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ON ADAPIIVE STABILIZATION OF TIME-VARYING STOCHASTIC
SYSTEMS*

LEl GUOYT

Abstract. The basic stability issue of time-varying stochastic systems under adaptive control is studied
A difficulty arising from treating the stochastic case as compared to the deterministic case is the lack of an
a prioti upper bound on the sample paths of the random noise sequence A projected gradient algorithm
with small stepsize is used, avoiding possible large deviations of the estimates. It is shown that if the unknown
parameters vary slowly in some sense, then an adaptive control faw can be designed so that the closed-loop
system is stable Issues of performance and robustness are also discussed
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1. Introduction. The main objective in adaptive control theory is to design control-
lers that perform satisfactorily for systems which possess time-varying structure.
However, the primary issue is to maintain closed-loop stability

Over the past two decades, the area of adaptive control can roughly be divided
into two directions: deterministic and stochastic. In deterministic adaptive control, the
system under study is normally assumed to be subjected to no noise, or at most a
uniformly bounded disturbance. When the adaptive controller is designed based on
deterministic methods, optimality of the performance cannot be guaranteed for time-
invariant plants with a nice uniformly bounded white noise disturbance This is due
to the fact that the algorithms used have the so-calied short memory property, i e., the
adaptation gain is not vanishing Nevertheless, algorithms of this kind have the merit
that they may stabilize a time-varying system, as has been shown recently in, e.g,
Tsakalis and loannou (1986) and Middleton and Goodwin {1988) in the deterministic
framework.

In stochastic adaptive control, noise is an essential feature of the system, and it
is not necessarily bounded; a standard example is the Gaussian white noise sequence
In this case, especially for the constant parameter case, it is of interest not only to
guarantee stability of the closed-loop system, but to reject the noise optimally, ot at
least close to optimally. This is possible, because the algorithms normally used have
the so-called long memory property, i.e , the adaptation gain tends to zero This guaran-
tees that no large deviations of the estimates can occur, at least for the constant
parameter case. Indeed, it has been shown that in the constant parameter case, the
parameter estimates in a closed-loop adaptive system can be either nearly consistent
(Becker, Kumar, and Wei (1985)) or strongly consistent (Chen and Guo {1987))
However, it is this long memory property that prevents the adaptive law from being
effective for general time-varying systems Indeed, with long memory algorithms, it
has been found that it is difficult to deal with time-variations which are more compli-
cated than, for instance, those treated in Chen and Caines {1985} and Chen and Guo
{1988) For these reasons it is believed that short memory algorithms may be more
effective than the long memoty ones in the control of more realistically modeled
time-varying systems
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Let us illustrate the difierence between stability studies of deterministic systems
and that of stochastic systems by the following example:

(11) Vierr = O ve + ey, yo? 0,
(12) 9k+1:a!6k+5k, fa|<1

Assume first that {v,} and {e.} are deterministic sequences. It is then easy to verify
the following assertion: {y.} is bounded for any bounded sequence {v;} and any
sequence {g,} satisfying sup |s,/ = o if and only if o(1—a)™' < 1. Next, let us assume
that {v.} and {z;} are independent white noise sequences In this case, necessary
conditions for the boundedness of E ||y, /|* are discussed in, e.g., Granger and Andersen
(1978) and Pourahmadi (1986). However, general sufficient conditions are hard to find
even for this seemingly simple problem (see Pourahmadi (1986) for refated discussions)
One of the difficulties is due to the possible unboundedness of the process noise. Thus,
stabilizing the first-order stochastic model (1.1)-(1.2) seems to be a nontrivial task

By injecting an adaptive control signal to the right-hand side of model (1.1}, Meyn
and Caines (1987) showed that (1.1) is stabilizable if « is known, || <1, and if {u,}
and {e,} are independent (Gaussian white noise sequence with known variances The
noise assumptions on {vy, £, } were subsequently relaxed in Guo and Meyn (1989) by
imposing only moment conditions

Let us now consider {1.1) again but with the unknown parameter {6} a constant
plus a first-order moving average process:

(13) 0, =0+ +diee, k=0

Assume that {v;} and {g.} are independent Gaussian white noise sequences with
Ele.['=0c">0 and d,> 0. Then for second-order stability of (1.1), it is necessary that
(see Tjostheim (1986, p 60))

02 +{1+ (d,)*]o?+2(d,) o <1,

which implies that |#] < 1 and that o should be suitably small. In practice, it is acceptable
to assume that the noise variance o is small. However, assuming the undisturbed
parameter ¢ to be small or less than one is generally not applaudable. Again, to make
the unstable open-loop time-varying stochastic system (1.1) and (1 3) stable, the use
of stochastic adaptive control techniques seems to be necessary and appealing. This
problem is solved as a simple example of Theorem | stated later in § 3

In this paper, we consider the basic stability issue of general time-varying stochastic
systems under adaptive control. The assumptions on the random noise include two
important cases: bounded sequences and Gaussian sequences. We will study two classes
of SISO stochastic modeis, although generalizations to MIMO and some other classes
are straightforward. In the first class (Model 1), the parameters are assumed to be
random, and only parameters in the autoregressive part are estimated, while in the
second class {Model 2) the parameters are assumed to be deterministic, and parameters
in both the autoregressive and exogenous parts are estimated. The remainder of the
paper is organized as follows. In § 2 we describe the stochastic models that will be
studied in the paper The main stability 1esults ale stated in § 3. Section 4 establishes
some inequalities and stability results for general stochastic sequences In § 5 we present
the proofs for theorems. Further discussions on performance and robustness are given
in § 6 Section 7 concludes the paper

2. Stochastic models. In this paper we will mainiy consider the following two
classes of time-varying stochastic models.
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Model 1 {random parameter model).

