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In this paper the Robbins-Monro (RM) algorithm with step-size a, = 1/n and truncated at 
randomly varying bounds is considered under mild conditions imposed on the regression function. 
It is proved that for its a.s. convergence to the zero of a regression function the necessary and 
sufficient condition is 

n 

( l /n )  Y, ~i ~ 0 a.s. 
i ~ l  n ~ o o  

where ~ denotes the measurement error. It is also shown that the algorithm is robust with respect 
to the measurement error in the sense that the estimation error for the sought-for zero is bounded 
by a function g(e) such that 

I ,11 g(e) ~-.o'0 if limsup(1/n) , ~-e>O. 

stochastic approximation * randomly varying truncation * robustness to noise * necessary and 
sufficient condition for convergence 

1. Introduction 

Since the pioneer work [ 1 ] of Robbins and Monro, stochastic approximation has 
drawn much attention from those interested in both its theory and applications. The 
earlier work [2] concentrated mainly on the case with independent measurement 
error. Later, the effort was devoted to weakening conditions imposed on the 
regression function and on the measurement noise [3-7]. By using the ordinary 
differential equation (ODE) method proposed by Ljung [3, 4] and further developed 
in [5], a large class of measurement errors can be treated in the convergence analysis. 
The a priori boundedness of the algorithm in this method is no longer assumed in 
[7] where the ODE method combined with martingale theory is used to analyse the 
case when the measurement error is of an ARMA process. 
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In a recent paper  [8] Chen and Zhu consider a new algorithm consisting of 

truncating the RM algorithm at randomly varying bounds, and have proved the 

convergence of the algorithm to the zero set of  the regression function under weak 

conditions imposed on both the regression function and measurement errors. Later, 

such algorithms are applied to the optimization problem in [9], to an optimization 

problem with constraints in [10], and to simultaneous estimations of zeros of the 

regression function and of unknown parameters contained in the measurement 

errors in [11, 12]. 
For the case when the regression function is dominated by a linear function and 

the Liapunov function is a quadratic function, Clark [13] has shown that the 

necessary and sufficient condition for convergence of the RM algorithm to the zero 

of the regression function is 

1 n 
- E o, 
H i = 1  n--* oo 

where ~i denotes the measurement error. In this paper, by use of an elementary 
approach completely different from that used in [13], we prove that the above 

mentioned conclusion ,remains valid for the RM algorithm truncated at randomly 

varying bounds in a more general case, namely, the restrictive conditions imposed 
(in [13]) on the regression function and Liapunov function can be removed. It is 

also shown that the algorithm considered in this paper is robust with respect to the 

measurement  error in the sense that the estimation error for the zero of the regression 

function is bounded by an increasing and left-continuous function g(e) with 

We use Ilxll to denote the Euclidean norm of a vector x e Rm. 

2. M a i n  resu l t s  

Let the regression function h ( . ) :Rm-~  R m be an unknown continuous function 

with zero x°: 

h(x °) = O, x°e  R m, (1) 

and let xi be the i-th approximation to x ° based on the measurements {yj : 0 ~ j  <~ 1}. 
At time i +  1 the regression function h(x) is observed at xi with random error ¢:i+1: 

Y,+1= h(x,)+~:,+l, i~>0. (2) 

The assumptions made on h(x) and ~:~ are as follows: 
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B. There is a twice continuously differentiable function v (x ) :Rm--> R, such that 

v(x °) = O, lim v(x) = oo, 
))xll-,oo 

(4) 
v(x )>0 ,  h~(x)v(x)<O, V x # x  °, 

where v~(x) denotes the gradient of v(x). 

