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Almraet--In this paper strongly consistent estimates are given for both unknown parameters and orders 
of the nonstationary time series, where the nonstationarity arises because: (I) at any time n a feedback 
control is added to the usual ARMA process which is successfully applied to modelling economic systems 
and (2) det A(z) may have zeros on the unit circle in addition to those located out~ide the unit disk, where 
A(z) is the matrix polynomial corresponding to the AR part of the ARMA process. 

1. I N T R O D U C T I O N  

Most of the papers in the time series analysis which is popularly used in modelling economic 
systems [1] are devoted to analysing stationary processes and the Yule-Walker equation and 
other statistical methods are applied to estimating unknown parameters in the model [2, 3]. 
However, for some modelling problems in economic systems or in engineering the control 
(maybe feedback control) action should be taken into account, and in this case the usual 
ARMA process becomes controlled ARMA process sometimes called ARMAX process, which, in 
general, is no longer stationary. The nonstationarity may also occur in the ordinary ARMA process 
with unstable autoregressive part. These two kinds of nonstationarity are discussed and the 
consistency of estimates for orders and for unknown parameters o f  the model is analysed in 
this paper. 

Consider the following controlled multidimensional ARMA process: 

A(z)y,=B(z)u~+C(z)wn; n >10, 

y ~ = w , = 0 ,  u, ffi0, n < 0 ,  (1.1) 

where yn, u~ and w~ are the m-output, /-input and m-driven noise respectively, and where A(z), 
B(z) and C(z) are matrix polynomials in backwards shift operator z: 

.4(z) = I + A 1 z  +'"+Ap0zP°, p0~>0, (1.2) 

B(z) = BIz + " "  + Bqozq°, qo >I O, (1.3) 

C(z) = I + CIz + '  " + C,0z'°, r 0 >I 0, (1.4) 

with unknown matrix coefficients Ai, B/, Ck (1 ~< i ~<P0, 1 ~<j ~< q0, 1 ~< k ~ r0) and unknown 
finite true orders (Po, qo, ro). Here, by the true orders (P0, qo, to) we mean that the triple (Po, qo, ro) 
satisfies 

(Po, qo, ro) = arg max {p + q + r: Ap # 0, Bq # 0, C, # 0}. 
O ~ p , q , r  < oO 

(1.5) 

The driven noise {wn} is assumed to be a martingale difference sequence with respect to an 
increasing sequence of tT-fields {~'n} (i.e. w~ is f~-measurable and E(w~l.t~" ._ i)ffi 0 for every n) 
and satisfes 

sup E[ )l w,+~ II~l ~W] < ~ ,  a.s. for some fl > 2, (1.6) 
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and 

liminf ~'n~n(l n ) - ~ wtw; > 0, a.s., (1.7) 
n~ao ~Yl i - -  I 

where and hereafter 2m**(X)[2~n(X)] denotes the minimum [maximum] eigenvalue of a matrix X, 
and H x I[ = {2m~(Xr)} t/2 its norm. 

For the system input {u,}, it is assumed that 

u, is ~':measurable for any n 1> 0, (1.8) 

so that u, may be any feedback control that depends on the past inputs and outputs {y~, u~_ ~, i ~< n }. 
The problem of estimating the unknown parameters (coefficients) of the controlled ARMA 

model (1.1) has been extensively studied for the past two decades and strong consistency of various 
stochastic identification algorithms has been proved under the standard condition of persistence 
of excitation for the system with known orders (P0, q0, r0). This kind of results is well summarized 
in books of Ljung and Stderstrtm [4], Goodwin and Sin [5] and Chen [6]. 

Recently, in consistency analysis of parameter identification research attention is paid to the 
more realistic (and more difficult) cases where the system signals may not be persistently excited 
and strong consistency has been established for stochastic gradient algorithms (Chen and Guo 
[7, 8]) as well as for extended least squares algorithms (Lai and Wei [9, 10], Chen [6] and Chen 
and Guo [11]). These results are successfully applied to stochastic adaptive control problems of 
simultaneously identifying system parameters and controlling the system for tracking in [7, 10] and 
for minimizing the quadratic cost [8, 11]. 

