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On ARX(w0 ) Approximation
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Given data, u;, y;, j=1, , n, with », an input sequence to a system while output
is y;, an approximation to the structure of the system generating y, is to be
obtained by regressing y; on u,_,, y,.,i=1, ., p,, where p, increases with n In this
paper the rate of convergence of the coefficient matrices to their asymptotic values
is discussed. The context is kept general so that, in particular, u, is allowed to
depend on 3, i</, and no assumption of stationarity for the y; or u; sequences is
made € 1990 Academic Press Inc

1. INTRODUCTION

A main concern of statisticians working in time series analysis and of
some mathematicians in the fields of systems and control has been the
study of methods for fitting linear systems to data. The simplest case is that

of a regression
yi=Bu+w, i=12, ., (1.1)
where we have used “t” for transposition. Here initially we might take the

u; as a sure sequence. The “output” sequence, y; is m-dimensional, as is
w;, and u, is -dimensional. If w; is measurable % and

E{w]|F_}=0, sup Efjw;||’> < o (12)
i
then Lai, Robbins, and Wei [11] showed that least squares (LS) estimate,

B,=v!

T — T
u;y:, V,= Z MU

1 i=1

II-M::
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18 GUO, HUANG, AND HANNAN

converges as to B if the smallest eigenvalue of V,, A..(n), diverges to

infinity.
In many applications one would wish u, to be taken as a stochastic

sequence and measurable %_ |, as would be the case for design vector
chosen on the basis of the data to time j— 1. Lai and Wei {10] showed
that if the second part of (1.2) is replaced by

sup Effiw, " 1% _J<co,  as a>2
1

and Ayn(n)——— o0, 10g Ay () = 0(Ayin(n)), as, then again £, ——— B,
as This type of result enables, in particular, an ARX model to be
considered, namely, one of the form

Z Amﬁz (13)

i=1

In (1 1) u, will now be composed of the Yi—o ;5 i=1 . p, from (1.3),
but since (1 I) will not be referred to again, this should cause no confusion,

It 1s, however, hardly 1ealistic to assume that (1.3) is the true process
generating the data and it seems preferable, as in Hannan [6] to regard
{13) as no more than a model on which an approximation procedure for
the true structure is to be based. Then p, also, will be depend on the data
size n and we write p, for that Thus it is necessary to investigate the nature
of that approximation procedure. To begin with, we assume that

vi= 2 Ay + B ) +w,  j=0,
i=1

(14)
yi=w;=0, =0, <0
It 1s aiso required that
2. (A + By < oo, (15)

i=1

where the norm for a real matrix X is defined as the maximum singular
value of X, ie, [ X|| = {4,,,,(XX")}"% and the maximum (minimum) eigen-
value of a square matrix X is denoted by 4, (X) (1.(X)).-

In this paper the rate of convergence of the LS estimates of 4,,, B, in
(13), from y,, u,, j=1, .., n, to the A,, B, in (14) is discussed, when P=Pp,
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increases with # This LS approximation procedure we shall speak of as
ARX(oc) approximation.

Before going on to that discussion, some further developments that relate
to this will be mentioned One problem with the procedure is the large
number of parameters that may be estimated, especially, if m is large,
namely p, (m?+ ml), apart from any residual variance parameters. One way
to overcome this problem is through further approximation procedures
applied to a state space representation of a relation between y; and ;. The
procedure of balanced truncation or optimal Hankel norm approximation,
discussed, for example, in Glover [3], could be applied to such a state
space repiesentation based on the LS estimation procedure to be studied
here. This procedure would provide an ARMAX approximation to the true
structure, that might be specified by many fewer parameters than that of
ARX{cc) approximation.

One alternative procedure is to fit an ARMAX model directly to the
data, allowing the order of the model (say the McMillan degiee) to
increase with » One might, indeed, at least for the stationary case consider.
a criterion of the form of Rissanen [17, 18],

log det(Z,) + dim(0) Iog nin. (1.6)

Here X, is the covariance matrix of the innovation sequence, w;, for a
model specified by § and dim(f) is the number of parameters in 6. The
criterion (1 6) might now be optimized, say by a Gauss—Newton procedure,
over the class of models to be considered (see [7, Section6.5], for
example). Initial estimates of the w, will be needed for such a procedure
and these may be obtained from the LS procedure of this paper. However,
it would, in such a context, be necessary to determine p, from the data.
That problem is not discussed here, but for its discussion the results of this
paper are necessary preliminaries. Indeed, in a companion papet [5], we
have applied the results here to the estimation problems of feedback
control systems described by ARMAX models. It appears that the standard
strictly positive real conditions used in engineering literature (g, [13, 19,
1, 16]) can be removed. This is, of course, only one possible application.
Let z be the backwards-shift operator, and introduce

Az} = — i Az (Ae=—I), B(z)= § B,z (L7)

i=0 i=1

and denote the “transfer function” matrix associated with (14} as

G(z)=[A4(z), B(z)] (1.8)
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We will need the following two norms for measuring the accuracy of
transfer function approximations:

= A | = [ e Frem a0 | 19

FENs={ | 57 | e e 0|} (19)

V()= esssup {Ana[F(e?) F*e®)]}12, (110) -
(Bef0 2n]) .

where the first is the H,-norm of any measurable complex matrix Fiz)
defined in |z| < 1, analytic in |z] < 1 and such that (1.9} is finite. The second
is the H*-norm of any complex matrix F{z) which is analytic in |z| < 1 and
bounded almost everywhere on the unit circle.

Throughout the paper, we assume that the system noise {w,, #,} is a
martingale difference sequence with respect to a sequence {#,} of non-
decreasing g-algebras, and that the input u, is a %, -measurable vector for
any n=0, ie, '

Elw, 1|1 #,1=0, u,e#,nz0 (1.11)

Clearly, system (1.4) under (1.5) and {1.11) is nonstationary in general
because: (i) there are no restrictions on the location of the zeros of det
A{z); specifically, these zeros do not necessarily lie outside the closed unit
circle and (ii) the system input sequence {u,} may be nonstationary.

