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Estimating Time-Varying Parameters by the
Kalman Filter Based Algorithm: Stability
and Convergence

LEI GUO, MEMBER, IEEE

Abstract—By introducing new techniques, in this paper we establish
convergence and stability properties of the Kalman filter based param-
eter estimator for linear stochastic time-varying regression models. The
main features are: 1) both the variances and the sample path averages
of the parameter tracking error are shown to be bounded; 2) the re-
gression vector includes both stochastic and deterministic signals, and
no assumptions of stationarity or independence are required; and 3) the
unknown parameters are only d to have b ded variations in
an average sense.

1. INTRODUCTION

I ET us consider the following time-varying stochastic linear
egression model:

Yie = opbk + vk, k>0 (1.1)

where y, and v, are the observation and the noise, respectively,
and ¢ and 6 are, respectively, the p-dimensional stochastic re-
gression vector and the unknown time-varying parameter. Denote
the parameter variation at time k by wy

Wi =0k — 01,

k>1, E|6o]® <oc.  (1.2)

For estimating the unknown parameter 6;, we introduce the
following Kalman filter based adaptive estimator:

; 5 Py ok 5
=0 . 1 o S — 70,
Ok = 0p + R+ vl Proe Wk — @), (1.3)
Py o P
Py, =Py — kPOl 0 (1.4)

R+ @i P

where P, >0, R >0, and Q > 0 as well as 6, are deterministic
and can be arbitrarily chosen (here R and Q may be regarded
as the @ priori estimates for the variances of vy and wy, respec-
tively).

Note that if we take R = 1 and Q = 0, then (1.3), (1.4)
become the standard least-squares algorithm which is commonly
used in the special case where the parameter process is constant,
i.e., wy =0 for all &.

In a “classical” Bayesian analysis of linear regression mod-
els (e.g., Lindley and Smith [1]), Q is a hyperparameter of prior
distributions of the unknown parameters. With Gaussian assump-
tions and hyperparameter Q, Kitagawa and Gersh [2] presented a
Kalman filter algorithm for the estimation of time-varying linear
models with a worked example.
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It is known that if the regression vector o, belongs to Fy_1,
the o-algebra generated by {y,,- -+, y«x—1}, and the random pro-
cess {wy, vx } is Gaussian and white, then 6, generated by (1.3),
(1.4) is the best estimate for 6, and Py is the estimation error
covariance, i.e.,

B =0k — 1)
(1.5)

provided that Q = Ewyw}, R = Ewvi, 0, = E6,, and
P, = E[0,0]] (see, e.g., Mayne [3], Astrom and Wittenmark
[4], Kitagawa and Gersch {2], and Solo [5]). .

A natural question now arises: is the tracking error 6, bounded
in some sense?

Unfortunately, general conditions in the case of stochas-
tic regressors have been difficult to find even for the case
where (1.5) holds. This problem is related to the stability issue
in Kalman filtering theory, however, for that study a commonly
used condition is that the regression vector ¢y is deterministic,
and satisfies

Ok = E[0x|Fx—11, Px = E0:6}|Fx_1],

of <Y g <BI,  n
k=n

(1.6)

for some deterministic positive constants «, 3, and N (see, e.g.,
Jazwinski [6]). This condition is a uniformly completely ob-
servable requirement for the associated time-varying linear sys-
tem, and is also known as ‘‘persistence of excitation’ in the
adaptive control literature (see, e.g., Anderson et al. [7]). It
is immediately seen that condition (1.6) is a mainly deter-
ministic hypothesis, and unsuitable for general stochastic
models, since it fails for possibly unbounded regressors (e.g.,
Gaussian signals), and even fails for a bounded independent
and identically distributed (i.i.d.) signal! A condition which is
weaker than (1.6) and allows the regressor to be unbounded was
presented in (Guo, Xia, and Moore [8]) by introducing stopping
times. However, that condition is also imposed on the sample
paths of {(x}, and is therefore also difficult to verify in the
stochastic case.