As far as the order estimation is concerned, most of the important results are developed for 
uncontrolled stationary ARMA processes. The estimates (p,, r,) for the unknown orders (P0, r0) 
are usually given by minimizing some criterion, for example, AIC(p, r) (Akaike [12]), BIC(p, r) 
(Akaike [13], Rissanen [14] and Sehwarz [15]), and 4HC(p, r) (I-Iannan and Quinn [16]). However, 
all these results cannot be applied to feedback control systems, described by (1.1), which essentially 
differs from the ARMA model by additional control terms, which are crucial for all real control 
systems, and may depend upon the past system inputs and outputs as implied by (1.8). Efforts 
towards estimating unknown orders of feedback control systems have recently been made in Chen 
and Guo [17, 18] where, having introduced a new criterion to be minimized, the authors have 
obtained consistent estimates for orders of (possibly non-persistently excited) stochastic feedback 
control systems. 

Section 2 concerns identification of coefficients of feedback control systems. Section 3 deals 
with the order estimation for controlled ARMA processes and Section 4 presents parameter 
estimation results without using SPR condition. Finally, Section 5 treats ARMA process with A (z) 
unstable. 

2. PARAMETER ESTIMATION FOR CONTROLLED TIME SERIES 

We will assume from now on that the upper bounds for the unknown orders Po, qo and r0 are 
available, i.e. 

Assumption I 

The true orders (Po, qo, r0) belong to a known finite set M: 

M = {(p,q,r):O<~p <<.p*,O<~q <~q*,O<<.r ~<r*}. 

For any (p,q, r)eM, set 

O(p, q, r) = [ - A t . . .  - A , B , . . .  B, CI . . .  C,]', (2.1) 

where by definition 

Al=0,  Bj=O, C , = 0 ,  fori>po, j>qo,  k > r  o. 



Nonstationary time series identification 1249 

The "extended least squares" estimate On(p, q, r) for O(p, q, r) is recursively defined by 

On+ i(P, q, r) = On(P, q, r) + anVdpn(P, q, r) [Yn* + i - -  (#~n(P, q, r)On(p, q, r)] (2.2) 

Pn+ ~ = Pn - anPncPn(P, q, r)cp~(p, q, r)Pn, (2.3) 

an = (1 + ~p~(p, q, r)PncPn(P, q, r)) -I, (2.4) 

rp~(p, q, r) = [y~. . .  y~_,+l u~. . .  u~ _ q +  I ~ ' ' "  ~--r+ 1], (2.5) 

¢ n  = Yn - -  O~(p, q, r)¢Pn_ ~(p, q, r), (2.6) 

where the initial values 00(p, q, r) and Po > 0 are arbitrarily chosen. To be fixed, we take P0 = d I  
with d = mp + lq + mr. 

For strong consistency of  this algorithm we need the following standard condition on the noise 
model (1, 4). 

Assumption 2 

The transfer matrix C - l ( z ) - ½ 1  is strictly positive real (SPR), i.e. 

C-~(e~) + C-~(e - ' ° ) -  I > 0, ¥0 e[0, 2~]. 