Some results related to the estimation of scalar transfer functions were
reported in Ljung [14], where it is required that the system (14) be stable
in structure (or open-loop stable) and that all signals in (1.4) be stationary.
For the more 1ealistic nonstationary cases, however, to the best of our
knowledge, there are hitherto no precise results available in the literature.
This 1s perhaps due to the fact that the existing results on nonstationary
ARX({p), p < oo, model cannot be immediately generalized to the present
ARX(0) case. Specifically, the standard martingale limit theorems and the
stochastic Lyapunov functions which are so effective in the analysis of least
squares algorithms for ARX(p) model (see, e.g, [12, 15, 19, 10, 1]) cannot
be directly used in the present ARX(co) case. Instead, some limit theory on
double array martingales and double array stochastic Lyapunov functions
need to be established first in this case Besides, we shall see in this paper
that there are also considerable differences between finite lag regressors and
increasing lag regressors in the convergence analysis. '

In this paper, by considering the limit behaviors of double array
martingales, we establish some general theorems on the approximation of
nonstationary ARX(co) models. In particular, the convergence rates of
estimates for the unknown transfer matrix G(z)} defined by (1.8} are charac-
terized in terms of H®- as well as H,-norms. The paper is organized as
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follows: In Section 2 we present the approximation/estimation algorithms,
main theorems, and related observations; Section 3 focuses on establishing
the asymptotic properties of some double artay martingales; the main
theorems are proved in Section 4; and Section 5 concludes the paper with
some rematks.

2 MAm RESULTS

We first present the approximation algorithm
Let {p,} be any non-decreasing sequence of positive integers, p, <n,
Y>>0 Set

O(n)=[A4, ~A4,,.B, BT (2.1)

Pn?
and
¢1(n)=[,y}'7"! V?,pn+1,u:: 'susfpnjL{]r: lgxlé-.na (22)

The least-squares estimate §(n) for 8(n) at time » is given by
" n—1 —1ln-1
oy =| T dm i) 131 | Y by, 23)
i=0 i=0

with real number y > 0 arbitraniy chosen
Let us now write 8(n) in its component form

B(n) = [A,(n), ., 4, (n), By(n), ., B, (m)]" (24)
and set
Af)=1-% Az, Bz)=3 Bin)z. 25)

i=1 i=1

Then the estimate G, (z) for G(z) at time n can now be formed as
Gu(z)=[A,(2), B,(2)] (26)

The convergence (and divergence) rates of G,(z) are summarized in the
following theorems

TueEOREM 21  Consider the system (14), (153, (1.11) and the estimation
algorithm (22)-(26). Suppose further that the random noise {w,} satisfies

n—1

sup E[[w, o ' < o0,  liminf> ¥ w220, as (27)
5 " i=0Q

ne=—— o 1
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and

lw,ll = Olo(n)), as. {28)

with {@(n)} being a positive non-decreasing deterministic sequence. Then as
n—-—— o,

Pr

16,(2)= G(a)1% =0 (72— (ptog 1, + (o) log )

min{x)

8,1, + (p, log 7, )+ % (n) log n}), as. (29}
holds for any ¢> 0, where 1, 8, and A (n} are defined by

AT+ Y Uy P+ ), (2.10)

=0

éné(f ||A;n)2+(§ nB,-n)z, e

F=pp+1 i=pg+ 1

a0 (T ) () 1) (212)

The proof of this theorem is given in Section 4.

Remark 21. 1If in (29) the H*-norm is replaced by the H,-norm, a
better convergence rate can be obtained, namely, the term p,/A,.(7) In
(2.9) can be replaced by 1/4,,,,(n). This can be easily seen from the proof
of Theorem 2 1. Similar observations hold also for the following Theorem
2.2

Remark 22 Note that in order to keep the generality of Theorem 2.1,
we have tried to impose as few restrictions as possible. Of course, with
some further conditions, “simple” formula may be deduced immediately
from Theorem 2.1 For example, if in (1.1) the random disturbance {w,}
is a Gaussian white noise (iid.} sequence and

l4l+1BlII=0(4), 0<A<1,Viz0, (213)

T v+l = 00", as,forsomeb>1  (214)
i=0 )
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Then by taking p,=logn, a> 1, and noting ||, || = O({log n}"?}, we see
from Theorem 2.1 that

6.0~ 6a =0 EL) e, (215)

holds for any ¢ > max {1+ 2a, (3a+5)/2}.

Let us now consider the natural extension of the standard notion
of “persistence of excitation (PE)” in the engineering literature (eg,
[15,16, 19, 1T). It means that for A_,,(n) defined by (2.12),

lim inf A, (n)/n#0, as. (2.16)

n—— o0

Hence under the “PE” condition, the convergence rate in (2.15) can be
explicitly expressed as O(log‘n/n) The next theorem shows that this rate
can be further improved if the growth rate of the observation data {y,, u;}
is not “too fast”

TueoreM 2.2, Consider the system (14), (1.5), (1.11} and the estimation
algorithm (2 2)-(2.6) Suppose further that for some 6 >0,

Sup E[|w,l7| #,_ 1< o0, Sup E{|w,|*log¥w,[)**°} <c0, (217)

and that for some b= 1,
E{[Nyall + le, 1 1 Oog* (I yall + 1,122} = O(n?*= 1), (218)

and

n—1

Y (ly P +lui?)=0@",  as, (219)
i={

Then as n——— oo,

IG (2} — G2} %

0122 {p, 108 108 [0/hun(n)] 4 6,1%)) f py = Ollogin), a0

0 (25 {palog D hulr)1 +3,7)) i pa= O
(220)

where 8, and A (n) are defined by (2.11) and (2.12), respectively.
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The proof is given in Section 4
Thus, for example, if (2 18) and {2.19) hold with =1, then under the
“PE” condition {2 16} and the conditions in Remark 2.2, we have

HG},(Z)—G(Z)H;=0([pn]z{%%—n}), as. (221)

We remark that when (1 1) reduces to an ARX(p), p < oo, model, we
may take the regression lag p, as p In this case, (2.21) reads

' 12
LG,,(z)—G(z)Hm:o({lfi%?gﬁ} ) as (222)

From both Theorems 2.1 and 22, it 18 seen that the growth rate. of
Amin(7) plays a crucial role in the convergence of the approximation algo-
rithm. It is clear that A,;,(»#) depends essentiaily on the two input signals
{u;, w;}, even though it is defined via the observation data { y,, u,}. Let us
now study how the growth rate of A, (n} depends explicitly on theses two
input signals.