Remark 1. Conditions A and B are the only restrictions on the measurement errors 
and on the regression function and are possibly the weakest in comparison with 
those used in preceding results. Condition A prescribes the boundedness of {¢i} in 
average and it is satisfied by a large class of random vectors, for example, if {¢i} is 

oo 
a stationary ARMA process with zero mean [2, 7], and also if Y.~=~ ¢~/i converges 
[5, 8]. Condition B assumes the existence of a Liapunov function v(x) but does not 
require v(x) to be known. This condition implies asymptotic stability of the solution 
x ° for the differential equation 

dx(t)  
- - - h ( x ( t ) ) .  

dt 

These kinds of conditions are frequently used in the convergence analysis of 
algorithms [5, 7, 8-13]. 

For describing our algorithm we first take two arbitrary points x* ~ x* in R m and 
define do= max( v(x*), v(x*) ). 

Since limllxll_~ v(x) --- ~ ,  there is an M > 0 such that 

do <inf{v(x):  Ilxll > M } ~ d  (5) 

max(llx *ll, IIx *ll) < M. (6) 

Assuming that M determined by (5)-(6) is now fixed, we apply the RM algorithm 
truncated at randomly varying bounds [8] to estimate x ° as follows. Let {Mi} be 
an arbitrary increasing sequence of positive numbers tending to infinity, with 

Mo> M + 8 .  
Define, for n = 1, 2 , . . . ,  

Xn+l (X,,+(1/n)Y,,+l)IEIIxn+(1/,,)y.+,ll~M..<j * = +XnI[llxn+O/n)yn+~ll>M~(n)] , (7) 

n - - I  

t r (n)= E Itllx,+(1/i)y,+,l)>M,..>:l, t r (1)=0,  (8) 
i = 1  

~xl* if o'(n) is even, 
x* = Ix*  if o'(n) is odd. (9) 

Since the truncation bound is time-varying and allowed to increase to infinity, 
there is no a priori boundedness assumption imposed on {xn}. 
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Theorem 1. I f  Conditions A and B hold for the algorithm defined by (7)-(9), then 

there is an e* > 0 such that, for any e ~ [0, e*), 

l imsupl lx . -x° l l<~g(e )  a.s. 
!1..-~ 0 0  

where e is given in (3) and g(e)  is an increasing, left-continuous function on [0, ~ )  
tending to zero as e--> O. 

Theorem 2. Under Condition B, {x,} defined by (7)-(9) converges to x ° i f  and only 

i f  Condition A holds with e = O. 

Remark 2. Theorem 1 means that the less the influence of the noise is (or the smaller 
e is), the better x, approximates x ° in the limit. In other words, the algorithm is 
robust to noise. Unlike [13] Theorem 2 requires neither growth rate for h(-)  and 
v(" ), nor [5] a priori boundedness of the iterates x,. 

3. Finiteness of the number of truncations 

In the sequel we always assume that the sampling point w is fixed. 
For the convenience of the reader we collect in one place, (10)-(20), below, our 

basic parameter definitions and their permissible range of values. 
Let 81, 82 be real numbers such that 

and set 

82 - 81 = ( d  - d o ) / 2 ,  [ 81, 82] c (do ,  d )  

D =  {x: 8, <. v(x)  <~ 82} m {x: Ilxll ~ M} 

where do, d and M are given in (5)-(6). 

(10) 

Define the quantities 

hi-= max IIh(x)lt 
ilxll<M+ 8 

rl=maxllvx(x)ll, r==maxllv=(x)ll, (12) 

a - - m a x  h'(x)Vx(X),  (13) 
x E D  

where 

(11) 

u = {x: Ilxll ~ M ÷ 5 +  hi} , (14) 

and v,=(x) denotes the matrix of second partial derivatives of v(x) .  IIxII denotes 
the square root of the maximum eigenvalue of X X  ~ for any matrix X. 