Before pursuing further, some related work in the area of adap-
tive signal processing should be mentioned, although the algo-
rithms considered there are mainly the least mean square (LMS)
algorithm. This algorithm is formed by simply taking the adap-
tation gain (Pyx)/(R + @ Py i) in (1.3) as pyy, where p is a
stepsize. As far as the tracking aspect is concerned, Widow et al.
[9] produced insightful heuristic analysis, Benveniste and Ruget
[10] used the methods of continuous-time model approximation
and gave bounds for vanishing small x, Eweda and Macchi {11]
studied the case of deterministic parameter variation where the
joint regression vector output process {¢x, Y« } are M-dependent,
Macchi {12] assumed that the regression vector is stationary, M-
dependent, and independent of {6, vt }, and in Benveniste [13]
multistep schemes were analyzed and a complete design method-
ology of adaptive algorithms was presented. For some other in-
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teresting studies see, e.g., Bitmead and Anderson [14], Shi and
Kozin [15], Benveniste ef al. [16], and the recent work of Solo
[17].

Besides the Kalman filtering algorithm and the LMS algorithm
mentioned above, there is also a number of estimation algorithms
used for identifying/tracking time-varying parameters in the area
of system identification, e.g., the forgetting factor algorithm, the
gain resetting algorithm, the projection algorithm, etc. Again,
precise theoretical analyses for stochastic models are difficult to
find.

In this paper, we study properties of the estimation algorithm
(1.3), (1.4) applied to stochastic regression model (1.1). The
main contributions of the paper are the investigation of sta-
bility properties of Kalman filter based algorithms when the
regressors are stochastic and nonstationary, and the establish-
ment of tracking error bounds for the unknown time-varying
parameters. Both the conditions and the techniques for analysis
are different from the traditional ones used in the areas of system
identification and adaptive signal processing.

The paper is organized as follows. In Section II we introduce
the new excitation condition and state the main results. The proof
of these results is given in Section III. Section IV concludes the
paper with remarks.

II. MaIN REsuLTS

In the following, by the norm | X]| of a real matrix
X, we always mean that | X| = {Amux(XX7)}"2, and by
A max (XA min(X)] we mean the maximum (minimum) eigenvalue
of X

We now introduce the assumptions of the paper.

Al: {vk, wi} is a random or deterministic process satisfying

or £ supE{|lue||” + lwel|l"} < 20, for some r > 4,
k
ln—l
ps = tim sup—> " {lloc|* + [well*} <20, as.
=

A2: {gk, Fr} is an adapted sequence (i.e., @x is Fi-
measurable for any k, where Fy is a sequence of nondecreasing
o-algebras), and there exist a constant 6 > 0 and an integer 4 > 0
such that

(m+hHh—1 .
E P Pi

lth—l
L+ [ol?

>6l, a.s., Vvm > 0.
k=mh

2.1

Note that no assumptions of independence and stationarity are
made on the signals {i, vi, w; }. In particular, 1) the unknown
parameter {0;} is allowed to be, e.g., a stationary process, a
random walk, or a bounded deterministic sequence; 2) the as-
sumptions on the regression vector {x } do not exclude signals
derived from feedback.

It is evident that condition A2 is weaker than (1.6). Let us
further illustrate this condition by considering the following ex-
amples where the regressor is stochastic.

Example 1: Let {{x«} be an M-dependent sequence (i.e.,
there exists some integer M such that, for any k, {p;,j <k}
and {¢;,/ >k + M} are independent) which satisfies

< oc

inf X min(El12(1) > 0, N

and supE || o
k
then condition A2 holds.
Proof: Take Fy = o{y;, j <k}, h = M + 1, then by
the M-dependency assumption, we have for any m >0 (¢t =

(m+Dh—1)
=E[ o] Z}
L+l

AT
¥

e 'F'"”"]
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but, by the Schwarz inequality it is easy to verify that
N (E 21t ) o D Elagl DY
s

TE+ @Dl
hence condition A2 is true.
Example 2: Let { } be generated by a linear model

ok =For + G, k>0
where F is a stable matrix, (F, G) is controllable, and {£} is
an i.i.d. sequence with E& =0, E& £, >0, and [|&| < M, for
some constant M. Then condition A2 holds.

