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A Robust Stochastic Adaptive Controller

HAN-FU CHEN anp LEI GUO

Abstract—This paper considers the adaptive tracking problem for
discrete-time stochastic systems consisting of a modeled part being a
stable ARMAX process and unmodeled dynamics dominated by a small
constant ¢ multiplied by a quantity independent of ¢ but tending to
infinity as the past input, output, and noise grow. The adaptive control
law proposed in this paper is switched at stopping times and is disturbed
by a sequence of random vectors bounded by an arbritrarily small but
fixed constant . It is shown that the closed-loop system is globally stable,
the estimation error for parameter contained in the modeled part are of
order ¢, and the tracking error differs from the minimum tracking error
for systems without unmodeled dynamics by a value of O(e?) + O(c?).

I. INTRODUCTION

IT is of great importance to analyze the influence of unmodeled
dynamics contained in a system upon the behavior of adaptive
control systems. Issues such as stability, control performance, and
accuracy of parameter estimation for the modeled part of the
system must be readdressed in the face of unmodeled dynamics,
since, in general, a real system can rarely be modeled by an exact
linear deterministic or stochastic system. Indeed, in [1]-[3] it is
shown that unmodeled dynamics or even small bounded distur-
bances can cause many adaptive control algorithms to go unstable,
without other precautions being taken.

Much attention has therefore been given in recent years to the
issue of robust adaptive control, especially in deterministic
adaptive control, to determine under what conditions signals in the
system remain bounded under violations of standard assumptions
(e.g., [4]-[11]). In the case of bounded disturbances, a dead zone
is introduced (e.g., [2]) in the adaptive law so that adaptation
takes place only when the identification error exceeds a certain
threshold. In order to choose the size of the dead zone
appropriately, a bound on the disturbance must be known. In [4],
the parameter estimator is modified in terms of normalized
signals, and the stability of the systems is studied using sector
stability and passivity theorems. The o-modification, i.e., an
adaptive control law with the extra leakage term — od,a > 0,is
suggested and analyzed in [7] and [8], and it is shown that the
algorithm guarantees boundedness of all signals in the adaptive
loop and small residual tracking errors. Another approach
guaranteeing robustness is to produce persistency of excitation in
order to make the adaptive system (undisturbed) exponentially
stable, and then to obtain stability in the presence of bounded
disturbances (e.g., [2], [9]). In [9] and [10], an averaging method
is used to analyze the local stability of adaptive systems when the
strictly positive real (SPR) condition is violated. In 5] and [6], a
relative dead zone method is used to deal with the case when the
disturbance is internally generated and thus depends on the actual
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plant input and output signals. Relative dead zone means that the
dead zone acts on the suitably normalized, relative identification
error. In this method, an a priori bound on the unmodeled
dynamics is necessary. In summary, we point out that in all the
above-mentioned approaches in deterministic robust adaptive
conirol, the proof of stability depends crucially on the a priori
boundedness of the external noise disturbance.

In the adaptive control of stochastic systems, however, noise is
an essential feature of the system, and it need not necessarily be
bounded. For example, if the system noise {w,} is a Gaussian
white noise sequence with zero mean and variance o> > 0, it is
known that (see, e.g., [12, p. 64]) {w,} is unbounded almost
surely. In the stochastic case, it is of interest not only to guarantee
boundedness of the system input and output under noise distur-
bance and unmodeled dynamics, but it is also important to reject
the noise optimally, or at least close to optimally. Thus,
performance of the adaptive control algorithm, in rejecting the
corrupting noise, and tracking the desired reference signal with
small tracking error, is also an important goal in robust stochastic
adaptive control.

In a recent paper [11], the authors have given a preliminary
analysis of the robustness of parameter identification for discrete-
time stochastic systems which are viewed as a sum of an ARMAX
(autoregressive moving-average with auxiliary (or exogenous)
input) process representing the principal part of the system and an
additional signal representing unmodeled dynamics. This signal is
dominated by a small constant e multiplied by a quantity diverging
to infinity as any one of the input, output, and noise of the system
increases. This means that the unmodeled dynamics considered
in [11] are not negligible when the amplitudes of the input, or
output, or noise are not small. Then it is shown that both the
estimation error generated by the ELS algorithm for the modeled
part and the difference between the tracking error and its
minimum value of order e if the system is persistently excited and
some other conditions imposed on signals of the closed-loop
systems are satisfied.