Set

oy =[u], L ui_o, W W 115 I<ig<n,  (223)
and denote

() & 2 { T 6% 670} (224)

In Section 4 we shall prove the following result.

THEOREM 2.3 Suppose that in system (14)-(1.5), (1.7}, the number of
zeros of det A{z) on the unit circle |z| =1 is finite (with the largest multi-
plicities of these zeros denoted by d) and that

Yo kWA + I Bell) < 0. (225)
k=t
Then as n-—— o0,
Awink) 2 Co(pn) " An(m) + 037 17),  as, (2.26)

where ¢,>0 is a constant, d,{n) and 12, (n) are respectively defined by
(2.12) and (224), and
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= % (hul?+ Iwdl?) (227)

B-rd 3 (IEA,-IEH!B,H)F (m=dim of the output)  (228)

A
i={pns2"] -1

Hence, for example, if either r°= O(n} and lim inf, ___, , A% (n)/n+#0; or
19=0®%), b=1, p,=log*n, a>1, and (213) holds, then

Amn(®) 2 {p,) "2 12 (n),  as for all » and some ¢, >0. (229)

(Note that if there is no zeros of det 4{z)} on the unit circle then d=0.)
As is seen from the above, the growth rate of .. (n) can be estimated

by that of A%, (n), which in turn is completely determined by the two

exogenous signals {u;, w,}, especially the choice of the input sequence {u,}.
We now give some examples to illustrate the growth rate of A2 (n).

Exampie 21 Suppose that in addition to (1.11) and (2.17), the input
sequence {u,} and the noise sequence {w,} are independent and that

Hm inf Ao { EDwws | 11350, as, p,=0(n’ ®flogn), (230)

n———c0

n—1

E{llul*(log * lu,))**°} = Om**~9), Z lu:|*=0(n"), a5, (231)

where be[1,2) is a constant Then there exists «>0 such that as
H == 0O,

n)zaminin, AL (n)} + O(p,{n®logn}'?), (2.32)

mm(

where
n— 1}
ALin(m) & A { Y, é:i(n) ¢}T(n)} (2.33)
i=0
di(n)=[ul, ui_y, o ttf_5p 11" (2 34)

In particular, if u, takes the form

u,=ul+u,, (2.35)
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where {u°} and {v;} are two independent sequences satisfying
E[Uni'?n - l:l :0 and

0<limint A, {E{v,v | %, ]} <limsup E[lv,[I*| %, - <0, as (236)

n———00 R—— - OO

Ell + bo D) og ™ (hedll + o, 1)} 0= 0?7 1), as >0 (237)

n—1

JuS)? = 0(n®),  as (2.38)
F=0
Then
lim inf 25, (n)/n#0,  as (2.39)

The proof of this example is also given in Section 4 We remark that
any bounded deterministic sequence {u}} in (235) satisfies the required
conditions.

Let us now consider another example where the two exogenous sequen-
ces {u;} and {w,} may be correlated

ExampLE 22 Suppose that #, L [u? wil" is a stationary sequence with
spectral density matrix uniformly positive definite and with autocovarian-
ces satisfying

'In—-l

'y {n,-._kn:-,—E[nf--m:,J}“=o(tpn3—’), as  (240)

i i=0

max
O<t k< 2pm)

Then with A%, (n) defined by (2.24),

mita

liminf 1%, (n)/n#0, as. (2.41)

Proof Let us denote
i)y = [0 i 2p 115 (242)

‘then by (2 40) we know that

= |
-3 {m_kn?z—ﬁm_w?_,]}}
n i=0

LS {100 41— ELGYm) 4 ()}

<4p, max =o(1),
(

Ok 1< 2pp)

a5 R’—-——2>C0.
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But, by the standard relation between the autocovariance matrix and the
spectral density function, it 1s easy to see that

inf yia{ ELG3(n) $3°(1)} >0

Consequently, by noting that there is an orthogonal matrix T, such that
¢9i(n)=1,47(n), we get

liminf 4% (n)/n=1liminf 4, (3—1 ni] {$7(n) M‘r(n)})
i={

nH———oC n———r 0

—lim inf A, { E[43m) 501} >0, as. |}

n———oc

We conclude this section by pointing out that some results which hold
in ARX(p), p < o0, case, may not hold in ARX(co) case. For instance, it
can be shown that (see [2, Theorem 37, for related proofs) if u, takes the
form u, =u®+uv,, with {v,} and {w,} independent and satisfying condi-
tions in Example 2 1, but with u? being any measurable vectors such that

n-1

uWeoiw, vy, i<n} and S u?|? = O(n), as.; (243)
i=0

then for A%, (n) defined by (2.24) with p,=p < o0, Vn, the assertion {2.39)
holds.

In the ARX(c0) case, however, this conclusion does not hold, in general
In other words, the requirement for {x2} in Example 21 cannot be
simply replaced by {(243). This can be illustrated as follows. Take
W=v,_,, VYazl, p,———w, p,=0(og"n)azl, and assume that
{v,, —oo<n<co} isa scalar iid sequence with zero mean and suitably
high moment. Then, u,=v,_;+v,, and by Lemma 3.5 in Section 3, we
have under (2.34),

LS (gt 70) - Bl #5001}

rn—1

<2p, max Z {uf—kui—t_E[ui—kui—t]}’
i=0

i
Ok <2py) 1 . _

= O0(p,{loglog n/n}'?)