(2.1) )’k+1:01(k)_)’k+‘ "+ap(k)yk—p+l+uk+vk+ia k=0,
’ ,yk=uk:0k=0 Vk<0,
where yi, 4, and o are the scalar output, input, and random noise processes,
© respectively, and «(k), 1=i=p, are the unknown random time-varying parameters.
Model 2 (deterministic parameter model).
(22) Veri=a(K)ye+ - ta (K)o + b (K)u +- XTI o - k=0,
’ yk=uk=vk:0 Vk<0,

where a;(k), bi(k), 1=i=s, 1=j=1 are the unknown deterministic time-varyin
) ) ] £

parameters.
Note that both Models 1 and 2 can be rewritten in the following regression form:
(23) Zh1 = @i+ Ugay,
where for Maodel 1, 2.1 = yroy — e,
(24) o=y - Vi-p+als O =[a(k) - a,(k}]’,
while for Model 2, z,,, = v.,,, and

(25) Ce=lVer Pemswrs U Uy yer]’ O =[ay(k} - a,(k),blk) - b{k)].

Let us now introduce the assumptions on the random noise sequence {z.}.

Noise assumption. {v, Fi} is an adapted sequence where {F,} is a nondecreasing
family of o-algebras, and for some integer =0 and deterministic positive constants
e and M,

(2.6) Efexp[e|lven |l Fi ,}Sexp {M,} as. Vk=0

Obviously, any sequence {v,} which is uniformly bounded in sample path satisfies
this assumption. We note also that if {u.} is an r-dependent sequence {i.e., for any k,
{vi, i<k} and {v,.,, i > k} are independent), then the above assumption {2 6} reduces
to
(2.7) Elexp el "]} <exp{M,} as. Vk=0.

Let us now give an example where the noise sequence {v,} is unbounded almost
surely

Example 1. Let {v,} be the following time-varying moving average process:
(28) vkzek+c.§(k)ek*1+ e +C,-(k)€k_,, kiea

with deterministic coefficients {¢;(k)} satisfying

v

(29) Ylakfs=c<o Ykz=0, (c¢lk)=1),

. i=0
assuming that {e.} is a Gaussian white noise sequence with variance o> 0. Then

. [0
{(2.10) IITA)S;Ip Wéa’ a.s

and the noise assumption (2.6) holds for any

o (r+1)

' 1
(2.11) £<—, M, =

2co 1-2g¢a?
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Proof. Property (2.10) follows from the conditional Borel-Cantelli lemma and the
Gaussian assumption; details of the proof are omitted (see also Chow and Teicher
{1978, p. 64) for a related result). Here, we will only prove that (2.6) is true for any

constants & and M, satisfying (2.11).
Apparently, {v.} s an r-dependent sequence, so we need only to verify (2.7). By

elementary calculations, it is easy to verify that

E exp{eiv ] ={E exp[sc(e, ]}
(212) - sco?
=exp {—1 Y {r+ 1)}.

Hence by (2.11) and {2.12), we see that (2.7} is true.
We remark that in the above example, the constants ¢ and M, depend only on

. the upper bounds of a, ¢, and r

3. Main results. Since the conditions imposed on the time-varying parameters of

Models 1 and 2 are quite different, we will consider these two models separately

3.1, Random parameter case. The assumptions on the parameters of Model'1 are

as follows.
Parameter assumption {random case) {8, F,} defined in (24) is an adapted

sequence which satisfies

(3.1) E{exp[M|| 6|l Fin) Zexp (M,} as. VE=0,
(32) E{exp [M|wen|*]| Fon}Sexp {8} as  Yk=z0,
where wy., is the parameter variation process:

(33) Weer = O — 0, K20,

and where m = 0 is an integer and M, M, and 8, < 1 are positive deterministic constants

We now discuss this condition. Condition (3.1) means that the random process
{8,} is bounded in an average sense and not necessarily bounded in sample path. In
the main theorems to follow, we will actually need that the constant M is suitably
large and that 8, is suitably small (see Remark 3 1), which means that the parameters
are slowly varying in an average sense, and again, the variation is not necessarily small
in sample path. In particular, these conditions do not rule out occasional but possibly
large jumps of the parameter process Let us give a concrete example

Example 2. Let the unknown parameter #, be a constant vector plus a p-
dimensional moving average process:

(34) ’ Gk:6+gk+D18k—1+ ' '+Dm,18k,m+1, kéO,

where D;, 1=i=m—1, are deterministic matrices, and {&,} is a Gaussian white noise
sequence with covariance matrix (.}’ [ Then for any o, >0,

(3.5) limsup |6]|= as, limsup |6, —O_, ]| =0, as.
k=0 k=0

Furthermore, the above parameter assumption holds for all small o,.
Proof. We need only to verify (3.1) and (3.2) here. Note that both the process

{8} and its variation process
(3 6) Wk=£k+(Dl_1)8k—l+' ”+(Dm—l—Dm—2)€k—m+!_Dm—l€k7m

are m-dependent sequences, so it suffices to verify (3.1) and (3.2) with conditional
expectation replaced by expectation.
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Similar to the proof of Example 1, we have for any constant M >0,

29 2 Pmdo(o'z)z
Elexp UM 10,70 = exp {201 o+ 22 )]

P(m*l)Mdr(crg)z}

E cxp (Ml [} exp {Z DM

where

m=1 i
dy= Zo [D,)?, di=1+ 3% |D;= D, (Dy=1 D,=0).
= i=1

Hence (3 1) and (3.2) hold. i}
We now describe the estimation algorithm Let L> 0 and d > 0 be two constants