It is clear x°~ D and a > 0 by Condition B. 
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Since h(.  ) and v(. ) are continuous, there are constants e 
a~ > 0,/3 > 0, and 8" > 0 satisfying 

(i) T * < l / ( l + h ~ ) ,  ½r2(hl+2)2T*-a<-oq, 

(ii) r l .  max IIh(x)-h(y)ll-~ <- /3 ,  
]lx-yll<3e*+ T*(hl+2) 

x , y ~  U 

(iii) e*<flT*/[8r~+r2(3hl+ll)] ,  

(iv) max .Iv(x)-v(y)l<,~2-,~l, 
IIx-Yll<4e 

x , y ~  U 

(v) 81+[7e*+ T*(hl+2e*)]r~ < 82, 

(vi) min (-h~(x)Vx(X))>~/-e -g. max 
IIx-x°ll~>a* Ilxll~< Mcr+2e * 

Ilxll<~M~, 

where tr is defined in Theorem 3, below. 

*~ (0, 1], T* ~ (0, 1], 

(15) 

(16) 

(17) 

(18) 

(19) 

v(x), (20) 

By Condition A we can take an integer N sufficiently large so that 

if 0 < e < e * .  The quantity e ' e ( 0 , 1 ]  satisfying (17)-(20) is the one used in 
Theorem 1. 

In this section we prove that the number of truncations o'(n) is bounded as n -~ oo 
(Theorem 3). For this we first prove two lemmas showing that x,,, is close to x,, 

m 

when IIx.II M and Y-i=,, 1/i is small. These lemmas use only Condition A and the 
boundedness of h(.  ) on a bounded set. 

Lemma 1. Let hi be defined by (11) and A=- l / ( l  +h~). Suppose that Condition A 
holds for some e < e*<~ 1 and that [Ix, l[ ~< M for some n > N, where M and N are 
defined in (5)-(6) and (21), respectively. Then, for any T ~ [0, A], 

tt H Yi÷l ~ 6 e * ÷ 2 ,  Vm: n<~m~m(n ,  T), 

m(n, T ) = m a x { m :  ~ffi.~li T}.  

where 

(22) 

Proof. If  the set of integers defined by (22) is empty for all T e [0, A] there is 
nothing to prove. Otherwise, since re(n, T) is non-decreasing as T increases, we 
only need to show the lemma for T = A. 

Suppose that the lemma were not true. Then we would find m~ such that 
n <~ ml <~ m(n, T) and 

ffm l [I ~ -Yi+l > 6 e * + 2 -  
i = n  | 
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Without loss of generality let 

m l = m i n  m" n<~m<~m(n,A); Yi+l 
i = n  

Hence, for any m: n ~< m <~ ml, 

x o +  y,+l ~ l l x ~ l ] +  _ 
- -  - -  Yi+l 

i = n  I i = n  ! 

<~ M + 6 e * + 2  < M0< M,~(,), 

and by (7) we obtain the untruncated iterations 

Hence 

1 
Xm+l=Xm+mYm+l, Vm: n<~m<~m~. 

m 

Xml 2Xn IIxml l 

II  11 II 

1 II ml + 1 Ym~+2 

> 6 e * + 2  

> 6 e * + 2 } .  

(23) 

(24) 

(25) 

-Ils 1 II - - +  y. 
i=n i i + l  

<~ h i +  
i= m~ n 

<~hlA+~e*+~e*A. 

Further, by (21) and the selection of  e*, 

ml> N >  2hl/e* 

[[h(xm)ll~h~, Vm: n<-m<~m~+l. 

Let S i -  Y~I  ~+~. Using (21), (22) and noting n > N, we see that 

,[[ i1 1 II 
IIx~,÷I--Xnll <~ 2 - h ( x i  + -~,+1 

i = n  I If i = n  I 

and by (11) 

Ilxmll<~M+6e*+2, Vm: n<-m<~ml+l 

where the last inequality follows from the definition of ml. 
We now show the inequality converse to (25), and the contradiction will prove 

the lemma. 
From (23), (24) we have 



H.-F. Chen, L. Guo, A.-J. Gao / Robbins-Monro algorithm 223 

and we have 

II I l l  Xml+l  -- Xn " 1 - ~  Ymi+2 
m , + l  

fl 1 <~llx~,+,-x.ll+ m,+--'-~ 

<- hlA +9  e* + ~  e*A -~ - -  
hi 1 

IlSm,+,--Sm, II 
m~+l m l + l  

~(h ,  +Me*)A +~e* +½e* +~e*  

<~ (hi +~e*) / (h ,  + 1) + 6e* < 2+ 6e* 

which contradicts (25). 