=0(1}, asn———rc0.
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On the other hand, by a result in Grenander and Szego [4, pp. 147] we
know that

Aoinl EL$okn) i)} ————=— inl {1+ e%*=0

H-——o0 f{lel—m x])

Consequently, by {2.24) and (2.33),

Iim mf 28 (myn < lim inf z’tmm n)/n

o "H———

<]lm Eni/mlniﬁ[‘ﬁ(}(n}{é n)}

"

n-—1

VY 8L 61— ELBYn) 81701

i=0

|
+ lim sup

"———

={}, as

So (2.39) fails

3 LiMIT BEHAVIORS OF DOUBLE ARRAY MARTINGALES

In this section, we study the limit behaviors of some double array
martingales. These results not only form an indispensable part of the proof
of our main results, but also are interesting of themselves.

LEMMA 3.1 Suppose that {w,, #,} is an m-dimensional martingale
difference sequence satisfying

sup EL[lw; [*| £l <oo,  lwll=0(pn)),  as,e(r)<e(n+1),Vn,
(3.1)

and that for any 1 <1<n and n=1, f,, is F-measurable p x m-dimensional
random matrix satisfying

Y falP<d<co, as,Vn (3.2)
=0
where @(n) and A positive and deterministic numbers Then, as n—— 0,

max = o(p(n+ 1) logn), as (33)

I<ign

i
Z fjnwj+l

=1
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Proof Clearly, we need only to consider the one-dimensional case, and
without loss of generality we may assume [/, €1 For any ¢ >0, let us set

Wi =Wl ) < con1s w=w, — E[w]| 7 (34)

then we have

i
Z fjnw_,i+l

j=1

(3.5)

Z fjn";}

J=1

Z fan[w;+1

i=1

i
g Zf,un(”‘}+1 _;+1

=1

Note that by (3.1),

i |
max ijn(wj-i-l—w;—{-l)l max Z§ +1|I[Iw,+1ﬁ>-s<o(,r+1)1

1<ign =1 <r<n.:

go(@(”"'l)) Z I[iwj'.;1|>£qp(j+l)]zo(qo(n_{b1))3 as, (36)

j=1

and by (3.1), (3.2), and the Schwarz inequality,

max Z FnElw) 1 F P

l<€ign =

< max 4 Z JE{W, ¢ 11 <e o+ 101 | B3

Igign j4—1

= max 4 Z LE{W; 4 Ippn, 505+ 01 1

lsi<n =1

<Asup E[||w, . 1?1#] max Z P{w; o 1 >eo(j+ 1) %}

s1<nj.“

=0(§ P{iwml>sqo(j+1)i9§})=0(1), as, (3.7)

=1

where the last inequality holds because by (31) and the conditional
Borel-Cantelli lemma [20, p. 557,

P{iP[E il >ep(f+ 1) [ F]= 00}‘—‘P{|W,+;l>8<0(J+1)=i~0-}=0-

i1
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Hence, for {3.3) we need only to consider the last term on the RHS of
{35) Let us set

Sny=3 fuW,1,  Soln)=0, 1<i<n,

=1

c,=2ep(n+1)  A=(c)7"

T(n) = exp{4,5,(n)} exp{—(zifz)[l +""‘"] S (f) EL70 1) 1%]},

TD(H)E 1,. 1 SIQ__H

then by (34} and Lemma 541 in Stout [20], we know that for any fixed
n {T(n), 0<i<n} is a nonnegative supermartingale. Consequently, by
Corollary 54.1 in Stout [20] we have

P{ max S(n)>2c,logn}=P{ max expf4,S,(n)]> expl2c,4, logn]}

0=ign O<i<n

<P [ max 1 ,n)>exp {2 log n— (A2/2) [1 +f”2—ﬁfj' A(C-n)?-}:l

0gisn

‘ A 1 1 34
< exp A2I0gn+§ 1+§ = EXP 4

'So by the Borel-Cantelli lemma,

lim sup max S{n)/e(n+1)logn<de, as.

He— oo 1 ISR

Similar results also hold with {S(n)}} replaced by {—S,n)} Hence from
here and (3.5)-(37),

Y Wi /99("+ 1) log n < 4,

=1

lim sup max

lisn

n———

and therefore the desired result (3.3) follows by the arbitrariness of &. |

Lemma 3.2. Let {f,} and {w;} be two random sequences satisfying
conditions in Lemma 31 except (32). If {a,,,0<i<n,n=1} is a positive
random sequence such that

aineg;rja a(f?l}néaina VlSIén,Vn)l,
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and

i (M)ZQA<®, Ynzl,

ain

i=1
where A Is a deterministic constant. Then as n——-— 00,

Z fjn jb 3 I_O(arm(P(n_i_ 1) Og n) as

j=1

Proof. Set

i
1 .
POA Z Ly 1<i<n x,=0

jﬂ

By Lemma 31, we have

max | x,, || =o(@(n+ 1}logn), as.

l<ign

Consequently,

ain[‘xin_x(é—.v}}n}
i=1

Wit

i=1

n
G Xopn — DinXon— 2, LA =6 130] X1y

i
“armxrmH + max El xm Z a(r—l)n]

Igi€<n—1

= O(a,, max |x,l)=ola,p(r+1)logn),  as

l<isn

This completes the prool. |1

LEMMA 3.3 Suppose that {w,, #,} is an m-dimensional martingale
difference sequence satisfying

sup E[Jw;, I?|FI<o0  and  |w,l=0(p(n)),  as,

J

where {qo(n)} is @ nondecreasing positive deterministic sequence, and that f,,
is any F-measurable p x m random matrix for 1 <i<n, nz1 Then, for any
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S € (3, 1), there exists a function a(8) >0 such that a(8) ]2 as  ~~ 1, and
that as n ——— o,

|
|

Proof. For any d¢ (3, 1), let us denote

ifj-,,wwﬁé=0({i Iif,-,,ilz} )+0({w(n+1)logn}“‘“), as. (38)