(which will be specified later). We define 2 as the following bounded domain:
3.7 D={x=(x, " ,x)eR": %=L 1si=zp)}

and 7p{x} as the nearest point from x to D (under the Euclidean norm)
The estimate for the unknown process {6, } is generated by the following projected
version of the gradient algorithm:

A A gD A
(3.8) 9k+t=WD{Gk_'_;!_”—:;kﬂ_z(ykJrl_uk_‘Pkgk)}

with arbitrary initial condition §oe D, where ¢, is defined as in {2.4),

We remark that the use of a projection in estimation algorithms is common in the
literature (e.g., Ljung and Soderstrom (1983), Goodwin and Sin {1984)). However, in
estimating the parameters of stochastic systems by short memory algorithms, this
procedure seems to be particularly important, since otherwise large deviations of the
estimates are inevitable even if the system is persistently excited (see, e.g , Guo, Moore,
and Xia (1988}). We also note that due to the special form of the domain D, the
calculation of the projection in (3.8) is straightforward

The certainty equivalent minimum variance adaptive control law is

(3.9) uk=~¢25k‘

Our first stability result is the following theorem

ITHeoREM 1. For the random parameter model (2.1), if the noise assumption (2.6)
and the parameter assumptions (3.1}-(3 2) hold for suitably large M and small 5,, and
if in the estimation algorithm (3.7)-(3.8), L and d are taken appropriately large, then
under the adaptive control law (3.9), the closed-loop system is stable in the sense that

(3.10a) lim sup E{jy,|® +|u,|?} < oo,
1 N
(3.10b) limsup— ¥ {y.{"+Hul<c as,
N O Nn=0

where 8> 2 is a constant depending on M, 8,, I, and d.
Remark 31 We may ask how large {small) the constant M (5,) is required to
be in the above theorem. In § 5, we will prove that Theorem 1 is true when M and 8g

satisfy the following inequality:
M=z3(m+1)2'8p*A7"7
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and
* 7 372 —ppf-1/2
69<m1n{ [B(mz )(Ogl\—l)] [f(z (m+1),6p2 LoA PM™YY)
(3.11)
M

for some A €(0, 1) and 8> 2, where the function f(-} is defined as
(312) f(x)=3+x+4x*[1+exp (8x))] Vx

/2
'Hog [ﬂ(mzi)ﬁlog(h"l)] }

Moreover, in piactical implementations of the algorithm, it is desirable to know
the values of I and d. It will also be proved in § 5 that one way to choose L and d is

L=Ly,
(3.14) d>16p(eA?) ' max {8M,(log A ") L 4B8(r+1)}

3.2. Deterministic parameter case. Ihe assumpnons on the parameters of Model

2 are as follows
Parameter assumptwn (determtnlstic case). (i) There is a positive constant b, >0,

such that

(3 15) b{k}z=b, Vkz0,

and the model (22) is uniformly stably invertible in the sense that there are two
constants A>0, p<(0, 1) such that

and L, denotes

(3.13) L0={4—%+AP[96(m+l)ﬁp]_

Je+1
(3.16) =AY "l + ot Vi
i=0
(ii) The parameter is slowly varying in the sense that
(3 17) ”ekﬂng, nak+]‘—6k|¥§6§ sz{},
where

M, <o, 8, <min{l,log (A TH[24K;x H4(s+ 1) M, + D],
Ky = sA P [14+ s(M,/ b, ]+ (1~ DA 1+ (= 1)(M,/ b)) 1A/ (A = p),

and A €{p, 1) is some constant.
We remark that since {6, } is bounded, the assumption (3.16) is implied by uniform

asymptotic stability of the following time-varying polynomial:
{3.19) B (z)= b (k) +by(k)z+- - +b(k)z',

which in the constant parameter case is the standard minimum phase condition.
I et us introduce the following bounded domain:

(3 20) D={x={(x, X, )JeRxSL1=iEs+tx. ,=b}

(3.18)

The estimation algorithm is also a projected gradient one:

P A
[ o S i)
d+“ knz(yk-i—l P k)}s

where the initial condition 506 D, and ¢, is defined as in (2.5).

(321) §k+1:7TD{§k
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The certainty equivalent minimum variance adaptive control u, at any time k is

solved from the following simple equation:

(3.22) 910 =0

Similar to Theorem 1, we have the following result.

THEOREM 2. For the deterministic parameter model (2.2), suppose that the noise
assumption (2.6} and the parameter assumptions (3.15)-(318) hold, and that in the
estimation algorithm (3.20)-(3.21), L is taken as M, appearing in (3.17) and

(3.23) d>36K,(Aeo) 'max {B(r+1),2M,[log (A "]}

for some B>2 Then under the adaptive control law (3.22), the closed-loop system is
stable in the sense that

(3.24a) lim sup E{|y,|* +{u,|} <o,
1 N
(3 24b) limsup— 7. {{yf*+|ua/t <0 as.
N-so Nn=0

We remark that a precise uppar bound for the left-hand side of (3.24a), (3 24b)
may be found in the proof—see § 5

4. General lemmas, For the proof of theorems, we need some inequalities and
stability resuits for stochastic sequences, which we will present in this section.

lemma 41 (i} (Bellman-Gronwall inequality). Ler {x,}, { i}, and {h.} be three
nonnegative sequences, and

k~1

xk_f}c+z hix, k=0;

then
k—1 k-1

(4.1) x=ft+ Y Il (1+h)f, k=0
i=0 j=i

(i) Let {x,, F,} be an adapted sequence, and for some integer r =0 and some a > 1,

(4.2) sup E{|x,,.|"F, ,J<co a5,
then
1 N
limsup— ¥ Ixl<oo as
N-om Nn =0

Proof. The fitst result is well known and can be easily proved by induction (see,
e.g., Desoer and Vidyasagar (1975, p. 254)). As for the second result, we first note that
for any fixed k, 0=k =7, the sequence