Lemma 2. Under the conditions and definitions of Lemma 1, 

IIxm-x.ll <3~*+ r(h,+2~*) 

for any T~[0, A] and any m" n<~m<~m(n, T)+I .  

Proof. It is easy to see that 

x,,+ ~ Y~+I ~ M + 6 e * + 2  

<~Mo<-M~(.), Vm: n<-m<~m(n,T)+l  

because of Lemma 1 and IIx. II <~ M. 
Then by the definition, of our algorithm we know that 

1 
Xm+l = Xm + - -  Ym+l, Vm: 

m 
n<~m<~m(n, T)+I  

and 

IlXm II <~ M +6e*  + 2, II h(xm)ll  ~< h , .  

Hence we have 

II II IIXm--X. II~ - ( h ( x , )  + ~:,+1) 
I I  i=n | 

~ h~ T + ~  e* +~t e* T < 3e* + T(hl + 2e*) 

for any m: n <<-m<<. re(n, T ) + I ,  and the lemma follows. 

We now show that the number of truncations for the algorithm 
emphasize the dependence on e we write the tr(n) of (8) as tre(n). 

is 

(26) 

finite. To 
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Theorem 3. Under the conditions o f  Theorem 1 there is a constant tr independent of  

e such that 

sup o's(n) ~< o '<  ~ 
I1 

for any e ~ [0, e*). 

Proof. Suppose the claim were not true. Let 0.0 be an integer greater than both N 
and 1/T*. 

By the contradictory assumption, there would exist e ~ [0, e*) and n such that 

o - E ( n ) > o -  1 with 0.1=0"o+2. 

Let no be the maximal time for which 

- '  i i l 1 [  0.o = ~ I xi +_  Yi+l 
i=1 l 

Then by (7), (8) we have 

0.~(no) = ~o,  

Xno+l -- Xno 

and 

> M,~,(i) 

0"~(no+ 1) =tro+ 1 

(27) 

(28) 

(because of the maximality), 

(29) 

no> 0"0> max(N, 1/T*). (30) 

For an initial contradiction, suppose that Ilx. 11 ~ M for all n t> no+2. Then by (21) 

Ilxn+Yn+ II. 

e *  
< ~ M + - - + 3 e *  

2 

<~M+4<Mo<~M,~,o,),  Vn >~ no+2, 

which in conjunction with (8) and (29) shows 

0.~ (n) ~ 0.~(no+ 2) <~ 1 + 0.~(no+ 1) = 0"0+2 

for all n/> no+2, and this contradicts (27). 
Hence there is an mo I> no + 2 such that 

Jlx~oll > M.  

By (29) and (32) from (5) and (10) we see that 

v(X.o+,) = v(X*o) < 8, ,  

V(Xmo)> 62, (mo~ no+2). 

(31) 

(32) 

(33) 

(34) 
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It is important to know that mo> no+2, i.e., strict inequality. For this we only 

need to show that v(x,-1) < 81 for some n >1 no+2 leads to v(x,) < 82. 
Indeed, if  v(x,_l)< B1, by (5), (10) we have IIX,_ll[ ~< M, and by the argument of 

(31) 

II 1 II x,,-1 + (h(x,,_l) + ~,,) <~M+4e*<~M~.(.-1). 
n - 1  

Hence there is no truncation at time n and thus 

1 
x,,=x,,-l+ (h(x.-1) + s~.)- 

n - 1  

Again, using (21) this implies 

I Ix . -x ._ , l l -<~* ,  x ~  u. x._,~ u (35) 

and by (18) 

v( x.)  < v( x._O + 82-  81 < 82. 