Relaxations of  this condition are considered later on for a class of  control systems. 
Let us now introduce the following set M* consisting of  three "edge" points: 

M* = {(P0, q*, r*), (p*, q0, r*), (p*, q*, r0)}. (2.7) 

The importance of  M* will be seen shortly from Theorems 2.1, 2.2 and 3.1. Convergence or 
divergence rates of  the above mentioned algorithm are given in the following theorem: 

Theorem 2. I 

For the controlled time series described by (l.1)-(1.8) assume that Assumptions 1 and 2 hold, 
and that the orders (p, q, r) used in the algorithm (2.1)-(2.6) belong to M. Then as n ~ ,  

o(!og II on(p, q, r) - Ofp, q, r)I] 2 = \ 2~iq.,)fn) ] , .  a.s.. (2.8) 

Furthermore, if (p, q, r ) e  M* and 

log # ~ " ) ( n )  = o(#~;~ q' °(n)), a.s. (2.9) 

then 

[] On(P, q, r) -- O(p, q, r)[[2 = O(!°g/a~hq")(n)'~ k #~'q'°(n) ,]' a.s., (2.10) 

where 2(~:.')(n) ~ " ) ( n ) ]  and 2~:d")(n) ~u~']")(n)] are the maximum and minimum eigenvalues 
of  

n - - I  n - - I  , 

~. cpl(p,q,r)~p~(p,q,r)+P~' and ~ ~p°(p ,q ,r )~p~(p ,q ,r )+P~,  (2.11) 
i - 0  i - 0  

respectively. Here ~on(p, q, r) is given by (2.5) and ~o°(p, q, r) is defined as 

r ' ' ' ~pO(p,q, ) -- [Yn • • • Yn' -p + i un' • • • Un_q+ ~ '  wn .. • wn_,+ ,]'. (2.12) 

Proof. For (2.8) it suffices to show 

tr ~ +  ~(p, q, r)P~-+t j ~'n+ ~(P, q, r) ffi O(log A~")(n)) ,  (2.13) 

where ~n(P, q, r) = O(p, q, r) - On(p, q, r). 
Set 

{n+l -- Yn+l -- wn+l -- 0",+ l(P, q, r)rpn(P, q, r). 
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It is easy to see 

y~+, -- ¢p'.(p, q, r)O.+ ,(p, q, r) = a.(y~ +, - ~p~(p, q, r)O.(p, q, r)) 

and 

C(z){n+ l = ~.+ l(P, q, r)cp.(p, q, r). 

By Assumption 2 there are constants ko > 0, kl t> 0 such that 

= i , r ) ) + k l > / 0 ,  ¥ n > i 0 .  (2 .14)  s, ~ oPt(P, q, r)~+i.(p, q, r)(~i+, - ~(1 + ko)~',+ ,(p, q, r)cp,(p, q, 
i - O  

Then we have 

tr 0"I+ ~(p, q, r)P~+~ i ~'k÷ ~(p,q, r)== [I oPt(P, q, r)~k+ ~(P, q, r)II 2 -- 2(~I+ , + wl + ,)(~k+ I(P, q, r) 

+ Pk~ok(P, q, r)(~1+ ~ + w1+ t))'~0Ap, q, r) 

(P q ) k~Ok II +, + +~P[ , , r P  ,ll 2 

+ trot(  p, q, r)P;'~k( p, q, r) 

~< tr #1(p, q, r)P~-'~'k(p, q, r) - 2(~p1(p, q, r)~'~ + ,(p, q, r) 

x ({~+~ -- ½(1 + ko)~1+ m(p, q, r)¢p.(p, q, r)) 

- ko II ~'I + ~(P, q, r)cp~(p, q, r)  H ~ 

- 2wI+  ~I+ i(P, q, r)~o~(p, q, r). 

Summing up both sides of  the last inequality and using (2.14) we obtain 

tr 01+ ,(p, q, r)P~+ ~ ,#~+ ,(p, q, r) ~< O(1) - ko ~ II ~+ ,(P, q, r)cpLp, q, r)I[ 2 
i - 0  

- 2  ~ w[+~#~+~(p,q,r)cpLp, q,r), a.s. (2.15) 

Set 
q, = Y.+ I -- O~(p, q, r)cp.(p, q, r) - w.+ i. 