M, = !xk+n(r+l)| - -E{ixk+n(r+1)“ P}c+(n7])(r+l)}

is a martingale difference sequence with respect to {Fenirin) Hence by (4.2) and
Chow’s martingale convergence theorem (see Stout (1974, p. 137)), we know that
1 N
— 2 M,»0 as as N->ow
Nn =0 .
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Consequently, by (4.2) again,

1
lim sup — X Xeiniren] <0 as Yke[0,r]
N-ooo N n=0
Finally, the desired result follows by observing

1 N 1 ¢ [N*1/(r+)

"N_ HZI || <§ kio RZ:O |xk+n{r+l);s

where [( N +1}/(r+1)] is the integer part of (N+1)/(r+1}. a0
We also need the following lemma.
Lemma 42, Let {x,, F,}, {f., F.}, and {g., F,} be three adapted nonnegative

sequences satisfying

(4.3) Xp1 =fur1Xn T Eary YO0,
Assume that for some constants g, <1, a> 1, and C <,
(4.4) sup E{(f, )" | Fal=e. as. sup E[{g )| F]=C
Then
N
{4.5) Y x,=0(N), as asN-w»
n=0

Proof Applying the Minkowski inequality to {4.3) and noting (4.4), we see that
{EGG) P S{E (farxa) P HE (oo )P
={ELELfor) | Fad(x) BV +{E(goe) 1"
é(sa)”"{ﬁ(-xn)“}””sgp {E{gne)™ 1",

from this and the fact that (g,)Y " <1, it is easy to conclude that

(4.6) sup BE(x,})* <0

Let us denote M, =x,— E[x,|F,_,]; then by (46} and the martingale stability
results {(Stout (1974, p. 137)), it is evident that

N
Y M,=0(N) as

n=0

Thus by (4.4} and the recursion {4.3) we have (where £, is defined as (e,)""),

N N N
T Xar1 T 2, E[xn+!|F;'1]+ 2 M.,
n=>0 n=0

n=0

N N
= EOE[fn+I|Fln]xn+ EGE[ngLlIPn}JrO(N)

N
=g ¥ x,+O(N})

n=0

N
e L Xante Xt O(N),
n=0_

consequently the assertion (4 5} holds since 5, <1. a
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LemMMA 43 Let {f,} be a sequence of nonnegative random variables defined by

n—i n—1
- n—i i =0,
fo= 2 AT % fo=0
i=0 j=ti
where A € (0, 1) and {x,, F} is a nonnegative adapted sequence satisfying x,. =1, and
(47) {Bl(xe.)* V| R P02 0 as aC <,

for some integer ¥ 20 and some constanis C >0 and a =1, then,
(4.8) sup {E[f.1°}V*=AC ™ (1-r1C)!

Moreover, if in (4.7) a>1, then as N>,
N

(4.9) Y fi=O(N) as.
n=0

Proof. By the Holder inequality, we have

n—1 o ir [(n—i)/ (r+1)]
E H i =B I [%enien]
=i

j=i k=0
(4.10) e {0 [(n—i)/(r+1)] ey | VD
air
=[] {E I [Xreen] .
j=i k=0

where [{n—i)/(r+1}] is the integer part of (n—i)/{r+1).
Note that for each | and j,

[(n—i)/(r+1)3 (D)
E I [xj+k(r+1)]

k=0
[(r—i)/(r+13]—t . (1) )
o @\r ol
=E ’EO ['x}+k(r+1)} E{[’C_,'+[{n—:)/(r+1)](r+1)] iFJ-&-{I(n—i}f(r'{"I)}*l}(r%»l)}
(r1) [(n=)/(r+1)}-1 (r1)
oalr alr
=C E H [xj+k(r+1)] =

k=0
= Ca(r+1){[(n~i)/(r+l)]+l}é Crx{n7|+r+1)”

Substituting this into (4.10) we see that
E {nﬁl xj}u§ Ca(n—i+r+1)”
J=i
Consequently by the definition of f, and the Minkowski inequality,
n—1 X n—1 1/a
(LI T A{E il (x,-)“}
P= Jj=i

: n—1
=CUY Y (AC)Y T =ACT(1-4C) T

i=Q

We now prove (4 9). By the Holder inequality,

N N n-—-1 . n—1

L= AT x

n=0 n=0 i=0 j=i
N n—l et r ln—iy/(r+13]

(4‘11) = Z Z A H [-xi+j+k(r+1)]
n=0 i=0 j=0 ko)
: N} Ln—i)/(r+1)] . Fove oy
n—i r
=14 % Z A H [xi+J+k(r+1)] :

=0 La=0i=0 =0
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Note that for each j
n-1 [(r—0)/(r+1)]

E /\"71 H [xi+1+k(r+1)]r+l
i= k=0
(412)
r [nf(r+1)] s (1) [(rn=s}/(r+i)1—7 it -1
=) A i1 [xsjegrr] ™ s [I=1]
5220 i=0 k=0 k=0
Let us denote
[a/(r+1}] emi(rt1) [(r—=s}/(r+1)]—i 1 .
(4 13) En— E A H [xs+j+(i+k)(r+l}] » 0= 5 ]é .
i=0 k=0

Similar to the proof of Lemma 4 1(ii), we consider the following subsequence of
{g.} for any fixed r€[0,r], 0S5, j=»:

[+/{r+1}T+n ¢ " }[{r—s}/(r+l)]ﬁi+n .
I1=s+{n— +1 r+
Sitn(r+1) ™ > AT i Il [xs+j+(l+k)(r+1)}
i=0 k=0
- (n—isr+1) 77
r—s+{n—i}{r+ r+1
(4.14) =3\ " H [xs+j+(l+k}(r+])]
i=0 k=0
A
=M,