Now with mo > no+ 2, we can define 

nl = max{i: v(xi_l) < 8z, no+2<~ i < too}, 

n= = min{i: v(xi) > 82, n o + 2 <  i ~  < mo}, 

and obtain n2 > nl I> no + 2. Summarizing, 

(i) v(x.._l) < 81, v(x. 2) > 82, (36) 

(ii) 81 <~ v(xi) <~ 82, Vi: nl <~ i <~ n2-- 1. (37) 

Take n = nl and T = T* in Lemmas I and 2. By (15) we have T <  A = 1/(1 + hi) <~ 1 

and by (5), (37) we know that IIx,,l[ ~< M, hence Lemmas 1 and 2 are applicable. By 

the selection of tro we see that 1/n,<~ T*, hence the existence of  m(n, T) is 

guaranteed. 
By a Taylor expansion we have 

v(x~, .T)+l)  - v(x.,) = (x~.,.T)+l- x~,)'Vx(X.,) 
_~1:  z 

~ [ X m ( n l , T ) +  1 --  X~t,) I)= ( 7/I ) ( X r a ( n t , T ) + l  --  Xnl ) (38) 

where ~7 is an R"-vector  located on the straight line between x.. and Xm<...r)+l. 
We aim to show (in (42) below) that V(Xm<.,.r*>+l)< 81, and then demonstrate 

that this is the final contradiction. To that end, by Lemma 2, 

I Ix~<. , .~)+ ,  - x . , l l -<  3e* + T*(hl + 2e*), 

11,7 - x. , l l  <~ 3 ~ *  + T*(hl + 2e*). 

Hence 11,711-< M+hl+5e*<~ M + h l + 5  so 7/~ U, and by (12) 

IIv=(,7)ll_< r=. (39) 
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From this and (26), (38), (39) it follows that 

V ( X ~ c l ( r l l , T ) - b l ) - -  ~fl(Xlll ) 

re(hi'T) 1 
Z - (h" (x i )+  " +'  * sc~+,)vx(x,,) ~rE[3e + T(ha+2e*)] 2 

i = n  x I 

,,,(,,,.r) 1 
E -hr(Xnl)Ox(Xn,) "4" 

i = n  I l 

re(hi'T) 1 

E - (h'(xi) - h'(x,,,))Vx(X.,) 
i = n  t I 

re(hi'T) 1 
Jr" 2 __ ~" 1 * ~,+,vx(x.,)+~r2[3e + T(h,+2e*)]:  

i = n l  I 

and, from (12), (35) with n = n,, 

Iv(x.,)-v(x~, ,)l~ IIv~(0)ll- Ilx.,-x.,-lll~r,~* 
for some 0 e U. 

Thus by (36) 

V(X.,) <~ t)( Xn,-1) q-!~ t i e *  < 8 ,  "4-!~ r,e*. 

y,.(,,,.r)+, 1 / i>  T we find From this and (40) by (13), (21) and the fact that ...i=., 

V(X,.(.,,T)+1) ~ 6, + ~  r, e* -- a T -  h'(x. , )vx(x. ,)  + Th max IIh(x.,)-h(x,)ll 
m(n,,  T ) +  1 .,~i-,,,(.,,r) 

Ill 1 II II 1 II II + r, m(n, ,  T) S,,,(.,,r) + ~ S.,_, + __)-1 S._/__ ( 
111 II i=n l  I 

+½ r213e* + T(h, + 2e*)] = 

1,11  
i+  

<~ 81 +I--34 r i e *  - a T +  
r,h, 
tl, +Trl m a x  Ilh(x,)-h(x.,)ll 

n l ~ i ~ m ( n l , T )  

+ rl[~e* +~e*T]+½r:[3e* + T(hl + 2e*)] 2 

<~ 8 , -  aT + 8rle* + Tr, max lib(x,)- h(x.,)ll 
n l ~ i ~ m ( n t , T )  

+½ rE[3e* + T(hl + 2e*)] 2. 