Noticing that ~, is Jr,-measurable and applying I_emma 2 in [11] we find that 

IL I " , ~I+ ,(P, q, r)~o,(p, q, r) = ~ w[+ ,(~(p,  q, r) - a,(w,+, + q,)~p~(p, q, r)P,)cp,(p, q, r) 
] l ! O  l -  

"O(([~o'[~'(P,q,r)~pt(P,q,r)'12)]' ) 

Paying attention to 

we can show 

and 

det(PF+ ~1) - det(P7 t) 
q~l(p, q, r )P~l (p ,  q, r) -- det(P;-') ' 

~ a~pl(p, q,.r)P~ol(p, q, r) < oo, for any c > 1, 
--I  c l-0 (log(det Pl+ .)) 

i a#p|(p, q, r)P~pj(p, q, r) 
,-0 • log(detPT+~,) ' ([Iw,+t[12-E(l[wt+tll2/~.~)< oo. 

¢(21, 1). (2.16) 
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Then by Kronecker lemma we have 

a~o~(p, q, r)Pg0,(p, q, r)II w,+, II = O(log ~','~.'>(n + I)), 
i=O 

and (2.13) follows from (2.15)-(2.17). 
By showing that 

II ¢,+, II O(l°gA(P~")(n)), 
i=O 

the second part of the theorem is easy to be verified. [] 

(2.17) 

Remark 1 
In the second part of the theorem the requirement (p,q,r)¢M* cannot be replaced by 

(p, q, r) = (p*, q*, r*). As an example, let us take (p, q, r) = (Po + 1, q0 + 1, ro + 1) and assume that 
(1.1) is one-dimensional. Then by (1.1)-(1.4) and (2.12) we see 

where 

x'(p°(p, q, r) - 0 for all n, 

x~ = [ - I  -Am. . . -ApoOB , . . .  B q o l C ~ . . .  C,o]. 

This implies that/~i]. ')(n),,,oo as n--,oo, and consequently the assumption (2.9) fails. 
We now proceed to demonstrate that if (p, q, r) ¢ M* the excitation requirement (2.9) can indeed 

be satisfied for a large class of feedback control systems. 
Let {v,} be a sequence of/-dimensional mutually independent random vectors independent of 

{wn} with properties 

1 ¢ '  [ 1 ) +  1) Ev ,=0 ,  Ev,v:--- I, IIv.ll .< , , (2.18) 

where t -- (m + 1)p* + q* + r* - 1 and 0 .2 > 0 is a constant. 
Without loss of generality, we assume 

~---0.{wt, v , i  <<.n} and $r'~ffi0.{w, v~_,i <~n}. 

Let u ° be an/-dimensional ~t':,-measurable desired control. Obviously, any feedback (adaptive) 
control is of this kind. The attenuating excitation technique developed in Cben and Guo [8, 11] 
suggests to take the actual input for the system as 

n , = n ° + v ,  (2.19) 

instead of un--u °. This method is very successful in simultaneously minimality of control 
performance and consistency of parameter estimate [8, 11]. 

The following identifiability condition is needed in the sequel: 

Assumption 3 
A (z), B(z) and C(z) have no common left factor and Apo, Be and C, o are of full row rank. 
We note that the rank requirement for Ap0, B,0 and C, 0 in Assumption 3 is automatically satisfied 

for scalar systems [see (1.5)]. 

Theorem 2.2 
Let the "attenuating excitation control" (2.19) be applied to the system (1.1)-(1.7). Suppose that 

Assumptions 1 and 3 are satisfied, and that there is a non-negative number 6, 

°E° 
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such that 

Then for all (p, q, r ) eM* ,  

n 1 ( 2 : E liy,}{ + I1u°[12)=o(na), a.s. (2.20) 
• - i = 0  

liminflz~'J")(n)/n ~ > 0, a.s., (2.21) 
n ~ o o  

where 0t = 1 - (t + 1)(E + 6), and M* and/z~'~")(n) are the same as those in Theorem 2.1. 
Proof. By (1.6) and the Martingale convergence theorem it is easy to see that the scales 