It is obvious that {M,, G,} is an adapted sequence, where G, = F,,;, ..+, Note
also that

Mn = [)‘-xs+j+n(r+1)]r+] Mnfl + /\r'-s{xs+J+n(r+l)],+l
and that by the assumption {4 7},
sup JE{{/\-’Cs+_,‘+n(r+1):|(H—nﬂr [Gaoib= (/\C)a(rﬂ) <1 as

Hence applying Lemma 4.2, we have

N
M,=0(N) as
=)

n

N

=> ¥ £ =O0(N) as (sincein (414) tef0, ] is arbitrary)
s}

N n—1 - {(n—i)}/(r+1)} .
= ) Z A H [xi+j+k(r+1)] =0O(N) as. (by (4.12))
n=0i=0 k=0

= gof,; =0(N) as. {(by(411}).
This completes the proof, 0
LEMMA 4.4. Let w and F be any random variable and o-algebra, respectively. If
E{exp (w*){F}=exp(8) as for some §>0,
then for any real number a > (),
Elexp (ajw))| F}=exp {a8"’+[1+4a*(1+exp (8a))]6) as.

We remark that the key point in the above upper bound is the dependence on &
If <1, then the above result implies that E{exp (ajw])| F} =exp {f(a)8"?}, where
f(+) is the function defined by (3.12).
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Proof We first note that by the Jensen’s inequality,
Elexp(w’)|Flzexp {E[w?| F]} as.
so it follows from the assumpiion that
E{w’|F]=8 as
Next, \;f_e will use the following fact that can be proven in exactly the same way

as that for Lemma 4.1 1 of Stout (1974, p. 226): For any random variable Y,if 0= Y =1,.
almost sutely, then
E{exp(Y)|F}=exp{E[Y|F]+E[Y?|F]}.
Applying this we have
E{exp[4a|w!T(4alw| = 1)|F1} = exp {4a8'/*+ (4a)5}.

Hence, by this inequality, the Schwarz inequality and the Markov inequality, we have
(where EF( ) denotes E( | F), for simplicity)
EF exp (ajw|)

=E" exp {alwil I(|w]|=2a)+ I(jw|<2a)]}

W

=E" exp (—2-—) exp {a|w|I{jw|<2a)}

con (O o2 )}

1/4
sexp (g){EF exp [4a|wlI(4alw|=1D]E® exp [4&]w{1(£g<|w[<2a)]}
8 1/2 2 t/4) £ F 1 e
=exp 3 {exp[4ad""+(4a)'5T} E7 exp | d4a|w|I a<lw|<2a
=Zexp [§+a6”2+4a2§]{.5FI(ﬁwizi)

1/4
+EF exp {4a|w[[(jw{<2a)}I(Iw|>i)}
4a

1/4
=exp l:a5”2+(%+4a2) 5}{1+exp (Saz)P(}wi >4LJF)}
a
1
Zexp [a61“+(£+4a2) 8}{1 +(4a)’5 exp (8a*)}/*

i
=exp {aﬁ”z-f—' {5+4a2+4a2 exp (Saz)] 6}

This completes the proof. 0
5. Proof of the theorems. The proofs of Theorems 1 and 2 are divided into several

lemmas.
Let us denote
heo? @ 12 . .
5.1 = 9, =0,—8,..
( ) 241 d+“(pk”2, 13 k 3

We have Lemma 5.1.
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LeMMA 51 Under conditions of Theorem 1, the following inequality holds for any
kz0:
e = 2(]] 51«1!2— ”5k+1"2)+ (8/d} Dk+1{i2+4{2P”2L+ i Wit [[H Wil
+12{p"*L+] 6|} 6. [ I{ 6 2 D),

where [(A) is the indicator function of a set A.
Proof. Let us denote 6, = 6, 1(8, € D) We have

1Bisr— Bill* = 4pL”

and
|81 — Oicll = | O — 8| + 10T (81 £ D)|
=Wl +1l 6 (6.2 D).
So we have
18ice1= sl = [ = Ou+ B = B
= [|fiews — G+ 4p "> L Wi | + 161 (6,2 DY)
(52) +2“"’_‘k+1”2+2"9k1(6k5D)Hz

=\ By — B+ 202p L+ [ Wi Wi |
+202p" 2L+ || 0 [H 6 1 (81 2 D)

But by (3.8} and the properties of the projection we know that

2
— A —_ A (pk - Y
||9k_9k+1"2§ kaak_m[‘Pk(gk“Bk)‘*Ukﬂj
IR . Gl
= I——————)B—{BI(B ED)W——”—}

”( d+|ed?) A d+ e’

A LA & 2
spif -2 ago rcoe )+ S 1o

k

~ 6. |5
#2061 10,110, ¢ D) +2 1R 7]

d+ ” @k“z
Applying the following elementary inequality
' 2xy =ix?+2y* ¥y y
with
qulé'k" [ D]

X =T T q12ni/2 Y= ii/2
@+ledd7 7T dr el

to the last term, we then see that

a Y 2 A2 1 zé'k : 4 2 1/2 2
16— B I =16cl *57}%"‘5”%“!3 +2{(p" L+ [ 816 + 167} (6 D)

so 1 eib]® 4
< 2 - AFRTEN 4 7 2 £/2
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Substituting this into (52) we have

1 Jleibil?
2d+]led?
+6{p' 2L+ 6} e 1( 8 2 D),

which is tantamount to the desired result. o
In a similar way, the following lemma can also be proved
Lemma 5.1, Under the conditions of Theorem 2,

i Z 216 — |6 |P) +(6/ )| vt P+ 28,(4(s + 1) 2L+ 5).

