , mp + q, we

find that (no measurability of x" is required):

a+.
" (a, 0 + a, + + a, ) _ ( ,- 20 + 3(mp +q»,)L. Vi Xl Uj X2 Uj - 1 ... Xmp+qUj-mp-q+ 1 - 0 n ,
i=o

and by (43) for W E S,

a+.
I> L (xa'Uif

i=6

a.s. (59)

;;. c211x~ 11 2((n + U)I - 2, - u l - 2') + o(llx~ lin' - 2(1 +3(m p + q»),)

= c211x~ 1I(llx~ II(n + U)l-2£ _ U l- 2, ) + o(n l - 2( 1 +3(mp+q)),)

From here it is easy to conclude

(

nl-2(1+3(mp+q»£ )

IIxall = 0 = o(n- 6(mp + q), )
1 (n + U)I 2, _ UI 2,

We now show for W E S

IlxiII = o(n- 6 (m p +Q-(1/3)(i-I)),), i = I, ... , mp + q

(60)

(61)

(62)

The estimate (61) shows that (62) holds for i = I. Let it be held for i = I, .. " s,
s < mp + q. Then we have

a+.
I> L (xa,uy

i=(1

a+.
+2 L X;~lVi-3(U?~SX:+l +UI- S- 1X; + 2 + ... +uI-mp-q+lX~P+q) (63)

i=a

Noticing there is a w-dependent n such that

Then by (59) and (43) from (63) we have

I > C2((n + U)I - 2, - a l - 2') Ilx~+I 11 2+ o(II~+ I II n I - 6(mp+ Q- O!3l(S- I)),)

+ o(lIx~+ 111' nl-2(1+3Imp+q)),)

=((n + U)I - 2, - U I - 2') II x~+I II(c2I1x~+ I II + o(n - 6(mp+q-0/3)*))
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and from here

Ilx~+ III = o(n- 6(mp +q - II/3)Sj,), WE S

Thus, (62) is valid on S, but (62) means
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this contradicts with [x" II = I, Vn, hence P(S) = O. This proves the lemma. 0

Lemma 7

Assume IlunII = O(n'), 0:0.; v< 6. Then for {rn} defined by (57) the following
estimate holds:

Proof

Suppose (64) does not hold on a set F. We have to show

p(n =0

For WE F, there is a subsequence {rn. } such that

(65)

Let xk = [x~' .,. x:;p+q]' be the unit minimum eigenvector of

t"" -2

I UiUi, Ilxnll = I, xi E R'
i=t••_ 1 +mp

By definition of {rn } and (47), (48) with bk = 2k/lmp+q), and 13k log 13k = 2k we have

I>
j""r••_I+mp

T....-2

~ L x~tvivix~ + 2 L X~'tVi(U?tx~ + Ui-lX~ + ... + x~tp+qUi_mp_q+ 1)
i""f•• _1 +mp i=r.. _1 +rnp

k- 00, WE I'

~ Pllx~ 112(r~.-2'- r~.-_2n + o(llx~ II(r~.-t+' - r~.-_':-')1/22k)

Similar to (60) and (61), we hence conclude

II
k II ((r~.-'h - r~.-_':-')1/22k)

Xl = 0 1 2£ 1 2e '
Ln k -!"k- 1

Assume

(66)

(67)

have been proved for i, I :0.; i :0.; s < mp + q, we now prove it for i = s + I, noticing (66) is
only (67) with i = 1.

Paying attention to (40), (45) and Ilui II = OW) we see

II
,~-, IIr 1-[+\1 1-£+\1'_ I v/_,u j _ j = O(rn• - rn. - I )

1- f.,_1 + mp
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and then proceeding as for (63) and making use of (47) we have

I> fJllx:+ 1112(r~k-2' - r~.__2n

+ O(llx:+ I 1I(llx~ II + ... + II x: II )(r~k-dV - r~k-_'iV))

+ 0(11x: + 1 II (r~k-' +" - r~k--'i ')1/2 2k) (68)

Noting the elementary inequality aY- bY ,;;; a" - b", 'ifx;;' y;;' 0, a> b > I, by the
induction assumption from (68) we find

+ o(llx:+ lll(r~k-'+v - r~.-_'iV)1/2 . 2k)

and from where it follows that (67) is valid for i = s + I and W E r. Further, from (65)
wc have

then (67) says that

Ilxk II = 0(1), as k-+ 00, for WE r
However, Ilxk II = I, 'ifk, this means P(f) = O. o

(69)

Tlreorem 2
For the system and algorithm described by (I )-(5) with attenuating excitation

control defined by (41), if Condition (a) is satisfied and

II II =O( V) . h [0 1-(6+ 12(mp + q))£ )
CP. n , WIt v E , 12(mp + q) _ 2 /\ £

then

118.-811 = O(exp(_oml-12(mp+4j(,h)-6,+2v)), a.s.

as n -+ 00 with ()( > O.

(70)

Proof

We note at once that for e defined by (40) the interval for v is not empty and
1- 12(mp + q)(E + v) - 6£ + 2v > O.

The estimates

(71)

(72)

are derived from the inequality

a" - bX';;; 2(aY- b")aX- Y, 'ifa> b > 0, 0,;;; y';;; x';;; 2y

which comes from the identity

a" - bX= (aY- bY)(ax -
y+ bX-Y) + aX-YbY( 1- (~rY-X)
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By (64) and (71) we find

hence

which together with (72) imply

Then we conclude that

n
r.=ro+ L (ri-ri_I)=O(nr;(mp+qlldV)+'-V)

t» 1

and hence

Putting (74) into (73) we finally obtain

Then the conclusion follows from (13) if we set (j =0 and

A= 2(mp + q)(E + v) + E - v
I - 2(mp + q)(E + v) - E + v
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(73)

(74)

4. Adaptive control
Let {y:} be an arbitrary bounded random reference signal. We want to design

adaptive control so that the output Y. of the system (I) follows y: and (J. given by (4)
converges to the true value.