Proof: Since forany m > 0and h >0, k > mh

k
Pk :F(k—mh+|),\pmh_‘ + ZFU(_“GS[

i=mh

we have by taking Fy = o{{;, j < k} and using the orthogo-
nality and controllability that

h—1
E{@umsih—1omern—1[Fmn—1} > > _FG{EI&&1)GTF™ > 81

i=l

for some 6 > 0, provided that A is suitably large. From this
and the boundedness of {x} we see that condition A2 is also
true. C

We now proceed to present the results of the paper.

As one would have expected, the adaptive estimator has an
attractive convergence rate in the ideal noise-free, constant pa-
rameter case. This property is addressed in Theorem 1.

Theorem I: If in (1.1), 0, =6, vy =0, and {x} satisfies
condition A2, then for {6,} given by (1.3), (1.4), as n — oo,

1) E||6, — 8] — 0, exponentially fast, and

2) 0, — 0, a.s., exponentially fast.

The proof is given in the next section.

In the general case, the parameter variation process {w;} and
the noise process {v; } may not be zero, and the boundedness of
the tracking error is a patural and realistic performance criterion.

Theorem 2: For {6} given by (1.3), (1.4), if conditions Al
and A2 hold, then

1) lim sup E||6, — 0, ]|> < A[o,)*/", and,
n—onc
1n—l
2) lim sup—> [|6; —6:] < Blus]'®,  as
"%Pn;“ | < Blus

where o,, p4, and r are defined in condition Al, and 4 and B
are finite deterministic constants.

We remark that in Theorem 2, the constants A and B are
functions of p, Q, r, h, and 8, the precise expressions may be
found in the proof (see the next section).

As a simple example, let us take §, = O and assume that
{wk, 1« } is a nondegenerate i.i.d. sequence with zero mean and
fifth moment. Then it is obvious that condition A1 holds and that
that

E|6,]> = nE|wo|* — oc, as n — 0.
Hence, Theorem 2 implies that the adaptive algorithm (1.3), (1.4)
can indeed perform the nontrivial task of tracking rapidly varying
unknown parameters.
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III. ANALYSIS

We first prove some lemmas.

Lemma I: Let Qx = Py —(Prow i Pi)/(R+¢iPiyk). Then
for any m > 0 and any k € [mh, (m + 1)h], the following in-
equality holds:
tr [(Prn +hQ)° 007
R+ ¢p(Pmn + Q)

+O(tr [P 1) + O(1).

Proof: We will need the following fact. For any nonnegative
definite matrices G and H, if G < H, then

Q] S Pnl* -

trG* <trGH® <uwH*. (3.1)

The proof follows from the following chain of inequalities:

rG* = rG**GG*? <uG*’HG*? = wH'*"GGGH'"*
<twH'’GHGH'? =uwG'*HGHG'?
<uG'?HHHG'? <uGH®
<uH»*GH?* <uH*.
Now, by the matrix inverse formula, it follows that for any &k > 0:
P ok o P

=Py — KRRk
Qe “T R+ G Peox

=[P +R " oeprl™ > 0.
3.2)

Note also that by (1.4), for any k € [mh,(m + 1)h],

Hence by this, (3.1), and (3.2) we have

tr[Qk) = tr {[(P) ™" + R onpf]l ™'}
<tr{l(Pmn +hQ) ™" + R " of1 7'}
<t {[(Pn +HQ) ™ + R 0k 0l 17 [P +RQT}

=tr {[th +hQ]3 [(th +hQ)

R + 0 (Pmn +h Q)
tr [(P o + QY or ]
R+ 0f(Pon +hQ)i

By Holder’s inequality, we know that for any p-dimensional
nonnegative definite matrix G,

 (Pun + hQ) ok 0} (P +hQ)H

=tr [P + Q] — (3.3)

rG < {p}{uG*}'?, G < {p}'*{rG3)?.
Therefore, by a direct expansion it is easy to show that
tr [Py +hQ1* = tr [Pps]* + O [P 1) + O(1).