LEmMMaA 5.2 Let the closed-loop system be expressed by

o~ pe 4
!I ﬂmlizé_ ” Bk”z“‘ '*'E [ "-’k+1f|2+2{2PU2L+ ” WkH”};l Wkﬂ”

Vir1 = @rbc + 0y

Assume that there are constanis A € (0,1), K;> 0, K, =0 such that
(53) Zo ’\n_iﬂﬁoiifg ) Aﬂ“i{Kl(J’i)z‘*‘ Kz(v:)z} Vaz0
i= i=0

Then for any B =2,

r—1 1 B2y BY /2
{Eflsonilﬁ}"’*éKo{1+(1—A)"Z{E[Z At I (1+2K1A“a,)2] } }
i=0 i

i=i

Vnzi,

I~z

N n-1 n—1 . 1/2
dedr=o({5 LT 4T avzkaar} ) o,

1
-&mn Np=oizo |, j=i
where a; s defined in (5.1), and

Ko=(1-A)"VH{2K, + Ko W oy (0) P+ 2dK, [2pL2+ 205 (8))°TH72,

‘7'2,8(0) :SI:P {Elvklz.ﬁ}l.’uﬁ), Uzﬁ(g) — Sl;p {Elgkfzﬂ}u‘(ﬂ?)_

H

Proof. By the assumption it follows that
loal’= 3 Ao ?

= 3 ATHK 2o Bn 200 Ko(n))

n~1 n

=2K, Z /\n_i_lar(lf‘Piﬂz“"d)+(2K1+K2) E )\HVE(Ua)z

i= i=

=2k, g; VT o+ 2K+ K) T AT )+ 20K, fﬁ A6
So Ey Lemma 4 1(i) with x, = A ""||¢;}|?, it is seen that |
(5.4) o=, T A" [H (1+2K1A“a,-)] ;z-
- jei
where

i ) i—1 ) -
£= QK +Ky) ¥, ANo 24K, T AT G
k=0 k=0
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Applying the Minkowski inequaiity and the Schwarz inequality to (5.4), we get
n—1

_ n—1 B/2Y 2B
{E!lsonflﬁ}z”*é{Eléni‘gf’z}”ﬁ+{E [ AT (1+2K;A‘f¥j)é,} }

o i

n— n— B/4
<{El§,,|ﬁf’2}2’ﬂ+{ﬁ [g; AT }}l (1 +2K1,\“‘aj)2:’

J=i
n—1 , B/AY2/8
el } }
i=0

n

= (Blg, 0+ B [

Al r B/2}1/8
E[5aer] ]

n—1 n—1 B/211/8
<{E,]§,,gﬂf2}2f’ﬁ+{£[_go)\"-“ 1 (1+2K1A“‘aj)2} }

=i

—1 n—1 . B2
AT (1+2K1,\“aj)2]
=0 j=i

r-1 1/2
{T A ey

“n-1 n—1 grayue
é{1+(1——/\)‘”2{5 [ S AT (1+2K1/\“a,,)2} } }
i=0

i=i

sup {E[&]°}V".

0=i=n

Again by the Minkowski inequality,
i i—1
{E[&)PY/P=(2K, + K;) kz. AMTHE(0)7PY P+ 2dK, kz ATETHE 6, PPy E
=0 =90

=(1-2) {[2K + Ko ][ 025 (0) P+ 2dK,[2pL% + 20,4 (8))7]}.
Hence the first assertion of the lemma is true, while the second assertion can easily
be proved by following the similar argument and by using (5 4), Lemma 4 1{ii1), and

the Schwarz inequality 0
Lemma 53, Under conditions of Theorem 1, the property {53} holds with K, =

pA T PE KL =0, Furthermore,

4 142
55) {Enwnuﬁ}”f’éfco{mlA)-”z I {E{&(n)]ﬁ”}”“ﬁ’} —
k=1

4

66 1 led= o( il {% 3 un)}”g) LO) as Nooo,

k=

where I(n), k=1, - 4, are defined as

(5.7 [1(”):fgof\”_ie)(p {8Bllléf||2}s Bi=4KA7",
n~1 ! 32 1 5
(58) R =5 A T enp {220,
(5.9) Kim=3 A" T1 exp (168,29 "L+ [ DI, [,

n—1 il

(5 10) I{n)= -éo AT exp {488.(p "L+ |16 D 6,1 1(6,2 D)}

j=
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Proof. By the definition of ¢ in (2.4) and the fact that y, =0 for k<0, it is easy
to see that (5.3) holds with K, =pa~"?7" K, =0.
By Lemma 3.1 and the inequality log (1 +x}=x, for all x=0, we have

n—i n—1I

H (1+2K;A_‘aj)2: exp { _Z_ 2 log (1+2K,/\§aj)}

j=i j=i
n—1

=exp {,31 b3 ﬂfj}, (B =4K,A7"),

i

~ n—1 8
=exp {28.]6,]°} exp {Bl z [E Il +402p 2L+ wi D] Wy |
F120p" L+ |6, )6, 118, 2 D)]}

R 88, ,
=exp 281017 1 ox0 {22 ual?]

n—1

T exp {4B.2p Lt Dy}

n—1

(5.11) IT exp {128:(p"*L+(6;1)116, 1(8; 2 D)}
JF=1
Consequently, by the Holder inequality and (5.7)-(5 10),
n-1 -1 B/2 4 B/
E { YA (1+2K1A_1aj}2] SE{ 1 Ik(n)}
=0 j=i k=1

2 174
g{ I E[Ik(n)]ﬁ”} .