(ll w,+ ~ [I 2 -  E[ Ilw,+, II~ I..~',])// 
i = 1  

is convergent, and hence the Kronecker Icmma leads to 

-' Z (ll-,+, II =- E[IIw,+, as n--.oo. 
n i . l  

which in conjunction with (1.6) gives 

limsup n {iw,{[2 < oo, a.s. 
n--* oo i - - I  

Thus the desired result (2.17) can be proved along the lines of the proof of Theorem 2 in [18]. 
Details are omitted here. [] 

Remark 2 

By (2.20) and (2.21), it is easy to see that under conditions of Theroem 2.2, (2.9) is satisfied 
for all (p, q, r ) eM* ,  and hence the strong consistency of parameter estimates is guaranteed. 
Theorem 2.1 implies that for estimating the unknown parameters of (1.1), it is not necessary to 
assume that all of the three true orders {P0, q0, r0} are known. Indeed, given any one of the three 
orders {P0, q0, r0} and the upper bounds for the other two, the unknown parameters as well as the 
other two true orders can be identified theoretically if the system is suitably excited. 

3. ORDER ESTIMATION FOR CONTROLLED TIME SERIES 

We now consider the case where none of the three orders {P0, q0, r0} is available. 
We need the following excitation condition on the signals of the system (1.1), which is slightly 

stronger than condition (2.9) used for parameter estimation. 

Assumption 4 

A sequence of positive numbers {e,} can be found such that 

log ~'-q.')(n~le.-----~O. 

and 

e,/#~i~")(n) ,0, a.s. 

hold for any (p, q, r)eM*, where M*,/~,')(n) and/~")(n) are the same as those defined in 
Theorem 2.1. 

Set 

#* = y .  - 0~,(p*,  q * ,  r * ) ~ o . ( p * ,  q * ,  r* ) ,  (3 .1)  

f , (p ,q , r )  [y~.. * ' ' Ca.*'. 6 , ,  1, (3.2) • Yn-p+ l Wn • • "n-r+ lJ, ffi= " " • U n  - -  q + I 
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and 

~,(p, q, r) = (p, q, r)f~(p, q, r) + P ~  ~ f~(p, q, r)y~+ ,, (3.3) 
iffi i f f i0 

for any (p, q, r )EM,  where P~~, 0n(p*, q*, r*) and ~o~(p*, q*, r*) are defined by (2.2)-(2.6) with 
(p, q, r) replaced by (p*, q*, r*). 

The new criterion CIC (where the first "C" emphasizes that the criterion is designed for 
control systems) introduced in [18] is 

CIC(p, q, r)n = an(p, q, r) + (p + q + r)cn, (3.4) 

where the subscript n denotes the data size, and where c~ is given in Assumption 4, and ~n(P, q, r) 
is a residual given by 

n - - I  

anfp, q, r) = ~' II Yi+l -- ~,(P, q, r ~ ( p ,  q, r)[I 2. (3.5) 
i = 0  

Finally, the estimate (Pn, q,, r,) for (P0, qo, ro) is obtained by minimizing CIC(p, q, r),,  i.e. 

(Pn, q,, r,) = arg min CIC(p, q, r),. (3.6) 
(p,q,r)6M 

We note that the second term on the right-hand side of (3.4) heavily depends on signals of  the 
system, and such a dependence is necessary because the input u, is an arbitrary feedback control. 
This is the essential difference between CIC and the well known AIC, BIC and OIC. 