In this paper we consider the parameter estimation of the
modeled part and adaptive tracking problem for the same system
as discussed in [11], but with no conditions imposed on signals of
the closed-loop systems. However, we must assume that the open-
loop system is stable. The main contributions of this paper are the
presentation of a robust adaptive controller for stochastic systems
and the proof of the following properties.

1) The closed-loop system is stable.

2) The estimation error for the unknown parameters in the
modeled part tends to zero as the unmodeled part of the system
decays.

3) The tracking error differs from its minimum value corres-
ponding to a system without unmodeled dynamics by a value
tending to zero as the unmodeled dynamics vanishes.

The paper is organized as follows. In Section II we give the
model of the plant and the estimation algorithm. The robustness of
the estimation algorithm is studied in Section III. In Section IV we
give the structure of the adaptive control algorithm and analyze
the robustness properties of the algorithm with respect to
unmodeled dynamics and state our main results. Some concluding
remarks are presented in Section V.
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II. DESCRIPTION OF THE SYSTEM

Consider the following stochastic system with unmodeled
dynamics 7,:

AGE Ve 1=B@ Dty + C@ Y Was 1+ 20, nz0,
Yn=Wn=1,=0, u,=0, n<0 (0)]
where
A ) =I+Az '+ +A,2°7,  p=0, 2)
Bz )=Bi+B;z~'+ - +B,z7 "}, gzl ()
Cz H=I+Ciz '+ Gz, r=0 @

are matrix polynomials in backwards shift operator z~! with
unknown matrix coefficient

0=[-Ay - —Ap B, - B,Ci - GY &)
but with known upper bounds for orders p, g, r, and where y, and
u,, are the m-output l-input vectors, respectively. The driven noise
{w,} in the modeled part of the system is assumed to be a
Martingale difference sequence with respect to a nondecreasing
family of o-algebras {&,} with properties

sup E(|wns1|?|Fa) <0 as, )
1 n

lim — Y wiw/=R>0  as. )
noe 1 i=1

The unmodeled dynamics 7, is F,-measurable and assumed to be
dominated by

Il <€ S am=i(llwill+ all + [[will + 1) ®
i=0

witha € (0, 1), e = 0.

Remark I: It is shown in [11] that the system described by (1)
and (8) contains a variety of systems which are characterized by
structured parameter uncertainty and unstructured modeling
error; for example, the following two models are special cases of
(1) and (8).

Model 1 (System with Structural Uncertainty):

U+pmz ' Hiz"DAER ) Yar 1=+ mHa(z" )1 B(@ u,
+ [T+ p3z~ ' Hy(z"YC@ ) Was 1 4§y, W)

where Hy(z™"), Hx(z™'), and Hy(z™') are matrix polynomials
with unknown coefficients and orders, and p;, u;, and p; are
constants. {,(y, u) is F, measurable unmodeled nonlinear
dynamics satisfying

I 6ays Wl =pa Dy @7 (pill + sl + D)
i=0

where s = 0 and a; € [0, 1).
Model 2 (System with Slowly Varying Parameters):

Ynsr+Awbnt +ApmYn-p+
=B up+ - +BqnunAq+l+ Woe1+ CinWnt o + CopWn_ iy
with || 8(n) — 0] < us, us = 0, where 8(n) denotes
6(my=[—-Ain -

N -Apn By - Bqn Cip Cl'.

1t is also shown that the smaller y; (i = 1, - -, 5) is in Models 1
and 2, the smaller ¢ is in (8).
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For estimating the unknown parameter  in the modeled part of
the system (1), we use the extended least squares (ELS) algorithm

0n+l=0n+anpn¢n(}’:,+|‘d’;en)’ (9)
P,y =Pn_anPn¢n¢:,Pny a,=(1 +¢:,Pn¢n)_ly (10)
iV Vi M U g

y‘,’,_¢:,,10m Tty y:,_,+1_¢:,,,0n—r+1]1 (€3))

with Py = dI, d = mp + lg + mr, and with 6, arbitrarily
chosen.

III. ROBUST PARAMETER ESTIMATION

For the exact model we need the following standard condition.