Then the result of the lemma follows from this and (3.3). C
Lemma 2: Under condition A2,

sup E|| Py ||* < oc.
k

Proof: Let us first observe the following facts. For any p-
dimensional nonnegative definite matrix G,

trG) r[G1* < p*tr[GPPand tr G* < p'*{r [G]* V4. 3.4)

The second inequality follows from the Holder inequality; while
for the first one, we have by letting N\;,i = 1,---,p be the
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eigenvalues of G,

P p
(trG)tr [G]* = (ZN) {Z(N)“]
i=1 i1
P S P
< (Z») <y W =ptulG).
i=1 =1

Now, let us consider the following Lyapunov function:
mh—1
3w @),
k=(m—Dh
By (1.4) and Lemma 1, we have

Tm = m>1.

(m+1)h—1 (m+1h—1
4
Tmo= Y @)= Y w(@+0Q)
k=mh k=mh
(m+1)h—1

< >0 IO + 0w Qi) + O}

k=mh
(m+h—1

3

k=mh

+ O@r {Pmal’) +O(1)}
(m+1)h—1

> P +hOT | +0()

k=mh

s [P +hOY 0if)
{tr [Pmn} R + WZ(P"'" +hQ)\Ok

+0

1
"R+ Aan(Pro + HQ)

(m+hh—1

A0 $ (P +HQY Y

k=mh

<htc [Pl

Ok Pk
1+ [l |?

+O@r [P]®) + O(1).

Thus, by taking conditional expectations and using (3.4) and the
fact that (x /(R +x)) is an increasing function of x > 0, we obtain

Str(Ppmy +hQ)
p4[R +)\max(th +hQ)]
AT (P +hO)* + Ot [Py ]*) + O(1)

5h||Q| 4
—————tr [P,
p®+njgp !
+O(r [Pmr]*) + O(1)

EIT i |Fmh—1] <Rt [Pyl —

<htr[Pps]* —

(sl )ht,, .
( 7® +hjop) "

+Or[Pmal®) + O(1). (3.5)

However, it is evident that
mh—1
hPl' = Y w P’
k=(m—1)h
mh—1
< Y P+ (mh —0)Q)
k=(m-—-Dh
mh—1
> uwPeal | +0).

k=(m—1h

<Tw+O
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Again by invoking (3.4) and the Holder inequality, it is easy to
conclude from this that

h[Ponlt <Tw +O(GTw ') +0(D)

substituting this into (3.5), it follows that:

. slol )T,,,
PYR +HIQID

+O({TH "™ + 0.

E[TnH1|th—l] S (1 -

(3.6)
Applying the following elementary inequality:

3
x3'4§ex+<4i> , vx >0,Ve >0
€

for appropriately small € to (3.6) we get

E[T 1 \F 1] < (l - ] )T,,, +0(1).

ot
2°R + K2 )
Consequently,
S|l )
ET < (1= ———5—="— | ET,, +O(1).
! ( 2p* R + QI
From this it is obvious that
supET ,, < x.
m
Hence, the assertion of Lemma 2 is true. C

We remark that if in condition A2, the conditional expecta-
tion E{ - |Fmn—1} is replaced by the nonconditional expectation
E{ -}, then the result of Lemma 2 may not hold unless additional
conditions are imposed. This can be illustrated by simply taking
k=, where ¢ is a random vector satisfying E©p” > 0. In this
case, it is easy to see that E[07 /(14 ||2[|?)] > 0. Furthermore,
by (1.4) and (3.2) it is evident that

P =[P +R'p9" 17 +0Q
[P + R o)1 +Q = Py

provided that Py > Py_, > 0. Therefore, if P, satisfies
0 < P, < Q, then the sequence {Py } is monotonically increas-
ing. Let P = limg—~ Py, if tr P < x, then by taking limits
on both sides of (1 4) we have Q = P¢;’P/(R + O Py),

consequently trP = oc when rank(Q) > 1. Hence, by the
monotone convergence theorem, limg . E||Px| = o, and so
limg . E||Py||* = oc.