Theorem 3.1 
If  Assumptions 1, 2 and 4 hold for the system described by (1.1)-(1.8) and the estimation 

procedure (3.1)-(3.6), then the order estimate (Pn, qn, rn) for (P0, qo, ro) given by (3.6) is strongly 
consistent: 

(p~, q~, rn) ~ (P0, q0, r0) a.s. (3.7) 

Proof. The key steps of the proof is to establish the following expansion: 

CIC(p, q, r)n - CIC(Po, qo, ro)n 

f c~(p+q + r - p o - q o - r o + o ( 1 )  ), a.s., if (s,t, 2 ) = ( p , q , r ) ,  (3.8) 

~2~i~'~)(n)4+o(1)), a.s., otherwise, (3.9) 

for any (p, q, r )~M,  where 

(s, t, 2) = ( p  Vpo, q Vqo, r Vro), 

• 0= man {]l A,o H 2, ]]Bqol} 2, lie,oil > 0 

and a v b means max(a, b). 
In the case where (s, t, 2) = (p, q, r), (1.1) can be rewritten as 

and we can show that 

where 

Yn+ l = O'(p, q, r)cp°(p, q, r) + wn+ t 

n - I  

a~(p, q, r) = O(log ~) + ~ wi+ , (3.10) 
l-O 

n - - I  

r n -  ~ Uq, O(p*, q*, r*) {{2 + 1. 
i - 0  

From this it is easy to conclude (3.8). 

CA I ~ ' A  174/9~-G 
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In the case where (s, t, 2) ~ (p, q, r) we note that 

then we can show 

rain ~.".' /"  {)].(m~n'q*'v*)(n), X(mP;t(q°'r*)(n), ~.(m~i'q*'r°)(n)} 

n -1  
% ,~(s,t.;O(n-~( 1 a.(p,p,r)>~ ~- ,.i . . . .  -+ -o (1 ) ) - '~  Z Wi+I '  

i=0 

which together with (3.10) implies (3.9). 
The proof  is completed by showing that any limit point of (ion, q,, r,) coincides with (P0, q0, r0) 

and this can be done by using (3.9) and (3.10). For details we refer to [18]. []  

Example 1 

Let us consider again the control systems described in Theorem 2.2. In such situations, it is 
easy to see that Assumption 4 is satisfied and e~ may be taken as n ~, (log n) b, n~(logn) b for 
appropriately chosen a and b. 

4. R E L A X A T I O N  OF SPR C O N D I T I O N  

The SPR condition (Assumption 2) plays a crucial role in the preceding analysis for consistency 
of estimates (Theorems 2.1 and 3.1). Here wc will relax this condition for a class of control systems. 

To this end, let us further assume that the driven noise {w.} in system (l.l) is a Gauss/an white 
noise sequence with 

E w .  = 0, Ew.w~ = Rw > 0. (4.1) 

Define a "pre-whitened" process {z.} as follows: 

z. = y~ + e., (4.2) 

where {e.} is a Gauss/an white noise sequence which is independent of {u., w.} and with properties: 

Ee. O, ~ __ 2 2 = Ee.e~ -- ae l  m, ae > 0. (4.3) 

This "pre-whitening" idea was first proposed by Moore [20] and expanded on by Guo et aL [19]. 
The following theorem is a specialization of Theorem 2.1 in Guo et al. [19]. 

Theorem 4.1 

Consider the controlled moving average process described by (1.1)-(1.5) with P0 = O, where the 
input {u,} is assumed to be independent of  {w,} with {w,} satisfying (4.1). If  in the estimation 
algorithm (2.1)-(2.6), (p, q, r) is taken as (0, q*, r*) and y, is replaced by z, for all n, and if in the 
pre-whitening of  (4.2) and (4.3) a 2 is chosen to satisfy 

> ,'o II If II [c. . . .  c j  11: - 
then the following convergence rate holds 

where 

//log ,1.(,~< "'') ( n ) \ l / l \  
i l l t . -B. i l - -ot ,  t, ) ) a.s. 

B * - - - [ B s . . . B q o O 0 . . . O ]  

q* -- q0 

and B. is the estimate for B* and is given by 0.(0, q*, r*) (that is the first m x [I x q*] block of 
0~(0, q *, r*)) and where ~ ~*" '~)(n ), 2 ~" ")(n) are defined in a similar way as those in Theorem 2. I 
only with y~ replaced by z~ (for all i) in the definition of rp~0, q*, r*), 
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Remark 3 
By using pre-whitening technique the order of  the system described in this section can also be 

established without SPR condition. Also, the unknown parameters C;(0 ~< i ~< r0) can be identified 
by a parallel processing involving on-line spectral factorization [21]. 