Assumption 1: C~Yz™Y) — 1/2I is strictly positive real
(SPR).

The SPR requirement has been relaxed for the local stability of
deterministic adaptive algorithms with the averaging method for
persistently excited system in [9] and [10], however, for the
global stability, the SPR condition is still needed.

Set

=LYy Vhper Un s Mg Wi W17 (12)
¢t =d,— 13)
and denote by Apu(n) (Ao (m) and Apu(n) (A, (m) the
maximum and minimum eigenvalue of
n-1 1 n-1 1
BT 04074 —
E ¢.¢,+d1<§; ¢0¢! +d1> ,
i=0 i=0
respectively.
Define condition numbers K and K, as follows:
K = imsup Apax (1)/ Anin (1), (14)
Ko=limsup \°_ (n)/\%, (m). 15)

Lemma 1: For the system described by (1)-(8) and ELS
algorithm (9)-(11), if Assumption 1 is satisfied, then

i) limsup ||6,—0| <c,VKe, a.s.
n—+o

where ¢, > 0 is a constant independent of K and ¢, and € and K
are given in (8) and (14), respectively.

il) K=<4Ko/[1—c,(1+2Ko)e?], a.s.

provided that K, < o and ¢ < 1/e,(1 + 2K,), where K, is
defined by (15) and ¢, is a constant independent of K, Kj, and €.

n+1
i) ¥ |ofl2=ce?r,  as.
i=0
where ¢; > 0 is a constant independent of ¢, and r,, is defined by

=1+ il

i=0

(16)

Proof: Conclusions i) and ii) follow from [11, Theorem 1],
while conclusion iii) follows from (39) of that paper.

Remark 2: From Lemma 1 we see that the ELS algorithm
contains some degree of robustness provided that the condition
number K, < o , i.e., the persistence of excitation condition is
satisfied.
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We now show how to design the control law so that this
requirement is met.

In stochastic adaptive control, it is well known that if the
control law is obtained by the certainty equivalence principle, then
the parameter estimate, in general is not strongly consistent due to
lack of sufficient excitations (e.g., [14]), even though the adaptive
controller is asymptotically optimal (e.g., [13]). In [15], it is
suggested to disturb the reference signal by a white noise dither
with constant variance to get persistently exciting signals, and
hence the consistent parameter estimate in an adaptive tracking
system. The controller designed in such a way is termed the
continuously disturbed control [15]. Under this kind of controller,
the suboptimality of the tracking error only is achieved. A similar
treatment was used in [16], where the modified least-squares
based algorithm was analyzed. The problem of how to achieve
simultaneously the strong consistency of parameter estimates and
the minimality of tracking error or quadratic cost is studied in
(171, [18] by adding a random dither with diminishing variance to
the controller. This method, called the attenuating excitation
technique [17]-[19], is based on the fact that strong consistency of
estimates can still be established when the standard persistence of
excitation condition is not satisfied. A related method adopted in
[20] is to occasionally use white-noise probing inputs.

In the presence of unmodeled dynamics, however, some
robustness in the estimation algorithm can only be guaranteed for
persistently exciting signals as studied in the deterministic case
[9], [10] and examined in the stochastic case [11] (see also Lemma
1 and Remark 2). This is why we use random dither with constant
covariance rather than diminishing covariance in the sequel.

Let {v,} be a sequence of /-dimensional independent and
identically distributed (iid) random vectors independent of {w,}
and such that

Ev,=0, Ev,o’=pl, p>0, ||v,]| <0, n20. an
Without loss of generality, assume
%, = g-algebra generated by {v;, w;, i<n} (18)
and set
F , = o-algebra generated by {v;_|, w;, i<n}. (19)

Let the desired control u9 be & ' -measurable and let the input u,
applied to system (1) be defined by

up=ul+v,. (20)
Define a sequence of auxiliary variables {z,} by
A 2 =B@ Nty 1+ C(z"wWa @1

with the same {u,}, {w.}, A(z™"), B(z™"), and C(z™") as those
for system (1).

We note that unlike {y,} the process {z,} is not influenced by
the unmodeled dynamics {7,}, and satisfies an exact ARMAX
model. This allows us to apply the existing results to {z,} first,
and then to get the desired results for {y,} by the connection
between (1) and (21).