Substituting this into Lemma 5.2, we see that (5.5) is true, while {5.6) can be proved
in a similar way by using (5.11) and the Hélder inequality. The details will not be

repeated. 0
LemmMma 5.3". Under conditions of Theorem 2, property (53) holds with
Ky=sA "1+ s(My/ ) T+ (- AT [T+ (1 - 1)(M,/ b, ]AA Y/ (A — p),
Ky=(t= DA 1+ (= 1D)(M/ 5 P]AV/ (A~ p)

Furthermore,
3

(5.12) {Ellqonllﬁ}”ﬁéKo{H(l—A)‘“[I {E[Ik(nJ]W}”‘”}} vnzy,

Ic=

3

N N 1/6
{(5.13) % ED e, |§2§ O(kl;ll {% nzﬂo Ik(.n)} ) +0(1) as N -0,

where Ji.{n), k=1,2,3, are defined as

(5.14) Ji(n)= "z_l A" Texp {68,/ (n—-D4(s + 1)L+ 5,1}, B =4K,A !,

(515) Jim =Y A" exp {64611,

"t n—i nt 1831 i 2
(5.16) J(n)= .ZO A" exp 4 Hosall " ¢
P J=i
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Proof. Let us write 4;(k), !;J(k), as the estimates for a;(k), b,{k) given by ék Then
from (3 22),
=1
b,{(k)

Since 6, belongs to the domain D defined by (3 20), it follows by the Schwarz inequality
that

e {@,(K)ye+ -+ Gk yyir + Do)ty + 4+ BVt prh.

M] 2 s—1 ) -1 ,
]uklzﬁ(b—) {5 lgul‘}’k—-ji +(t—-1) El ..., }

Therefore, by the definition of ¢; in (2.5), -

n n sl n iy -1 n i
)2 )\nilli‘@iilzs AT Y %yi-—j!2+ YA !ui—j|2+ YA lujlz
i=0 i=0 =0 i=0 j=1 i=0

i=

M. 2 [ = 5—1 N
S B o PR,
t i= j=
M 2 n il
+[1+(I—I)(*l;*l') :I ZG,\"—I ¥ |ur_7j|2
1 i= i=t

MM » ,
<s/\—s+i[1+s(bl) :| Z ’\-n4t|yi|2
1 i=0

(5.17}) +(z—1))\‘“[1+(:—1)(%)} Y AT

1

Note that by the assumption (3.16),

n—1 n-1 i+1 .
ZOA""iuflzéA LAY R p T Iyl gl
i= i=0 i

J=0

n n—1 T
=AY T AT+ u
J=0i=j—-1

n n—1 P it+i—j
—an S T (2] o

=0 i=j—1
=ML 3 AP+l
A—piZo ’ ’
Combining this with (5 17) we see that (5.3) is true. The second assertion can easily
be proved by using techniques similar to those used in Lemma 5.3 We need only to
note that under the present conditions the inequality (5.11) is changed to (via Lemma
5.17,

H (1+2K,0 " o)’ Zexp {28,8(n — )[4(s +1)/*L+ 8,1}

exp 28I T exp { B o'}

The details will not be repeated heic 0
We now proceed to analyze the quantities I (n), k=1, -, 4, appearing in
(5.7)-(5.10) by using Lemma 4.3 For this we need the following lemma.
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LeEMMA 5.4. Under conditions of Theorem 1, the following inequalities hold (where
Br=4pA77):
(518) (i) sup E{exp[(168B8:(r+ 1)/ d)| g o[* 1| F b <A P07

(w)

(519) (i} sup E{exp {888,(m+1)(2p"°L+[w i )iiwci|l} F_ .} <A BUmr0/2)

(Jw)

(5.20) (i) sup E{exp[24B8.(m+ 1)(p" "L+ |0,0.0[0-]l1(6,..¢ D) Fi_pn}

(jer}
~B{m+1)/2
<A ,

where j takes nonnegative integer values and w is the sampling point
Proof. (i} By the noise assumption (2.6), the choice of d in (3 14), and the Hélder

inequality, we have (note that 8,=4pA™")
E{exp [(1688:(r+ 1)/ d)v "1 Fi— ) Zexp {2°pA 7781 + 1) M,/ (50d)}
< ATBUT2
{(ii) By Lemma 4.4 and the parameter assumption (3.2},
Efexp {2°BB.(m+1)p " Lllw;, |} F-
(521) = E{exp {[2'(m+1)Bp**A "L M (M)
=exp {f(27(m+1)Bp" " LA™"M ™) 5,7,

where the function f( ) is defined by (3.12)
Again, by the parameter assumption (3.2} and the Halder inequality,

Edexp {2'BB:(m+ V) w |} Fo} Sexp {2°BpA "{m+1)8,/ M};
combining this with (5.21) we have via the Schwarz inequality,
E,{cxp {Sﬁﬁl(m'f" 1)(2P”2L+ i!wjﬂ”)” Wj+1”}l Pj—m}
Sexp {[F/(27(m+1)Bp*LA"M ™)/ 2+ 2°8pr P (m + 1)/ M186Y%}
<<A-,8(m+l)/2

Wi [ TH From}

where the last inequality is derived from (3.11).
(ili} We now proceed to prove (5.20) Let us denote b=1928(m+1)p>/*A 7", then
by the parameter assumption (3 1} and the Markov inequality,