It is worth noting that the "dither" {e,} used in the "pre-whitening" method is added only to 
the estimation algorithm, while in the "attenuating excitation" method (see Theorem 2.2) the 
"dither" {v,} is added into the system via the input (2.19). Relaxation of  SPR condition for more 
general feedback control systems belongs to further study. 

5. I D E N T I F I C A T I O N  OF A CLASS OF N O N S T A T I O N A R Y  A R M A  PROCESSES 

Consider the following uncontrolled multidimensional time series: 

A(z)y, = C(z)w,, n ~>0, (5.1) 

where A(z) and C(z) are defined by (1.2) and (1.4) respectively, and {w,} is as in (1.6)-(1.7). 
This model is obviously a specialization of  (1.1), and hence results presented in the proceeding 

sections can be directly applied. 
The known parameter set M assumed in Assumption 1 now becomes 

M = {(p, r): 0 ~<p ~<p*, 0 ~< r ~< r*} (5.2) 

and (2.1) and (2.7) now read 

O(p, r) = [--Al . . .  - -  A, C~. . .  C,], (p, r)~M, (5.3) 

M* = {(P0, r*), (p*, r0)}. (5,4) 

Similarly, (3.4)-(3.6) should be rewritten as 

CIC(p, r), = a,(p, r) + (p + r)e,, (5.5) 
n - - I  

a.(p, r) = Z Ily,+, - r ) f ( p ,  r)[I s, (5.6) 
i = 0  

(p., r.) = arg min CIC(p, r). ,  n >~ 1 (5.7) 
(p,r)$M 

w h e r e f ( p ,  r) and ~,(p, r) are defined by (3.2) and (3.3) but with all control terms u~ deleted, and 
where in (5.5) c, is any sequence of  positive numbers (e.g. e, = x//'n) satisfying 

e,/n---,O and logn/e,--*0, as n--.oo. (5.8) 

For the system structure we make the following assumptions. 

(H0 Zeros of  det A(z) lie outside the unit disk or on the unit circle. 
(H2) A (z) and C(z) are left coprime and Ap0 and C,0 are of  full rank. 
(H3) C-~(z ) -  ½1 is strictly positive real. 

It is easy to see that system (5.1) under condition (H~-H3) is not necessarily stationary, because 
zeros of  det A (z) are allowed to lie on the unit circle. 

Theorem 3.1 

Consider the A R M A  model (5.1)-(5.4) and assume that conditions (H~-H3) are satisfied. 

(i) Let O,(p, r) be defined in the same way as O,(p, q, r) via (2.2)-(2.6) but with all control terms 
u; deleted, if (p, r) is chosen so that (p, r)eM*,  then as n--*~, 

[10,(p, r) - O(p, r)[I = O((l°gn/n)V2), a.s. (5.9) 

(ii) The order estimate (p,,  r,) for (P0, r0) given by (5.5)-(5.8) is strongly consistent, i.e. 

(p,,  r.),--~-~--,(p0, r0), a.s. (5.10) 
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We first prove a lemma. 
Lemma.  For the A R M A  model (5.1) and (5.2) if condition (H2) is satisfied, then there is a 

constant Co > 0 such that for all (p, r ) ~ M * ,  

where 

and 

,~.min(i=~0 tp°(p, r)~p°'(p, r) >/ CO,~min(i~=oWiW~) , 

= . W e 1~ ~p0(p, r) [ y [ . .  y,_p+~, w~. • • i - r +  11 

W i = [ W [  • • • W[__ mp* -r" + 1] x" 

(5.11) 