Jj=1 il

: i (142} + B8
a, & {1 + > IE/‘,-,,IV} a,,=1, 1<i<n,
=k
where
A (20 =1l —9) 0
b2 ey

It is easy to verify that

n } 2 1 :
sup (”i’"“) ga(é)< <0, as

nzl j=—1 in

Hence by Lemma 32 and the following inequality,

1 I 11
ix'ylsgixl‘%;ly!", 3+;=1, p>0,9>0,

we know that

i
z'fjnwfﬂ
i=1

=ola,{en+1)logn}?°)
=o({a,, }' P Y+ o({p(n+1)logn}P =N+ G- 1Y/ 05 _1)2)

Consequently, by setting

(2=8)[1+(25—-1)]
B (26 —1)? ’

a(9)

we see that im,__ ,; a(8)=2, and that (3.8} holds. 1§

We remark that in contrast to the estimation developed for standard
martingale case [10], here in Lemma 3.3, the second term on the RHS of
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(38), ie, of{o(n+1)logn}*?), cannot be removed in general A simple
example for this 15
1 ii=n
/in - {0

Hi<n,

together with {w,} being any unbounded random sequence satisfying
conditions in Lemma 33
We may now prove the following result

LemMMA 34 Let {w,, %,} satisfy conditions in Theorem 11, and f,,
| €i<n, be any p,-dimensional and F-measurable random vector sequence.
Then for any ¢ >0, as n——— 0,

z f;q (Mm)flﬁn“wwlilz

= O(pn log+lmax(Mnn)) + 0( {pﬂ Iog[e + Amax(Mnn)] }(1/2)+£
x [log'**n]@*(n+1)), as (3.9)

where M, is defined as

My=Y fufi+yl,  My=yL(3>0), 1<i<n  (310)
i=1
Proof. Llet |X] denote the determinant of a square matrix X Then
following Lai and Wei [10, Lemma 2], we know from (3.10) that for any
I1<i<n,

| M (il = 1M = fod 2l = IM = (M) 7 fof i = M LU= [0 AM ) 7 ]
Then, we have

- LM~ IM a1 dx
> M) = Y Ml Mi[' l( - Eslj Z<log (| M,.})—logy,

i=1 im i Mol %

(3.11)

(M) fflog? (1M, | + €)}?

i

[ s

i

| Mpn} dx 1
"<‘- J i+ 2 \<" 2z ’
(Mo X 1OE (x +e) 2elog=(e+7v)

Consequently, by (311) and Lemma 32 we get
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n

Z fi:z(Min)ilf.in HW:'+1HE

i=

= 2 Sa(M) " fon ECIw, 117 1]

+ 3 fEM) T w12 = EDIw, 11T 2T}

i=1

= O(log™|M,,, [} + o({log(}M ] + )} **[log' **n] @*(n + 1))

Finally, the desired result (3.9) follows by noting that the number of
distinct eigenvalues of M, 1s not great than p,. |

We now consider another type of double array martingales.

LEMMA 3.5, Suppose that {w,, F,} is a vector martingale difference
sequence salisfying

sup E[[w, I ZT< oo,  sup E{{w,]*(log* |w,1)>**} <0, (312)
and that {x,, #,} is any adapted random vector sequence satisfying
Y xlP=0(n"),  Elx,|*{log*(x. )} =0(n*""), (313)

i=1

where 6 >0, b= 1 aqre some constants. Then as n——co,

1
max  max Y x,_.owi| =0 {loglogn}'?),  as,¥>0,
l<t<(logn)® I<i<n =1 (314)
i
max max | Y x,_,w|=0(n"{logn}'?), as. (3.15)
Igigsn 1€i<n j=1

Proof. The conditions and conclusions of this lemma are slightly
different from those in Huang [9, Lemma I]. However, similar proof
techniques can be applied. Hence we just give a sketch proof here

Note that we need only to consider the one-dimensional case. Set

¢, = (nflog log n)*?

~

W = Wod i < ()]

=n
il
=
X
[
<:
=

=
Il
-
=
i
Lt
3

X = X L () < o= R y127 5

w:(j):fjfrw‘_E[fj—r"vjl'%—!l S{(l): z W{(])

J
j=1
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Then, by (312) and (3 13} it can be shown that

max  » |x,_,w,_,w,—w,(j)|/n"*(log log n)"* ———— — 0, as.
Isrs(logn)"jzl 7 0

and by Corollary 541 in Stout [20], we can prove that

limsup  max max Hx(i, 1)/(2* log log 2*}'* < w0, as,,
ke 1S15(log 25y 1 gig 2t
where
‘ 3[n"loglogn}'? ¢ )
Ho G 0y = £8,01) — gn,_,,g S E{IwA NP iF -}

F=1

Then (3.14) follows from (3.12), {3.13), and the fact that H,(i, t) is a
monotonic function of »n While (315) can be proved by taking
¢,=(nflog n)' *, and following a similar argument as that used in Huang
{8, Lemma 1] |

We now introduce the function

2
r>0,I<i<nnzl

(3.16)

?