Lemma 3: Under condition A2,

n—I1

1
lim sup— ZHP;(H < x, a.s.

n—oX k 0

Proof: Let Ok be the same as in Lemma 1; it follows from a
similar argument as used in Lemma 1 that for any k € [mh, (m+
DA, m >0

tr (P +hQ) i)
R + @;(th +hQ)¢k

+O(tr [Ppr]) + O(1)
consequently, similar to the proof of (3.7) in Lemma 2, we have

810l
2p*(R +h|Q)

r[Qi ) < tr [P —

E[MmHithfI]S (17 >Mm +O(1),

vm >0 (3.8)
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where
mh—1
My = Y tr(Pia).
k=(m—1)h
Let us denote
8me1 = My — EIMumii|[Fn 11, m>0 (3.9

then it is easy to see that {g,m, Fmn—1, m >0} is a martingale
difference sequence, and satisfies

sup Elgm]’ < >
m

by Lemma 2. Hence, by the martingale convergence theorem
(Chow [18]), we know that
o
%
k

k=1

converges almost surely.

Therefore, by the Kronecker lemma we have

1n—]
;ng — 0,
k=1

Now by (3.8) and (3.9) it follows that

a.s. as 1 — OC. (3.10)

My :E[MmH ‘th—l] + 8&m+1

(-
20 R +hIQD)

Summing up from 0 to n — 1 we obtain

> My +0(1) +gms.

82|
T 2p? (R+h||QH)Z " Zg -
and so
n—1 n—1
I 2p*(R +h|Q|D Mo 1
IS M, L ——" + m+1 + O
an:O 50l Zg +1 (N

Thus, by (3.10) we have
n—1

1
lim sup— ZM < o, a.s.

n—oC

From this, it is easy to conclude the desired result. C

The following result plays a key role in the paper. In Lemma
5 this result will be somewhat generalized, and then in the proof
of Theorem 1 below, the modified result will be used to connect
the excitation condition A2 with the stability of the homogeneous
part of the recursion (1.3).

Lemma 4: Let {ay, F} be an adapted sequence, ax > 1,
Vk >0, Ea, < >, and
Elax|Fi-1] <aax_y +8, Yk =1,

O<a<l, 0<fB <x.

Then there exist constants y € (0, 1), M < oc such that

: 1
E o < n—m+l
[ (1 ak> < M~y ,
k=m

Proof: Without loss of generality assume that 8 > 1. Let
us take a constant ¢ > 3/a, so that

Yn >m,Vm > 0.

ay +c¢ c o1
cl-a)+B ~ c(l-a)+p

bk—_—
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It is immediately verified that
Elb|Fi-1] < abg_y + 1. (3.11)

Now, for any n > m, define a sequence {x;, m < k < n}
recursively as follows:

1
Xk ={1—— )X, Xm—1 = 1.
k ( bk)kl m—1

Then x; is Fr-measurable, and

(3.12)

bixig =biXxk—y — Xi—y.
Consequently, by (3.11),
Ebixi|\Fro1] = E[bi|Fr—1)Xk—1 — Xk
< (abg—1 + Dxg— —xi—)
=abi_iXk_1.

Note that by (3.11), Eb,, < Eb, +1/(1 — @), Vm > 0, so we
have

Elbnxn] € aE[bp1xp ] < - < O4'17”'+IE‘[17m~I)(rr171]
:aan+1E[bm_|] S |:Eb0 + 1 1 ]an—mﬂ
—

thus by (3.12) and the fact that b, > 1,

u 1
Ek]:!n (1 - E) = Ex, < E[bnxn]

1
< [Ebo + *} Q"M (3.13)
l -«

Next, by standard methods in calculus, it is easy to verify the
following inequality:
l—x <(I—-dx)'™"¥  0<dx<r<l, d>1.

By this, the Holder inequality, and (3.13), we finally obtain (d =
cl—a)+B, r=1-a+(B/c)

n 1 n 1
E 1—-— 1< —

(o) <e (-0

n (1—r)/d
<E {(1‘C(1A‘°‘)+6

ilm ay +c¢

“alp
il ;>}

1 (1-r)/d
(1—=r)/dyn—m+1
1 —(x] [« ] .