(5.12) 

and define 

• , = (det A (z))tp°(p, r), 

By the Schwarz inequality it can be shown 

det A ( z )  = ao + a~z + • • • + ampo Zmp° 

(p, r ) ~ M *  (5.14) 

2mi, ~Pi~ <~ (mpo + 1) a) '~min tpi(p,  r)tp i o o" r . 
i j = O  iffi 

Hence for (5.11) we need only to show that there exists c~ > 0 such that for any (p, r ) ~ M * ,  

• ~. >- . . ' . ( 5 . 1 5 )  2m n ~ , T  ,~- ct~.mi n W,W~ 
i i 

For any vector x e R ~ +'), let us write it in its vector-component form 

X = [ X  (°)~ . . X (p - I ) ~ X ~ P ) T . . .  X (p + r -  I )q~ ,  

with x°3~ R m, 0 <. i ~ p + r - 1, and set 

Hx(z ) = x(°)'(Adj A ( z ) ) C ( z )  + " "  + x °'- °'(Adj A ( z ) )C( z ) z  p- t  

+ x * ) ' d e t A ( z ) + . . . + x ~ + ~ - ' ) ' z  ' - I d e t A ( z ) ~ g [ ( x ) z  ~, s = m p * + r * - l .  (5.16) 
i = 0  

By (5.1), (5.12), (5.14) and (5.16), a simple manipulation leads to 

x, w , w r ,  (5.17) 
e=0 ~-0 Flail- 1 \e-o / 

for any R IL x II = 1, and any (p, r)E M*, where 

g ( x )  = [g~(x)  . . . . .  g~(x)]'  

with g~x) (0 ~< i <~ s) given by (5.16). 
Thus for (5.15) it suffices to show that 

min ] lg(x) l l#0,  V ( p , r ) e M * ,  x ~ n  "~'+'), 
N -  1 

which can be guaranteed by condition (H2) (see [22] and [18]). []  
We are now in a position to prove Theorem 3.1. 

Proof. This lemma can be proved by a similar argument as that used in the proof  of  Lemma 1 
in Chen and Guo [22], so we only point out the key steps in the proof  here. 

Write 

(5.13) 
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Proof of Theorem 3.1 
By condition (H0 from (5.1) and (1.6) it is not difficult to see that there exists a constant b i> 1 

such that 

Ily, l12 = o( .b) ,  a.s.  
i = 0  

from here and (1.6) and (5.12), we know that 

>) P, )q~i (P, r = O(nb), a.s., (5.18) 
i 

for any (p, r)6M*. 
On the other hand, by (1.6), (1.7) and (5.11) it is evident that 

• . / /  l n '~ 
hm mf2min/-- E ¢0(p, r)tp0,(p, r) # 0, a.s., (5•19) } n ~ o ¢  \ / ' /  i =  I 

for any (p, r)~M*. 
Combining (5.18), (5.19), we see 

) log 2max tp 0(p, 0' 0' r)tpi (p ,  r )  :train tp°i(p, r)~o i (p ,  r )  = O (5.20) 
i i 

for any (p, r)eM*.  
Finally, the desired results (5.9) and (5.10) are derived by applying results in Theorems 2.1 and 

2.3. This completes the proof. [] 

6. C O N C L U S I O N  

We have used the system-theoretic methods for nonstationary time series analysis and have given 
consistency analysis for estimates of both orders and unknown coefficients of the model which in 
this paper is restricted to the linear and time-invariant one. Even in this framework there are many 
problems still left open. For example: how to weaken the SPR condition for general controlled 
ARMA processes? How to recursively estimate orders of feedback systems and how to relax the 
restriction that the upper bounds for orders are a priori available? Further, the robustness issue 
is of great importance, i.e. how to model the system if the real data differ from (1.1) by some 
unmodelled dynamics [23, 24]? If control un is designed to minimize some cost, then the problem 
belongs to the field of stochastic adaptive control• 
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