E{exp [4888:(m+ 1)p"*L||6,., | 1(6;.,2 D)1| F,_,.}

= E{exp [bL| 6,1 1(8;.12 D)}} F; .}
= E{I(61€ D)|F_.}+ E{exp [bL|}6;. (|11 (6,1, £ D) F_,.}
= 1+{E[exp L[| 6 D F_ o3P 6psll > LIF,_ 01
=1+4{E[exp (2bL|[6,+ )| F; o, }/*{Plexp (2bL}16,,,]) > exp (2bL7)| F_,, 1}'/?
=1+ E[exp (2bL{| 611 |))| F,_ 1/ exp (bL7)
=1+4exp (~bL */2)E[exp (2b]|8,\ [P Fi_]
= 1+exp (—bL*/2) exp (2bM,/ M)
=exp {exp [192{m + 1)Bp* A 7(2M,/ M ~ 1°72)]}

(5.22) =exp{exp[192(m+1)BpA~F(2M,/ M — L*/2)1},



ADAPTIVE CONTROL OF TIME-VARYING SYSTEMS 1449

where for the last inequality we have used the fact that 2M,/ M — L?/2=0, which is
scen from (3.13} and the choice L= L.
Similarly, we have (¢=1928(m+1)pA "),
E{exp [4888,(m+ 1)1 6,4, 1(6c1 2 D) F; .}
= E{exp (]| 61" 101,12 DY F,_..}
= 1-+H{E{exp [2¢] 6,01 21| -} P80 > 17 Fy_ )}
=1+ E{exp [2¢] 6, 7| F;_}/exp {cL?}
=14exp{2cM,/ M —cL?}
(5.23) =exp {exp[1928(m+ DprA F(2M,/M - L)]}
Combining (5.22) and (5.23), we obtain via the Schwarz inequality,
E{exp [24(m+1)8B:(p"”L+ (16,41 )1 6,11 1 (8,12 DI Fy_p}
Zexp{exp [192(m +1)8pA P(2M,/ M — [3/2)]} < y Blm+1/2
where the last inequality is obtained from (3.13). This completes the proof c

Proofs of theorems By Lemma 43 (with o :5/2 >1} and Lemma 5 4, we know
that the quantities I(n), k=2, - 4, defined in Lemma 5.3 satisfy
N

(5.24) sup E[I(n)]*?<c and I{n)=0(N) as k=234,
n =0

while for I,{n), we note that
exp {88.[16.11°) =exp {168, pL} exp {168, [16.]"}

Then by the parameter assumption (3 1) and Lemma 4 1(ii), it is easy to see that {5 24)
is also true for k=1. Hence by Lemma 5.3 we get

N
sup Eflg. [} <o T lea*=O(N) as. as N
n n=1

combining this with {3.9) we immediately conclude that Theorem 1 holds.
In a similar way, Theorem 2 can be proved. The details will not be repeated

here. 0

6. Further discussiens. In this section we will give some brief discussions on the
issues of performance and robustness

6.1. Performance. Since our control objective is to minimize the output process,
it is natural to ask if the output “approaches zero” when both the noise and the
parameter variation processes are “small.” Mathematically, this needs the study of,
¢.g., for Model 1, the asymptotic properties of {y,} when {£)"' >0 (M, fixed), and
8, > 0. Note that by (3.14), d is allowed to be chosen as d -0 and {¢d) ' 0.

Let us denote & = (8, d, (ed) '} and parameterize the output process as {y¢}; then
from the proof of Theorem 1, it is easy to see that

{6.1) lim lim sup Efjyi})? =0
£-0  k—oo
For any small but fixed & the Markov chain ergodic theory may be applied to

prove the existence of the limit lim, .. E || y.|I° if we strengthen the assumptions. For
example, if {v,} is a Gaussian white noise sequence, and the parameter is modeled as
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in Example 2, then under the assumptions of Theorem 1, the closed-loop system
equations will give rise to a Markov state process {&,}, which is, in particular, (i)
weakly stochastically controliable in the sense of Meyn and Caines (1988), and (ii}
bounded in probability due to Theorem 1. Thus, applying Theorem 1 (for 8>2)} and
the important results developed in Meyn and Caines (1988) and Meyn (1988), we
know that

lim P(y>x)=(yl>x) Vx
(6.2}

lim ElyJ?= lim 1 Ek‘ ilP=1ydr<wo

k=00 yk k—»ooki=1 ! ) ?

where y denotes the function y(-) such that y,=y(®,}, and =« is the invariant
probability of {®,}. Detailed and further results are currently under investigation. We
mention that establishing the existence of the limits in (6.2} without using Markov
chain theory appears to be a challenging problem.

6.2. Robustness. Let us assume that in addition to the random noise {v.} there
are unmodeled dynamics {=,} acting on the system {2.3):

{6.3) Ziwt = Qi T V1 + M

We assume that the unmodeled dynamics { %, } depend on the previous input-cutput
data, and have the following time-varying upper bound (see, e.g., Ioannou and Tsakalis
{(1985), Chen and Guo (1988)):

(6.4) |md=e¥my, me=ym_ +Ho, m>0, k=0,

where £%>0, y€{0, 1).

Similar to the normalization idea used in Joannou and Tsakalis (1985), we replace
the quantity d+ |le ]* in (3.8) or (321) by d+(m.), and consider the following
algorithm:

{6.5) §k+1:WD{§k+dT%n_?(zk+z_¢;ék)}
K

Then stability of the closed-loop system under the certainty equivalent minimum
variance adaptive control law can also be established, provided that £* is appropriately
small. The proof is essentially the same ‘as that for Theorems 1 and 2.

7. Conclusion. In this paper, stabilizing adaptive controllers are presented f{or
possible open-loop unstable time-varying stochastic systems described by Models 1
and 2. The closed-loop stability is proved based on an analysis of products of random
variables and truncation techniques. We have seen that the use of projection in the
estimation algorithm plays a crucial role in getting useful estimates in the stochastic
case, especially when the noise is unbounded in sample path Further asymptotic results
are currently being explored by applying the weak convergence theory and the Markov
chain ergodic theory.
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