(. —{42) i
Vv:(n) é j(z fjnf;:_*—y]) ? fn J+i
A

=1 j=1

This function 1s obviously a natural extension of the standard stochastic
Lyapunov function frequently used in the literature (e.g, [15, 19, 10, 1]),
Hence we may call it a “double array stochastic Lyapunov function”

LemMa 36, Let {w;} and {[,, 1 <i<n}, n=1, be any p- and p,-dimen-
sional 1andom sequences, respectively. Then the **Lyapunov function” defined
by (316) has the properties

(D) Vamy<E7_y Iw; V21
(i) V,n) = O(p,log" Apa(M,,)) + o({@(n+1)logn}>"”

o({ plogle+ Ana(M,,) ]2 “[log' t°n] @*(n + 1)), Ve >0, provided that
{ fin} and {w,} satisfy conditions in Lemma 3.4. '

(i)
0(% {p,,n”loglogn}) if p,=0(ogn),a>0
Vn(n): mlnl nn ,
0(_(—) {p.n® 10&’"}) i p,=0(n)
provided that f,=[x{, x{_y, ., x{_, 1%, and that {x;} and {w} satisfy

conditions in Lemma 35, where M, is defined as in (3.10).
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Proof By (310) and the matrix inverse formula it is clear that
Mi;l':M(?il)nwb(ifl)nM[.;il)nfinf; Mall)n’ ' (317)
bunya & (LH/aM Ly, L)

hence by denoting
‘St(n): ijnw;+l’ SO(”):O: ISiSn,
=1

we see that (omitting the dependence on n of the variables) for any
1<r<n,

t{SIM; 'S}
= tr{ (S, oWl LM b M ST M S+ w0
= {ST M7 S 420, ywl ST ML
—b IS M S b M Sl P
and then summing up fiom 1 to #,

Vi) St {S M 'S, }
= Z {2bi71w§+1 STy Mz:ll fi—bi, lfS:—lMt_—ll fz[Ez
i=1

+b, fEMZH fillwe 1) (3.18)

Hence conclusion (i) follows by noting 2|wi, ST M ' fi<
1ST_ MY P+ w7 and the definition of b,_, To prove (ii), we

apply Lemma 3.3 by chosing d (4, 1) such that a(8)<2+e¢, to estimate
the first term on the RHS of (3.18),

n 7 &
S by w8t MY f:o({ S b LISt ML f;nz} )
d=1

i=1 =

+o({p(n+1)logn}’**) (3.19)

The third term on the RHS of (3.18) can be estimated by using Lemma
34, since (3.17) implies b, /7 M\, f,=fIM ' f. Hence conclusion (ii)
follows from (3.18), (3 19), and Lemma 34 While conclusion (iii} may be
directly deduced from Lemma 3.5, since it means

2“{0({;7,711” loglognl) if p, = O{logn), a>0

Z E’nw;Jrl O({pnnf’logn}) 1fp,,=0(”)

=1

Hence the proof of Lemma 3.6 is completed.  §
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4. PROOF OF THE MAIN RESULIS

We are now in a position to prove the results listed in Section 2
Proof of Theorems 21 and 22. Let us denote
‘ Pn ) Pn )
Galz) £ [Au(z), BA2)], A, 2)=1-Y Az, BJz)=Y Bz
i=1 i=1

Then by (1.7), {1.8), (2.1), (24+(26), and (211), we know that
1G.(2) = G(2)% <2016 (2) — G(2)}2, £ 211G (2) — G(2)I2,

n 2 g =] - 2
{Z i{A4.(n)— 4, B(n}— B]ﬁ} +2{ > (IFA,-IH-IEBIH)}

i=pn+ 1

< 2[)" tr { Z [Ai(n)‘“Ais Bi(ﬂ)*“ Bi-][Ai(”)““An Bi(n) “‘Bi]r} + 4571

=1

— 29, t1{ [B(n) — 6(n) T'[0(n) — ()]} + 45,

=2mp, [6(n)— 0(r)|>+ 45, (41)
Set
6= Y [A v ,e1+Bu_ ;11 {42)
j=pr+1

then by (14), (2 1}(2.3), and (212),

10(r) - 0(n)|?
[Z $:(n) ¢ n)+yf} {Z GAm) [ yiy, ¢(n)9(n)]—y6(n)}

2

- J[Z 4.n) ¢:(n)+yf}_l {”ZI B AW,y +(m) ] — va(n)}

miit {
)“ 1 ("]) S
—1/2n—1

S s st | S pimeion

—12n—1

T it s,

i=0

2

A\

+0(1)} (4.3)

Now for the second term on the RHS of (4.3) we may first apply Lemma
3.6(1) and then apply the Schwarz inequality; thus under (2.10), (211}, and
(4.2),



38 GUO, HUANG, AND HANNAN

n—}
l <5 ledn))?
| r=0

w1 12 n-1
[Z ¢,(n}¢f(n)+.ﬂ] Z ¢ (n) ex{n)

i=0

szi{ SOl Y A el

i=0 M=p,t+1 F=patl
+ Z I B | Y. Bl ||ui;+1ff2}
J=pn+1 J=patl
oo Z2r—1
<2< » nA,u) S 2
= patl F=0
o 2n—1
+2( > uB,n) Sl <257, (44)
J=pn+ 1 i=10

As for the first term on the RHS of (43) we may use Lemma 3.6(ii) and
(iii) to estimate it. Hence Theorem 2.2 follows directly from (41), (43),
(44), and Lemma 3.6(iii) While to conclude Theorem 2.1 from Lemma
3.6 (ii), we need only to note that by (14), (2.7), (2.10), and the Schwarz
inequality (4, & I, B, £ 0),

1 n-—1 1 n—1 o0 T2
O;Ehmlnf S fwd*<liminf = ) {Z (E|AJV:_,E|+ﬂ-Bjuhj||)}

nom e i=0 e i=0 Li=0

2 { Y (14,1 + 15, u>} lim inf r,/n,
j=0

=0

and then that

n—1

log™ ftmax{z Bin n)wf} O(log " {p.r,+pn})=0(ogr,), as

Hence the proof of Theorems 2.1 and 2.2 is completed  |I

We now proceed to prove Theorem 2.3. For this, we need to prove
several lemmas first,

LemMma 4.1 Let f(z), 1 <i<p, be analytic functions expanded as
=Z.fj“)z“, 1<i<€p,
i=0

and let the product of f;(i) be expanded as

H filz)= Z ¢z
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Then,
() T2/ <o, 1<i<p, implies that 2 ol =
O(ZJ_[n/zp 11 Z; 1 sf(’)l)a

(i) 272,/ Ef}"i <co,r20, 1 <i<p, implies that 372 )" ¢}l <.