Set

0_ e e e
W,,—[Z:,, ’ z;l—p+l, u:,’ 3 u;a -g+1» w:,r ’ w;l—r+l]T,

22

yi=I[det A(z" DIV, ¢,=[det A(z~")]¢) (23)

where ¢¢ is defined by (12).

In the sequel denote by Ay(X) the minimum eigenvalue of a
matrix X, and by a, = O(b,) we mean that | a,| < Cb, forall n
and for some constant C > 0 which depends neither on 7 nor on ¢,
where the norm ||.X|| for a complex matrix is defined by || X| =
Vitr XX,
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We need the following identifiability condition for the nominal
model.

Assumption 2: A(z™"), B(z™'), and C(z~!) have no common
left factor and A, is of full rank.

Lemma 2: For the auxiliary system defined by (20)-(23), if
Assumption 2 is satisfied and if

S Awl?+lzl?)=<bn,  as.
i=0

then for sufficiently large n

Amin <2 \H\H’) Zy,n,  as.

i=0

where v, > 0 and b > 0 are constants independent of e.

Proof: The proof is essentially the same as that for [19, eq.
(46)] if we note that the ¢, §, and « which appeared in [19] are
equal to 0, 0, and 1, respectively, in the present case.

In the following theorem the requirements on the condition
number in Lemma 1 are transferred to more easily verifiable
conditions imposed on the growth rate of the input-output data.

Theorem 1: Consider the system and algorithm defined by (1)-
(11), with Assumptions 1 and 2 satisfied. Let the control u,
defined by (20) be applied to (1) and assume that

Y Qwl?+1yi|H<Mn,  n>o0. (24)

i=0

Then the ELS algorithm has a margin of robustness in the sense
that there exists a constant ¢* > 0 such that

limsup ||6,— 0| < Cse, € € [o, €¥), a.s.

where M > 0, C; > 0 are constants independent of e.
Proof: Set
¢:’,=[77:,, ”;,[ e n;,p+1’ 0---0]"

By (1), (12), (21), and (22) we have

Az 0 0
mp{ 0 AE (6299 =1,
0 - Imea
hence, by (23)
dr=YL+%n (25)
where
Adj A(z™") 0 0
fa= o agAey G |# @
0 . )
From (7), (8), (24), and (26) it is easy to see that
"2[ | &l|2<Cye?n,  for some C4>0. @7

i=0

For any x € R“ from (25), it follows that
Xy l2=2lx"¢ )12+ 2] x5 |12

and, hence,

n-1 n—1
)\min (E \//}\I/}’)SZ)\,,,,,, (2 ¢’]¢’lf>+204€2n.

i=0 i=0
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From here and Lemma 2 it follows that

28

n-1
mm <E ¢ ¢”>> ('Yu 2C4€2)I1

i=0

det Az V) =a,+a 7'+ +ampz™™

By (23) and the Schwartz inequality and the fact that ¢2 = 0, for n
< 0, it is easy to see that

A (2 ¢,!¢,!f>
i=0

n n mp 2
=y, 2 reD?= fnf, 3, <E ajxrqs?_j)
=ice =t j=0

<(mp+1) E az)\o ().

Jj=0

From this and (24)-(28) we see that

min

hmsup N )/ N0 (m)=< {2 [(p+q)M+rtr R}

mp+)) S, a}} [r-2ce< @9

j=0

provided that ¢ < Vi,/(2Cy). Take e*: 0 < ¢* < “k,/(2C;) and

set

mp
K*= {2[(p+q)M+r tr Ri(mp+1) Y, af] /lvo—ZC4(fT)2]-

j=0

Then Theorem 1 follows by taking e*: 0 < e* < 1/\51(1 +2K*
and by noting (29) and Lemma 1.

IV. ROBUST STOCHASTIC ADAPTIVE CONTROLLER

Let {y*} be a sequence of bounded deterministic reference
signals || y*|| < J,. The purpose of this section is to design an
adaptive control law so that the closed-loop system is stable and
both the estimation error and the tracking error are of order e. We
need the following condition for the modeled part of system (1).