We note that in the model reference adaptive control case y: is generated by a
reference model

A*(z)y: = B*(z)u:

with a monic matrix polynomial A*(z).
So

y: = (I - A *(z))y: + B*(z)u:

and the problem is reduced to the previous one.
Write (J. in component form

(J~=[-Al.'" -Ap• BI •... Bq.]

and form A.(z) and B.(z) as follows:

A.(z)=I+A1.z+ + Ap.zP

B.(z) = Bin + B2.z + + Bq.zq-l

For any stable monic matrix polynomial E(z) there are G.(z) and F.(z) such that

F.(z)A.(z) + zdG.(z) = E(z)

since A.(z) and Zd I are coprime.

(75)



2200

Define adaptive control

with u~ generated from

H.-F. Chen and L. Guo

(76)

F.(z)B.(z)u~ + G.(z)y. = E(Z)Y:+d (77)

and with {v.} given by (40), but we take {e.} independent of {y:} and with con­
tinuous distribution.

It can be shown that BI • is non-degenerate if m= 1(cf. Chen and Guo 1986 a).
Hence u~ can be defined from (77).

Theorem 3

For the system and algorithm (1)-(5) and control defined by (76) and (77), if
Condition (a) holds and B(z) is stable with m = I, then

(i) {Y.} and {u.} are bounded a.s.

(iii IIY. - y: II = O(M/n') + O(exp (_anl-12(mp+Q),-6,)), a.s.;

(iii) 110. - 011 = O(exp (_anl-12(mp+Q),-6,)), a.s.

where a> 0 and e and M are given in (39) and (40).

Proof

From (8) it is easy to see that

II tin + I II ~ 1\ti.11 ~ l\tio II < 00

and
- 2

Jr, - s, Jr 110~<p.11
tr{1.+10.+1~tr{1·{1·-1 I 12+ I<p.1

Thus we have

(78)

a.s.

and

l\tii tp, 11 2 = 0(1 + II <Pi 11 2
) a.s. as i -> 00

By (4) and (79) it is easy to see

0.+ 1 -0.=0(1), a.s.

and then

O.+k-O. = 0(1), a.s. as n->oo

for any fixed integer k ~ I.
We define polynomials (AB).(z) and (A.B. Hz) as follows:

(A.B.)(z) = L Ai.Bj.zi + j
i,i

(79)

(80)



and write O;,CPn as

Adaptive control via consistent estimation 2201

(82)

Thus by using (75)-(77) we have

F.(z)8~CPn = (FA)n(z)Yn+ 1 - (F B)n(z)un- d+ 1

= (FnAn)(Z)Yn+l + [(FA)n(z)-(Fn An)(Z)]Yn+l -(FB)n(z)Un-d+l

= (E(z) - zdG.(Z))Yn+ 1+ [(FA)n(z) - (FnAn)(z)]Yn + I - (FB).(Z)Un_d+ 1

=E(z)Yn+ 1 - Gn(Z)Yn-d+ 1 - (FnBn)(z)un- d+ 1 + [(FA)n(z) - (FnAn)(Z)]Yn+ I

+ [(FnBn)(z) - (FB)n(z)]un- d+ 1

= E(z)Yn+ 1 - E(Z)Y:_1 - (FnBn)(z)vn- d+ 1 + [(FA)n(z) - (FnAn)(Z)]Yn+ 1

+ [(FnBn)(z)- (FB)n(z)]Un_d+ 1 (81)

Combining (I) and (81) we get

[~~~~!~!l~(~_-=~~~~~~_!~~~)~~-=-f!'!~~~~J [_~n~~-J
- A(z) B(z) _ Un-d+ 1

= [!~~~~!~~-~~~~+_I_~~~~~~~n.:~~~J
o

By (80) it is not difficult to see that

(FA)n(z) - (FnAn)(Z) -+ 0, (FnBn)(Z) - (FB)n(z)-+ 0, as n -+ 00

so (82) is asymptotically time-invariant and stable since E(z) and B(z) are both stable.
It is easy to convince oneself that the matrix coefficients in Fn(z) and Gn(z) are

bounded since those of An(z) are bounded by (78). Then by stability or E(z) and B(z)
from (82) we know that

IICPn+ 1 liZ = 0(1) + o( sup 118jCPj11Z)
O::$;j~n+ 1

and by (79)

Hence

which implies

sup IIcp j IIZ= O(I ), a.s. as n-s co
O~j:S:;n+ 1

This means that {Yn} and {un} are bounded. Then conclusion (iii) follows from
Theorem 2 by setting v = 0, while (ii) follows from (81):

*Yn+ 1 - Yn+ 1 = E- 1(z){ Fn(z)8~CPn + (FnBn) (Z)Vn-d+ 1

- [(FA)n(z) - (FnAn)(z)]Yn+ 1- [(FnBn)(Z) - (FB)n(z)]un_d+ I}
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o

if we use (iii) and (39), (40) and that E(z) is stable and CP. and matrix coefficients in F.(z)
and B.(z) are bounded, and

(FA).(z) - (F.A.)(z) = O(exp ( -ani -12(mp +Qj,-6,))

(FB).(z) - (F.B.)(z) = O(exp ( -anI - 12(mp+Qj,-6,))
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