Paying attention to (15)-(17) and setting T =  T* we finally have 

V(Xm(.,,r*)+,) ~ 6, - aT* + 8rle* + T*(a,  - fl) +½ r2(T*)2(h, + 2) 2 

+ 9 r2(e.)2 + 3r2e* T*(h, + 2) 

<~ 6, - T*fl + [8rx + r2(3h, + 11)]e* < 81 

On the other hand, by Lemma 2 and (12), (19) and (41) it follows that 

v(x~)=v(x.,)+v'x(~)(x..-x.,), ~e u. 

<~ 81+4r, e*+ rl[3e* + T(h,+2e*)]  < 82 

(40) 

(41) 

(42) 
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for all m: n~<~m<-m(n,, T ) + I .  From this 

m(n,, T * ) + I  <n2,  so 

v(x,.~.,.T.)+,) >18,. 

But this contradicts (42), proving the theorem. 

and (36), (37) we conclude that 

4. Proofs of Theorems 1 and 2 

Proof of Theorem 1. By Theorem 3 we know that there is an N1 independent of e 

and N~ > N such that 

IIx~ II <~ M~, 

and 

1 
Xn+, = X. +-(h(xn)+ ~n+~) (43) 

n 

for any n >1 N~ and any e ~ [0, e*). 

Set 

t l  

u . ÷ , = -  E ~,+~. 
h i = ,  

Then 

1 1 
u . + ,  = u .  - -  u .  + -  ~:~+, ( 4 4 )  

n n 

and 

lim supl l  u .  II = 
n --~ o o  

by Condition A. Hence 

II u~ II <~ 2~ for any n >I N2 

where N2 is assumed to be greater than N1 and sufficiently large. 
From (43), (44) we have 

1 1 
x .+; -u .+ l=x . -Un+-h(xn )+  u., V n > N 2  

n t l  

(45) 

and 

v(x.+,- Un+I) = V(Xn -- Un) + 1  (h (x . )  + UnYVx(X. - u.)  
n 

2 

+ O  
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Thus 

Now, define for any ~/> 0 

~ ( ~ ) =  m i n  (-h~(x)vx(x)/ m a x  . v(x)). 
IIx-x°ll~>~ \ IIxlI~<M~+2E 
Ilxll<~M~ 

Then we have 

a( $)v(x .  - u.)  <~ - h ' ( x . ) v ~ ( x . ) ,  

Since IIx . -u=l l  <~ M ~ + 2 ~ * .  

So 

for Ilxn - x°ll ~ 8, 

Noticing h~(x.)vx(x.)<~ 0, from (46) we know that 

/ ) ( X n + l  - -  Un+l) ~ l)(Xn -- Un) (1 a(8)n 
= 1 V(X.--Un)+ V(X.--Un)Itllx_xoll<81 

n 

v ( x . + l - u n + l ) ~  I-I 1 a ) V(XN2--uN2)+ ~ I-I 1 t~ ) 
i z N  2 i = N 2 j = i + l  

where 

L =  max Ilvx(x)ll, 
Ilxll<~ M,,+llx °ll+ 2 

and the last inequality follows since 

v(xn-uo)<- ~ ( x ° ) ÷  Ilvx(~)ll  • IIx.-x°-u.ll 

<<. t ( l l x .  - x°lt + 2~) .  

(46) 

(47) 

(48) 

n(:) 
11 1 a ( i ÷  1) '~ - <~ )~ ( O ~ < a < ~ i + l )  

j=~+l ( n + l  

Here the 7/~ are vectors with components located in between corresponding com- 
ponents o f  x .  - u .  a n d  x °. 