Assumption 3: The dimension of the system input equals that
of the output, i.e., / = m, zeros of det A(z™') and det B(z™') lie
inside the closed unit disk, and the upper bounds for the following
quantities are available:

lell, e R, || BT, sup A~ =)B@)|, |sllxp]\IA-'(z)C(z)M,
zi=1 z|=

lSlllp IB~1(z)A2)|
zf=1

and

sup | B~ (2)C(2)||.
lz|=1
These bounds are, respectively, denoted by «, 8, v, Kap, Kac,
KBA! and Kgc.

We first present the adaptive control law and then explain its
form.

Define two sequences of stopping times {7,} and {o;} with

=N<o<Nn<e<-
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as follows:

j-1
o) =sup [r>7k: E lu!l2=Mo(j-1)
i=1p

+ul 12 v € (e t]} . (30)

ox—1
Tkr1=inf {t>ak: 2 2 lut)2=¢, |[u:||25M1t} 31

i=1g
where u, is defined from

Blnu —(Blnun_g ¢n)+y,,+1 (32)

if det B; # 0, otherwise u‘ = 0, where B,, is the estimate for B,
given by 6,, and where Mo and M, are chosen to satisfy

My=[32(a+ 1)2y2(p+q+1r+2]

[(4K313+1)M3;+(4K31c+ 1)B+2e%+1)], (33)
M =32(a+1)2y*(p+q+1n)
[(4Kfm+l)(02+l)+(4Kic+1)B+2] 34)

where

M:)=202+8K2 /3+1-#-16K2 M2
M§=61§+6(a+1)202+6B+8K;B(az+1)+4K§1CB+% .

It is easy to see by (11) that the term (B,,u, — 07 ¢,) on the right-
hand side of (32) is free of u,, therefore, u‘ can indeed be
determined from (32).

The adaptive control law is defined by

Up=ul+v, 35)
with v, satisfying (17) and with #° given by
lll, ifn € [Tk, Ok)
ul= { g . (36)
0, ifn € [op, Th41)-

We now make some explanations of the proposed controller.
From Theorem 1 we see that, for the robustness of the parameter
estimates, besides conditions on the nominal model structure,
there are growth rate requirements for the system input and output
when the external excitation is applied to the controller. (It will be
seen shortly from Lemma 3 ii) that these requirements are
essentially the requirement for the system input under Assumption
3.) However, the standard adaptive tracking controller ! defined
by (32) (e.g., [13]) may not meet this requ1rement because of the
unmodeled dynanucs This is the motivation for introducing
stopping times {r,} and {o;} and truncating the controller at
randomly varying bounds.

From the random time 7, by (35) and (36) we see that the
adaptive control u, is defined as u] excited by v, as far as n < q,
where o is the first time when the value of 1/j Z/__ |lul? is

greater, roughly speaking, than M,. During this time interval the
main purpose of the controller is to track the desired signal y *.
From the random time o the adaptive control is defined as a pure
dither v, until » < 7., where 7., indicates the time when
flull|?/n is less than M, (a technical bound) and when another
technical condition is satisfied. During the time interval [0y, T¢+1),
the purpose of the controller is to slow down the possible
undesirable growth rate of signals. This is possible because of the
stability assumption made on the nominal model. Thus, the
control law operates by switching on the tracking feedback
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controller during intervals [, o;) and reverting to simpler dither
(a persistently exciting signal) applied to the stable plant in case
the local signal growth rate exceeds the a priori bound, flagged by
or. We seek to prove then that for some k, 7, < %, 0, = .

We now present the main results of this paper.

Theorem 2: For the system and algorithm defined by (1)-(11),
if Assumptions 1-3 hold, and the control law is defined by (35)
and (36), then there exists a constant e* > 0 such that for any e €
[0, €*) the closed-loop system has the following properties:

- 1 ¢
) limsup— 3 (Iyill*+ uil?) <o, as. 37
i=0
. 1
ii) llmsup; 3 lyi—yrlP<tc R+ce?+ || B ||*0?, (38)
i=0
iii) limsup [|0,—68|<c’e 39

where €, R, and ¢ are given by (8), (7), and (17), respectively,
and ¢ and ¢’ are constants independent of e.

We separate the proof into lemmas.