IN

IN

[Ebo +

C

Lemma 5: Let {ax, F} be an adapted sequence, a; > 1,
Vk > 0. If for some integer & > 0, and constants 0 < o < 1,
B < oo,

ElSk1|Frn—1] < aSy + 8, Vk >0, ES, < x
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where

kh—1

Sk = E a;

j=tk—1h

then there exist constants y € (0, 1) and M < oo, such that

. 1 n—m+1
EH(I—;)SM«Y ,  VYn>m, Ym>0.

k=m

Proof: By Lemma 4 we know that there exist constants
0 <7y, <1and M, < o<, such that

n
EY. <1 - Si) < Mo(yo)" ", ¥z m, Ym 0.
k
k=m

Clearly, for the result of the lemma we need only to consider
the case of n — m > h. Let i and j be two integers such that

ih<n<(+Dh, (j—Dh<m<jh.

It then follows that

n in i

1 1 1
E 1- —)<E 1-—) <E 1—
g( ak>_ kll,( ak) h J:j[< am)

,»
I

<E[](1-
(s

— MO[(%)I/h]h(i—th

) < Mo (y,) /™

S MD[(,YO)]/h]n—h~m—h+h

= [Mo(,yo)'l'(l/h)][(,yo)l/h]nfm-%-]. C

Let us now denote ék =0, — ék, and consider the following
stochastic Lyapunov function V:
Vi =0iP; " y. (3.14)

We have the following.
Lemma 6: For any k >0,

Ve

4 +atr(Py)

where @ =2(|Q07!|.
Proof: Let us denote

Vi <V — +OIPel {lloklI* + Wi 2D

Py

K=o tf
“T R+ 9 Pryx

Gy =1 —-Kypi

and rewrite (1.4) as

P :GkPkG; +RKkK; +0Q. (3.15)

Note that by (1.1)-(1.3) the error equation is

Oke1 = Gibi + 2k, Zkt = —Kjve +wiyy. (3.16)

So we have by (3.14),
Vier = [Gib + 2" [Piii) ' [Gabx + 2411
= 0,G P Gy + 224 P \Gibi + 2 P2k
G.17)
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By (3.15) and the matrix inverse formula, we know that

GiP\Gx = Gi{GxPyG} + K RK} + Q) ™'Gy
=P;' — [Py + PiGL(KRK] + Q) 'GPy] ™!
=P 'P{I — [l +(Py)*G}(K(RK}, + Q)"
_Gk(Pk)l/zl—l}P;l,z
SA{I =11+ [(KkRK} + Q)™ 'GPy Gy |17} P!
S =0+ [(KeRKG + Q) ' P 17" 1P
S{I-1L+1Q7'®c + Q)1 " }P!
1 1 )

<P —_— P (3.18)
L2407 P
Putting this into (3.17) we get
Vv <V ! V
k+1 > | S rar—— A 4
! 2+ 10T Py
422 PG + 2 P 2k (3.19)

By the elementary inequality 2|xy| < x? + 2, it follows that:
2|Zk+lPk+|Gk0k| < 2||qup_I ZH HP;(_+|1ZGk0k||
< 2zk+|Pk+1zk+l(2 + “Q ]” ”Pk “)

0:GL P Gibi

Ptk bl £ H ke S (3.20)
22+ 17 IP«ID
Recall that by (3.14) and (3.18),
0.GiP; ) \Giby < Vy. (3.21)

By (3.15) P41 > RK K} + Q, then by (3.16) it follows that:

2
— -1/2
Z;“P/(LZA'H ‘Pkﬂ/ (—Kxvk +Wk*l)H

SOKPE Killul?) +Owiall®)
< O(|luell® + we 1 1)
Finally, substituting (3.20)~(3.22) into (3.19) we get

(3.22)

N S
22+ Q7" 1P«
FOU PN {Nvell® + llwei 17D

Hence, the result of Lemma 6 is true.
Proof of Theorem 1: Similar to the proof of (3.7) or (3. 8)
it can be shown that

Vier Vi —

8@l

ESm+ me S -
Sl ( PR +h]QI)

)Sm +0(1),
vm >0

where
mh—1\

Z tr (Pyyi).

k=(m—Dh

Sy =

From this, it is easy to see that a; = 4 + a tr(Py ) satisfies
the conditions in Lemma 5, therefore, if ®(n, k) is defined as

1
4+atr(Py,)

Sk, k)=1,Yn>k >0

q>(n+1,k):(1~ ><I>(n,k),

(3.23)
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then

Ed(n+1, k) < My k41,
Vn>k>0,0<y<1,M<oo. (324)

Now, under the conditions of Theorem 1,
Lemma 6 that:

it follows from

Vi < ®(n+ 1,0V,
so by the Holder inequality

E[V,1*? < OE[®(n, 0)]*]60]|*7)
< O({E[®(n, )12} {E|16,3}¥°)

= O({E®(n, 0)}”9)"300’ exponentially fast.