Proof (i) Let us first consider the case of p =2 In this case,

i ) 45)

and then

<Y Y UMD =S Y O DI Y S A2

MB

i=n f=pnj=0 Jj=0i=n Jj=nj=j
[n/2] -1 w0 o
SRRV SRV VSIS R
j=0 = j={nf27} i=n J=n
<o ¥ if,-‘z’})+0( S oo T i)
i={n/2] j=1n/2] j=n
Thus

S o =0 ( T+ s_f,-““n) |

i=n i={nf2}

This proves the case of p=2 The general p>2 case can be proved by
induction via the above relationship.

(i1) By induction we need only to prove the case of p=2 Note that
< 27{(i—j) 4+ }, Viz 2 0; we have by (4.5),

Y rlal< T 2(6-))+7) Z 117

<2 Y 2 G-+ AR

j=0i=y
o0 o0

231/ Z =) ﬂ2’1+2’21 /7] Z 1121

(f A0 ) S v xf‘2)1+2f@1 |f‘”1)§ VIPT

ja==£)

For any x,e R+ with

x, =1,  Vnzl, (4.6)
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let us write it in its component form
. n— LT T e — 1 E
e P N A L I (4.7)

with vJ77 = R”, 0 e R’ and introduce the vector complex function

H(z) & p"ii {at" [Adj A(2) ][ B(z), I] + B [det A(2) 1, 0y} z' (4.8)
i=0
é § [kii)t,gs)r] Zt (4‘9)

Obviously, 2% and g are functions of x,,

LEMMA 42, Under the conditions of Theorem 2.3 and the denotation
(4.6)-(49),

2pp— 1

fiminf inf p2 Y ([AP17+ g9 [?)£0, as
t )

n———co Jx|lf =

Proof  Denote

det A(z)= OZO: a,z, Adj A(z)= i [Adj A(z)] B(z) = i Bz

i=1

(4.10)

=0 i=0

then by Lemnma 4.1(ii) and (2 25) it is easy to convince oneself that

i FRTHAN + B +a]) < oo, (4.11)

i=0

Note that by (4.8)(4.10),

Pr— 1 e

Y {aP[Adj A(z)]B(z)+ﬁs>f[dez,4(z)}}zf:' S 9Tz (4.12)

f= i=0 :
P’ila{1>f[Ad]A(z)1z —F gP s (413)
i=0 i=0

which imply that

I o ) .
hOt= 3 [ B 4+ a1, g = Z w4, Viz0,
0
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where by definition «*=0, =0, Yizp,, n=1 Therefore by (4.6)

(47),
0 =] pn—1 n—1
P LI . Z {( Z o1 118, ,H) (Z 181 Na, ,I)}

1 n— 1 :
Z { Z ”‘1(") + ﬂﬁu)” )}{ Z (f '—j“2+ |ai~ji2)}
t=2p, ~ j=10 =0
oo 1 n—1 [l
2+ |l ;i )<2 Z Z (1B;1* + |a,i?)

=2 3
Z g J=0 i=p,+1

—an{ i (IB il+lal)}

Consequently, by (4 11) we know that as n—— 0

=] <0 2
sup pi! ) Wﬁwzgz{ ) f““mwﬁﬂ++mn}‘_*0
xak =1 i=2p, i=pp+1 :

Similarly,
sup p2@ % Jigl)?——0, asn——o0

Txall =1 i=2pn
Hence, for this lemma it suffices to show that

MMmuaZWW+M%HQ

n———00 [xplf=
If (4.15) were not true, we would find a set D with P(D}>0, and a
subsequence of {n} (without loss of generality assume this sequence is also

as. {4.15)

{ﬁ}), such that
Z AN+ 11 g )1?) ——0, VoeD,asn——c0.  (416)
Now, substituting (4.13) into (4.12) we see that
pil BoT [ det A(z)] = Z [l — g0 B(z)] 2/, (4.17)
i=0 i=0
and noting [Adj A(z)] A(z) = [det A(2)] I, we have by (413),
(4.18)

Pn--1
@2 Zifdet A(z)]= Z gD 2 4(z).

Z i=0

=0
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Let e/ i=1, .5, j* & —1, 0,& [0, 2n], be distinct zeros of det 4(z) on
the unit circle |z{ = 1, and let their multiplicities be d,, ., d,. Then we have
d=max{d,, ., d,}, and

det A(e”®)=f(e”) e &) (e —e®) % [(e®)£0,0e[0,2n].
(4.19)

Without loss of generality assume that

0,80<8,<0,< <0, ,<2nl8,,,. (4.20)

Then it 1s easy to convince oneself from (4.19) that there exists a constant
¢, > 0 such that

min min |det A(e’?)}* = ¢, &%, (4.21)
(ke 0. s (Be(Pr+ebr+1—2])

holds for all appropriately small > 0.
Thus, by (4.18) and (4 21) it follows that for any small £> 0 (j?L —1),

2

do

— r [jPa—1

1 2 o
{1} J () ,i6
@, 24 e
Z [ 'E 2 o Z n

i=0 | i=0

Pr—1

Z a.(r)r 0

i=0

df

jﬂux &/Pn

nk 0 O + £/pn

1 B9+ &/pn S O+l Bet1
+—{[ + ) J +{
Oy

k=1 "0x—&/pn ’ Bs+l“S/Pn}

27
pa—1 ) I
x|y cxf,j“e“"l do
i=0
2d S Bkl —glp, fa—1
<22 ¥ Y et [detA(eJ")] "
2ne e T lavems I Zo

+i{2(s+1)§}p,,p"z Uk

2n n Py

pzd 2 || =< , Nk
<Snere J 3 g7 A di+ (s 1)
4
d i8 & 2
'ITCI =
A eiﬂ 2 xQ
=@{ ‘3 e (s 1)
18 i=0
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Consequently, it follows from (4.16) that
Pn—1

imsup Y {ef?°<(s+1)e/fn, VweD

ne——m O j={

and hence the arbitrariness of & yields
Pn—1

limsup Y [jeP)?2=0, VYweD. {422)