Lemma 3: If Assumptions 1 and 3 are fulfilled, then for small
¢, the following estimation holds:

n n
D Y Inill2=0(?) [2 (||yf||2+||u,-|lz>+n] »as. (40
i=0 i=0
n n
i) X llyier 24K, D uill?+4K7 6n
i=0 i=0
+O0(e*)n,  as. “n
n n
i) 3 uill2<4K%, > 1 yiall2+4K5:Bn
i=0 i=0
+0(H)n,  as. @2)

iv) r,<4(p+gq+n [E (||y,~l|2+||u,~||2)+6n:|

i=0

where B8, Kus, Kac, Kpa, and Kpc are given in Assumption 3.

Proof: Conclusion i) follows from (8) and (7) immediately,
while conclusion iv) follows from Lemma 1 iii), (13), and (16) if
we note that

P=14Y o0+ ail?

i=0

<1+2 Y 16012 +2 3 1ol

i=0 i=0

<1+2(p+q+n) [2 (IIy,-I|2+1|u,-|I2)+6n:| +O0(e)ry

i=0

=4(p+q+7) [2 (ly:li*+ Iluf||2)+ﬁn]

i=0

provided that € is appropriately small.

We now proceed to prove conclusions ii) and iii). We note that
ii) and iii) are reformulations of stability and minimum phase
assumptions on the plant, respectively.
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By (1) we have

n

n
Slyeil2=3 Y 14 @ B Hul?
i=0

i=0

+3 Y 1471z YCE Wi [ +3 3 1A @ ]2 @3)
i=0 i=0
Since A(z ') is stable, we have the following expansion for
A~Yz"YWB(z™Y):

A_I(Z'I)B(Z_l)=2 sz*f

(44)
Jj=0
with |H;|| = ON), j = 0, for some N € (0, 1).
We now show that
S 1A @ YBE Y<Ky D luill® (45)
i=0 i=0

This inequality is established for the scalar case in [21, p. 960, eq.
(18)]; the present matrix case can also be proved by using a
similar method. The key steps are first to define

uj, j<m
u;(m)= { .
0, j>m
and show that for any m > 0
oo (m+ Nm+ k) =) o0 2
wl_ HiHa, = Y, ||y Heus w(m)f| =0
(t,k=0) s=m+1 s=m+1 Wl k=0
then to prove that
n
K24, 3 luill?
i=0
1 Sh 7 1o ¢ o 2
>— - U 1 el
24, EA (e")B(e®)u;e do
i=0
o (k+mA(t+n)
= E E ”§-1H7Hk“s—k
{t,k=0) s=0
o n
= E Eu;_tH:Hkus_k
{t,k=0) s=0
n
=3 A"z B Huil (46)

Similar to (45) we have

R

]
o

HA_I(Z_I)C(Z”)W;H||25K§,CE fiwie % @7
i=0

i

Further by (40) it is easy to see that

> 1A~ @ Hnil>= 0 [E (Hyi“2+"ui”2)+”:| - (48)
i=0

i=0

Putting (46), (47), (48), and (7) into (43), we can get (41) for
appropriately small e. Finally, (42) can be established by the
same way as (41). This proves the lemma.

Lemma 4: Under the conditions of Theorem 2, the ELS
algorithm has some degree of robustness in the sense that for
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small e

limsup (|6,— 0| =0(), a.s. 49)
Proof: We first note that if 7, < oo for some k, then by (30)
and (31) we have

sup E (A

7k<"<‘7k

Te—1

+ E +2 ) a2

791

o1 —1
- (3T
Th=n<op i=r =g

1
<— [2(01 —1)02+2 %4—2(12—0])02
k

l n
=Y Nl

i=1p

e +2(Tk—0k;1)62:| + sup

T=n<op

=2(e?+ 1+ sup

TE=n<og

1 n
=3 ful?

=1y

1
<2(0*+1)+2 sup [; (n—1+1)0?

Tp<n<oy
1< 112
423 ful
i=1p

1
<40242+2 sup [—(Mo’l+|“i NZ):I

TkSIl(Uk n «
<2Q0%+1+M,+M,) (50)

and furthet, if oy < oo for some k, then by (35), (36), and (50)

I & 2
sup  — 37 [l
ThEN<O 41 " =)
1< 2 2
< sup — Y |ul*+ sup E (A
Tp=n<o, i=1 Op=n<T,

K+ lﬂk

=2Qo*+14+M,+ M)+ sup

Of=n<t, 4|

- [(n—ak+ 1)o?]