From this and Lemma 2, it follows that:

El6,17 < E|P|PI1P; " 204]?
<A{EIP[*} *{EWVaT'P P — 0,
exponentially fast.

This proves the first assertion 1), while the second assertion can
be easily proved by using 1) and the Borel-Cantelli Lemma. -

Proof of Theorem 2: With ®(n, k) defined as in (3.23), it
follows from Lemma 6 that

n—l1
Va < ®(n, 0V +0 (Zw, K PellUlvell® + Iwess |21>

k=0

so by the Minkowski inequality we have

{E[Vn]4/3}3/4 < {E[@(H,O)V()]M}}}M

k=0

n—1
+0 (Z {E[®(n, O Pl (lve])®

+ “Wk+l“2)]4/3}3/’4) . (3.25)

Now, by the Holder inequality, Lemma 2, condition A1, and the
fact that ®(n, k) <1, we know that (g = 3r/2(r — 4y

E[®(n, )| Pel|(lok[I* + (Wit |1
<2YRE[(n, TP (oel1¥ + lwie |¥7)
< OUEL®(n, k)*73}V{E| Py ||*}'/3
AEUve ™ + lwie 17133
SOUE®(n, )}/ {E[|ve]|” + i | 1}¥)
<O, " {Ed(n, k)}'79).
Hence, it follows from (3.24) and (3.25) that
lim supE[V,1*” < O({o,1¥").

Therefore, we have

lim sup E[|6, |1°] <1lm SUPEHP‘ P, 20,2

n—oc

=lim sup E||P,||V,

n-—oc

<lim sup {E|| P, ||*} 4 {E[V, 143 PH
n—nc

< O(o, 1.
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We now proceed to prove the second conclusion 2) of the the-
orem.
By Lemma 6, it is evident that

n—1 n—1

L — 2 2
;Hmwk)-omw D IPwll{lloell® + we 1)

k=0
so by the Schwarz inequality, condition A1, and Lemma 3,
n—1

. 1 Vi
1 — < 1/2 .
P Zkio TSt (py ~ ORI

Consequently, by this and Lemma 3 it follows that (b =1 +a)

n—1 n—1 a
; [16x 1 2
161l = [4 +br P’
g ; [4 + b(tr P12
e - 12 1/2
Zl L 2[4 +b(tr Py
£ 4 4+ b(tr Py)’ e
) . 1/2
<olne]s 10
- = [4 + a(tr P))(tr Py)
el 1/2
, Vi
<o |n'” —
- ;4“‘(1“ (Pk)
=O0({pa}"*n) ]

IV. ConcLusion

Most of the work done in the area of system identification
is concerned with the estimation of constant parameters. In the
time-varying case, few precise theoretical results are available, al-
though various estimation methods have already been proposed.
Among these methods, the Kalman filtering algorithm, due to its
optimality in some sense, is one of the most attractive estima-
tion algorithms (see, e.g., Ljung [19]), and has applications in
stochastic adaptive control (see, Meyn and Caines [20], Guo and
Meyn [21]).

In this paper we have presented a theoretical analysis of
the Kalman filter based adaptive estimator applied to a time-
varying stochastic linear regression model. In particular, by in-
troducing a suitable excitation condition, we have shown that
the parameter tracking errors lim sup, . E\6, — 0,]]> and
lim sup, . (1/m)>_ " ||6; — 6;|| are small when the parame-
ter variation process {w;} and the noise process {v; } are small.
It is worth noting that as no assumptions of stationarity or inde-
pendence are imposed on the regression vector {y }, the results
of this paper do not exclude applications to feedback control sys-
tems.
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