Applying the elementary inequality 
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to (48) with N2> a(8)  we obtain 

v(x.+,-u.+O~ -~S v(xN2-u"D-~ (n+ 1)~"~,= 

x [a( 8)LS +O(e)+O(1) ] 

( i+1)  ~(~) 

( N 2 )  ~'(~) O(1) 
= ~ V(XN2--UN2)+(n+I) '~<8) 

.O(e)  N~(~))] O 1(8)) .)  x [(n '~'~)- N~(~))LS.-~--~ (n "~')- + ( n ( 1 - a  

8n E 
"4- C18 "1" C2 ~ (49) 

1 - ~ ( 8 )  ,~(8) 

for all sufficiently small 6 > 0, where cl > 0, c2 > 0 and 8, -->,_,~ 0 do not depend 
on 8. 

By the selection of e* (20), for any t ~ (0, e*] we can define the function 

y(t) = rain{8: c~(8) = t}, 

since a(8)  is continuous and nondecreasing. Clearly, y(t)-->O as t--> 0. 
Set 8 = y(x/-~) for any e ~ (0, e*). Then a(8) =x/-e and 

8/,i 
v ( x . + ,  - u.+a) < ~ - -  ~ cl y(,/-/) + c24-/. (50) 

1 -x/'~ 

Further, define 

m ( r ) =  min v(x), r>~O. (51) 
IIx-x°ll>-r 

Clearly, m(r) is a nondecreasing function of r tending to zero as r--> 0 and m(0) = 0. 
Take r" such that 

m( r" ) = 2(16._~"x/~e + cl Y(x/T) + c2x/~) . 

By (50), (51) we see that 

m(r') v(x.+l-u.+l)<~ - < m(r ' )  
2 

and by (51) 

(( ,. )) IIx.+l-u.+,-x°ll<r'--f 2 (l_,f~)+cly(~/~)+c2q~" (52) 

where f ( t )=  min{r: re(r)= t} which, clearly, is left-continuous and increasing. 



230 H.-F. Chen, L. Guo, A.-J. Gao / Robbins-Monro algorithm 

From (45) and (52) it follows that  

IIx.+l-x°ll<~f 2 (1 -vQ- )  t-ClT(V/-e)+c2x/-e- + 2 e  

and  

lim s u p l l x n  - x°ll  ~< g(e), e > 0, 
n--~ oo 

(53) 

where 

g ( e ) = f ( 2 c l y ( x / ~ ) +  2c2x/e) + 2e. 

I f  e = 0, then by the arbitrariness of  8 > 0 f rom (49) we have x .  -->._,~ x °. Thus 

the theorem has been proved for both the e > 0 and  e = 0 case. 

Proof of Theorem 2. Sufficiency. Sufficiency is implied in Theorem 1 by taking e = 0. 
Necessity. Assume xn --> x °. The x~ cannot  take on both x* and  x* infinitely often 

since x* # x2*. Therefore the number  of  t runcat ions is finite, and there is an no such 

that  

o r  

fl 1 If xn + -  Y~+I ~< Ms(.)  for n i> no. 
n 

By (7) we have 

1 l 
x,,+~=x,,+-h(x,,)+ ~,,+~, n>-no 

n i1 

ixi+l = ixi + h(xi) + ~i+1, i t> no. 

Summing up both sides of  (54) we obtain 

nx~÷~= Y x,+ Y h(x3+ ~'~÷~+(no-1)x~ 
i = n  o i ~  n 0 i =  n 0 

and 

(54) 

1 ~ x ,+l  ~ h(x,)+l  ~ ~:i+~1+o(1). (55) X n + l  ~ ~ n 

1"1 i = n o  n i = n o  n i = n o  

X o Since h ( .  ) is cont inuous and  xn --~n-,oo we see that  h(x , )  -*~-,oo O. Then from 
(55) it follows that  

n 

n i = 1  n ~ o o  

and  Condi t ion A holds with e = 0. 
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