<5062+2(1+M,+M,). (62))

By Theorem 1 and Lemma 3 ii) we know that for (49) it is
sufficient to show that there exists a constant M > 0 independent
of ¢, such that

E |u:]|2 < Mn, n>0. (52)
i=1

We verify (52) by considering the following three cases.
i) If 7, < o0, 0, = oo for some k, then by (50) and (51) we have

sup L S Ju?
N
nzl:l’n‘.=l '

n

1 1<
= sup =B fluif 2+ _sup - 2 Nl
Isn<7kni=1 fSn<® i=l

<902+4(1+M,+ M)
and (52) is true for M = 9¢2 + 4(1 + M, + M,)).
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i) If 4, < o0, 74, = oo for some k, then by (51) we have
1 n
2 2
sup ~ ; (]

< sup
1= "<"k

2 lu:l|*+  sup

Tpsn<oo

l n

;E il
i=1

<1002+ 4(1 + M, + M,)

and (52) holds for M = 1002 + 4(1 + M, + M)).

iii) If 74 < o0, g, < oo, for all &, then by (51) we see that (52)
is also true forM = 502 + 2(1 + M, + M,).

This completes the proof of the lemma.

Lemma 5: Under the conditions of Theorem 2, if ¢ is small and
n is large enough, then

(53)

lullP<32(a+ D2 y2(p+qg+r) {(4wa+ 1)

%E |u,||2+(4K§4C+1)3+2} n (54)

where u! is defined by (32), and «, 8, v, K45, and K 4¢ are given
in Assumptlon 3.
Proof: By ii) and iv) of Lemma 3 it is easy to see that

m<4(p+q+n {(4wa+ 1)

Y llui||2+(4KﬁC+1)Bn} +0(e)n
i=0

and then for small e
[ ¢all2=rs
l n
=4(p+q+n {(4Kf,,,+l); > lluili?
i=0

+(4KAC+ D+ 1} n (55)
By (32) we have
Biuy=(B~Bi,)ul— (0,6, Biytn) + y¥, . (56)

Since all zeros of det B(z~") are inside the closed unit disk, it
follows that B, is nondegenerate, and by Lemma 4 we know that
for small € and appropriately large n

1
1B 8 —0 <5, 6.-0]<1.

Therefore, by (56) we have
||U'IIS|I OBy = Bualllug |+ (61 + Dl dall + | v 2, 1
Hu [+ a6+ Dl eall+ 11y, 1B - 67
Consequently, by (55) and (57) we see
lunll? <8+ 122 9ull*+8] v, 121 B; |

l n
<32(a+1)2y%(p+q+r) [(41(,%13*1) - E ;]2

+ (@K% .+ I)B+2} n
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for sufficiently large n, since {y*} is a bounded sequence. This
completes the proof of Lemma 5.

Lemma 6: Under the conditions of Theorem 2, there is some k&
> 0 such that

T < ®, gy =

for small e.
Proof: We need only to prove the impossibility of the
following two cases:

1) 04,<00, Ty = for some k,
i) Tp< o, 0x< o, for any k.
If case i) occurs, then by (35) and (36)
Up=Up, vnz=oy
and, hence, for n large enough, we will have
1 n
- E luil|?<o?+1
n i=0

and then by Lemma 5 we know that for small ¢ and for all
sufficiently large »
[lul ]2 =32(a+ 1)272(p+q+r){(4wa+ 1)(e?+1)

+@K2 + 1DB+2 n. (58)

From (31) and (34), we see that (58) contradicts 74,,; = .
Hence, case i) is impossible.

If case ii) holds, then by Lemma 3 and (35) and (36) we have
for any £ > 1.