H=—-2C j.Q

Similarly, by (4.16), (4.17), and (4 21), it can be shown that
Pn—1

limsup 3 IfP°=0, VYweD (423)

He——ao =

Finally, combining (4.6), (4.7), {4 22), and (423) we get the contradiction

Pn—1

P=lx, %= % (e 12+ 1B ————- »0,  YweD (424)

n——oa

Hence, the assertion (4.15) holds. This completes the proof of the
lemma. |

LemMa 43, With b and g defined by (4.9),
-1 o : 2
Z { Z [hfzjhui'fj_l-gfzj)rwi—j } =0(53r2, a.s,
i=0 \j=2p,

where 8, and 1) are given by (2.28) and (227), respectively.
Proof. By (410), (4.14), and Lemma 4 1(i) it follows that

ISs] p—1 n—1 o0

2olgi<s Y Y A 1< Y 1. Y 1A

i=1p, J=0 i=2p, j=0 i=p,

o= 3 I4.1). (425)
i=[pa/2"}— 1
and similarly,

Y !Igﬁ,")ﬂ=0([pn]”2 > [IIA,!I+|!B¢|!])- {4.26)
i=2p, i=[pa/ 2" — 1

Hence, by (426) and the Schwarz inequality,
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n—1 [=¢] 2
> { % wru |
, |

i=0 Li=2p,

n—1 o oo
<Y X 1Ry 1A w02

1=0 j=2p, F=2pn

[>'s) ) 2nrn—1
s{ 5 uhf,f’n} SR AE

J=2Pn =0

[>e} n—1
=0(Pn > BENES VAN Ilu,-ll) O(S,13),  (427)

i={py/2m]—1 =0
Similarly, by (4.25),

Z { 2. & w }2=0(5g,-g) (4.28)

i=0 Li=2p,
Finally, the desired result follows from (427) and (428). |
Proof of Theorem 2.3. Let us define, under (22) and (4.10),

W(n) 2 [det A(z)] 4.(n). (429)

Then we have

mm{z bim) b n)}w inf Z [x*,(n) ]2

it [E v ]
) § &1 [6,_(m) T

_IOjO

> 101)
) il Z [x*¢{n)]*

( > ) A7) (430)

Multiplying z' Adj A(z) on both sides of (14) and noting (1.7), we see
that

[det 4(z)] y,_;=2'[Adj A(z)] B(z) u, + z'[Adj A(z)]w,, Vi=0,n>0
(4.31)

Now let x,, e R™* 7 be the unit eigenvector corresponding to the mini-
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mum eigenvalue of the matrix 377, ¥,(n) ¥ (n), and let x, be written as
(4.7), and 27 and gV be defined via (4.9). Then similar to the finite order
ARMAX case (eg, [2, pp. 863 8647), it is easy to see from (22),
(4.7)-(49), (429), and (4.31) that

mm{z bi(n) it n)} z [x: g (m) )= 3 {H,,(z)[uf, w:Jf}

=0
_ 2
= Z {Z [hfq] W _,r+g(”I W;_ _]]} :
i=0 Li=o

Consequently, by Lemmas 42 and 4.3, and the elementary inequality
(x+y)* 24 x7—°, we know that

mm{ 0L% (n)}

ln 1 r2p,—1 2
22 zo{ Z [h(J)T U, j+g(])f i—;]}
2

h; i Z [h(J)! U, j_i_g(J)T ]}

f=2p,

=§ Z {[A(0) Ty 210, gl05, g DT 42(m) )7 + O(S07,

2pa— 1
Elgnn(”) Z AW+ 189017 + 0628
1 Zp,, 1
AR G )+ o6
i=0
Ze,p A0 (n)+ 0810,  asasnm——oo0,

where ¢, >0 is a constant.
Finally, combining the above inequality with (4.30), we see that the
assertion of Theorem 23 holds with ¢, = ¢,/(T% ,]a,1)*>0 J

We now give the proof of Example 21 stated in Section 2.

Proof of Example 2.1. By Lemma 3.5 we know that

n—1
max max | ¥ w,_ui_, | =0({h’logn}'?), as (432)
Isrsnli<ssny T,

n—1
max max | Y w,-_swf._,f =0({nlogn}"?), as.  (433)
Dgr€ni<s<n PO
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+

and by (2.17) and (2.30) it is not difficult to see that for some random
constant ¢,

. ln—l
liminf min 4., {m > owi; w}_j}zcw>0, as. (4 34)
R i=9 ;

n———oo 055,

T

Then for any vector [, §7]" with f|a)|>+ (| > =1 and « & [a, &3, ., 25, _,]
€ R BOLBL, B, ., BS, -1 17 R?", we have by (223), (233), 2.34),
and (4.32)-(4 34),

n—1

[, 1 3 ¢7(n) §7"(n) e, °T°
i=0

n—1 n—1

=o' ) ¢i(m) g () e+ 20" Y, U)W, Lwi_y, 18
i=0 i=0

Ypp—1 1 2pp—2 2pp—1  n—1
+ Z B;T Z Wf'f;w:_jﬁj'kz Z Z B; Z wi_ Wi B,
=90 =0 t=0 s=¢r+1 i=0
2 Aoin(n) ol + O(p{n® logn}'?)+ ¢, n 18]
2py— 1 2
+0((niog)={ ¥ 1} )
. =0

zmin{l, ¢, } min{n, AL, (n)} + O(p,{n®logn}'?).

This proves the assertion (2.32) In a similar way, it can be shown that
under (2.35)-(238), there is a random constant ¢, >0 such that

i {Z o) $ ) > ko), as
i=0

which in conjunction with (2.32) yields (239). Hence the proof is
completed. |
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