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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING--
ROBUSTNESS AND ASYMPTOTIC PROPERTIES*

HAN-FU CHEN" AND LEI GUO?

Abstract. Adaptive estimation and control problems are considered for continuous-time stochastic
systems containing both modeled and unmodeled dynamics. The least squares method is used to estimate
unknown parameters included in the modeled part, which are used to update an adaptive control law. It is
shown that both the estimation error and the tracking error are bounded, and that the bounds are proportional
to constants dominating the unmodeled dynamics. Moreover, convergence rates of the tracking errrors are
established in the case where no unmodeled dynamics exist.
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1. Introduction. In recent years, much attention has been devoted to the analysis
of adaptive algorithms when unmodeled dynamics are contained in the system. It is
known that (see, e.g., [1]-[3]) unmodeled dynamics or even small disturbances may
cause instability in many adaptive algorithms when precautions are not taken. This
inspired the study of robust adaptive control where the primary purpose is to maintain
stability of the closed-loop system under violations of ideal assumptions. There is
already a vast literature on this topic, especially in the deterministic framework (e.g.,
[4]-[6]).

In the stochastic case, robustness results are much more difficult to obtain. This
results from the following "stochastic features": (i) a priori upper bounds for the noise
sequence are usually not available, (ii) optimal or at least close to optimal rejection
of the noise effects is required, and (iii) traditionally used supermartingale methods
fail due to unmodeled dynamics. An initial attempt toward robustness analysis for
discrete-time stochastic adaptive systems was made in [7], where an a priori assumption
on the input-output data was required. This assumption was later removed in [8] for
a large class of stochastic systems represented by a full ARMAX model plus unmodeled
dynamics.

While discrete-time adaptive theory is well developed, the corresponding con-
tinuous-time analogue becomes a natural concern. There is no doubt that results of
this kind are interesting and important in many situations. Unfortunately, it seems that
they have received less attention in the literature, and that only some initial works in
the adaptive estimation aspect are available (see, e.g., [9]-[ 12]).

In this paper, we consider both estimation and control problems for stochastic
systems described by stochastic differential/integral equations. The adaptive control
law is defined based on a continuous-time analogue of the least-squares estimation
algorithm. We show the following:

(i) That the least squares method has some degree of robustness when unmodeled
dynamics are contained in the model, provided that the system is "persistently excited."

(ii) That the closed-loop adaptive system is stable, with a tracking error upper
bound. This bound implies that the tracking error will decrease when upper bounds
on the unmodeled dynamics decrease.
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514 H.-F. CHEN AND L. GUO

(iii) That if there are no unmodeled dynamics, then the least squares estimation
results parallel those obtained in the discrete-time case (see, e.g., [13], [14]); further-
more, in the present paper we provide a precise convergence rate for the tracking error,
which in the discrete-time case still remains a standing issue.

We state here that the above-mentioned results are established under the assump-
tion that the strong solution of the stochastic differential equations describing the
closed-loop system exists. And for the time being, we know of no way to verify or
sidestep this assumption. However, we believe that many of the ideas, techniques, and
results presented in this paper are necessary preliminaries for future study.

2. The system description. Let { F,} be a family of nondecreasing tr-algebras defined
on a probability space (f, F, P), and let the system to be considered be described by
the following stochastic differential/integral equation:

[I + txlSH(S)]A(S)y, [I + i.2H2(S)]SB(S)ut +[I + t.t,3SH3(S)]C(S)vt
(1)

q-ld,4St(y,u), tO, yo=0, Uo=0, o=0

where s denotes the integral operator (e.g., Sy, oYz dz), and y, and u, adapted to
{F,} are m-dimensional output and /-dimensional input, respectively. The quantities
/x, i= 1,. ., 4, are small constants, H(S), i= 1, 2, 3, are unmodeled matrix transfer
functions, and :,(y, u), dependent on the previous observation {y, u2, 0=< s _-< t}, is an
unknown nonanticipative measurable process characterizing the unmodeled dynamics.
Finally, v, is the system noise that is generated via a known filter D-(S) from a
standard Wiener process (w,, Ft):

(2) D(S)v,=w,, t>=O.