1 &
— 3 w2
%k ;2o

dkl

+— E flui]?

op—1

1
<(7 +'— [4K2 2 ||y,-+1|[2+4K§CB(ak—l)
i=0

+0(*) (o~ 1)

=1

1
<02+4K23 B+ O0(e) +— [41<§A 3 i ||2] . (59
Ok :
By Lemma 4, it is easy to see that for small € and large enough
n
det By, #0

since det B, # 0.
Therefore, by (32), (35), and (36) it is seen that for appropri-
ately large k and all i € [7,, o))

0Tdi=y¥  +Buv;
and by (1) and (13) we have for any i € [7,, o4)

0f¢l+Bllul+0 ¢0+ Wiv1+ 1
=Byvi+ Wi +n;,— 0765 +87¢0,
where §; = 6 — 0,

Yir1— y,+]

(60)
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From (60), Lemma 1 iii), and Lemmas 3 and 4 we see that

op—1

E | ¥istl?

i=1p

op—1

<6 3 Uk 12+ 1Bl 2+ [ wiw 124 [mi] 2
i= Tk

+l10705 12+ 1187671}

op—1
<6 Y [2+(|Bi]+ 1202+ wis |

i=7y
+lmill2+ 101+ D[ 65112+ 0N 6211

<60, [I2+ (| B[ + D?0*+8]

o1
+0() [ > (ll2+ IIui!|2)+0k] . (61)
i=0
By an argument used in the proof of (50) it is easy to see
17
¥ w2 =2(e?+1).
k i=0
Consequently, by Lemma 3 we have
Tr—1 Te—1
Y yiall?=4k2, > luil|?+4K2 B+ O(e?) 7
i=0 i
<8KZ (02 + D)7 +4K2 BT+ O(eD)Th.  (62)

Combining (61) and (62) leads to

nk—l
3 i1 12< 0 {6112+ (a+1)202 + B] + 8K 2 y(0%+ 1)

i=0

o—1
+4KL B+OED}+0ED) Y, (il + |u?).

i=0

From this it follows that for small e

op—1

E |yis1112<204 {6[1§+(a+ 1)20?+B]+8K2% (0% +1)

i=0

1 uk—l
+4K§,C3+~2—} +0(?) Y Jull®

i=0

(63)

FHlally, putting (63) into (59), we find that for appropriately
small e,

1
—E llui]|2<20%+ 8K B+ 1+ 16K,

i=0

{6[12+(a+1)2 2+ 81+ 8K2 (a2 + 1) +4K?2 2B+ } (64)
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and then by Lemma 5 for sufficiently large £

||u,',k|!25 32(a+1)2y2(p+q+7) {(4K§18+ D[20%+8K2% B+1

+16K2, <613,+ 6(a+1)20%+68+8K2,(o%+1)

+4K§CB+§)] AR mm} )

From (64) and (65) it is easy to see that

o op—1
Y luflz= X lul2+|lul |2
i=1p+1 i=Tp+1
op—1 o =1
=2 3 lwl*+2 3 lull*+lu |2
i=1p+1 i=rp+1

=[32(a+1)3y%(p+q+r+2] {(4wa+l) [202
+8K2 B+1+16K2%, <61§+6(a+1)2a2+613

1
+8K2 (o2 + 1)+41<3,05+2>]

+(@K% +1)B+2(c%+ 1)} o

=M o0Tk-
But by the definition (30) for o,

%k
S ull*> Moo

i=tp+1

The obtained contradiction proves the impossibility of case ii).
Proof of Theorem 2: By Lemma 4, Lemma 6, and (41),
(52) there is €* > 0 such that for any ¢ € [0, €*), conclusions i)
and iii) hold true and there is some k such that
T <, gy =00, (66)
We now prove conclusion ii).
By (37), (39), Lemmas 1 and 3, and the independence of {v;}
and {w;} from (60) and (66), it is not difficult to see that for any ¢
€ [0, e,

1 n
limsup = 3 || yi—y*[2<tr R+ O(e?)+ | B, [|?02.
n—+oo n‘_=0

This completes the proof of Theorem 2.

V. CONCLUSIONS

For open-loop stable stochastic systems with unmodeled dy-
namics and possibly unbounded random noise, we have designed
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an adaptive control algorithm so that the closed-loop system is
stable and both the estimation error and the tracking error
approach their minima when the unmodeled dynamics diminish.
The estimates for the parameters appearing in the nominal model
are given by the extended least-squares algorithm, whereas the
control law is switched at stopping times to slow down the
possible undesirable divergence rate of the signals, and is also
disturbed by a sequence of random vectors bounded by an
arbritrary small but fixed constant to provide sufficient excitation
for robustness of identification.

Further research efforts are suggested to weaken the conditions
imposed on the modeled part of system (1).
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