Assume that A(S), B(S), and C(S) are matrix polynomials in S, with unknown
coefficients but known upper bounds for the true orders:

(3)

(4)

(6)

(7)

(8)

A(S) I + AIS +" + ApS p, p >- O,

B(S) B1 + B2S +" + BqSq-l, q >-- 1,

C(S) I+ CS+. .+ Crsr, r >- 1,

D(S) I +DS +. + DrSr.

Note that (1) may be rewritten in the form

A(S)yt SB(S)ut + C(S)v + rl,,

rh Ix4S,(y, u)- IxSHI(S)A(S)y, + tx2SH2(S)B(S)u,

+ tz3SH3(S)C(S)vt.

We remark that, if the unmodeled dynamics are removed, i.e., , O, for all _-> O,

(9) 0"= [-A,. .-Ap Bl Bq Cl. Cr].

then the model (7) is reduced to the one considered in [9]-[12]. Clearly, in this case
model (7) may be rewritten in the standard linear state space form, and the output
process {y,} can be uniquelydetermined by the process {u,, w,}. In the general case,
it is natural to assume that {y,} can also be determined by {u,, w,} via (7)-(8).

We denote the collection of unknown matrix coefficients of A(S), B(S), and C(S)
by 0:
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 515

In the sequel, 0 is estimated by the continuous-time extended least square algorithm
[10]-[12]"

(10) dO,= PctD(S)(dy-chO, dt), 0o=0,

(11) dPt Ptch,ch P, dt, Po aI (a dim of tht),

(12)

(13) , y, SO4,.

(14)

Obviously, if r 0, then (10) and (11) can be expressed as

O, P, chs dy + P,(Po)-’ Oo,

(15) Pt ,hsc ds + a-
and the right-hand side of (14) is completely determined by the observations {U, y,,
s<-_t}.

In the general r> 0 case, however, the regressor b, depends on {0., s-<_ t}. Then
(10) and (11) constitute a system of nonlinear stochastic differential equations for Or.
The existence of the solution is far from obvious since the typical Lipschitz condition,
which plays a vital role in the standard theory of stochastic differential equations (see,
[15, Chap. 4], for example), is hard to verify in the present case. For that study, the
introduction of new techniques seems to be necessary, although our differential
equations are well motivated.

Henceforth, we assume that the stochastic differential/integral equation (10)-(11)
has a unique strong solution {0,, t_-> 0} in the sense of [15, pp. 127].

Set

(16)

(17)

(18)

(19)

Yt [YT S p-ly r,]-,’,
T, sr-Iv, =Iv, v,]

Sq-IUt =[ut ut]

sr--1 /v,=[v,., v,], V,- V,.

Then it follows that

(20) 4, YT, UT, #T], 4,= YT, UT, VT], b, [0, 0,

Furthermore, we set

-D Dr -C1 Cr
0 0 0

I I 0

By use of these kinds of matrices it is easy to represent an input-output equation
in state space form. For example, from (2) and (19) we may write V as

(22) dVt FdV dt +[I, O O]" dwt.
In the sequel, similar representations will be used without additional explanation.
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516 H.-F. CHEN AND L. GUO

On the unmodeled dynamics rt,, we make an assumption similar to that used for
discrete-time systems in [8].

Assumption 1. There is a real number e >= 0 such that

(23) ds<= er,, >-0

where

(24)

and

t-- 4SCt(Y, U)- Ix,H,(S)A(S)y, + tz2H2(S)B(S)u, + tx3H3(S)C(S)v,

(25) r, e+ limbs ds.

We also need the following condition on the noise model, which in the discrete-time
case is a standard assumption.

Assumption 2. D(S) is stable and the transfer matrix D(S)C-(S)- I/2 is strictly
positive real.

At first sight, Assumption 1 is somewhat hard to understand and rather restrictive.
However, the following examples show that there is at least one substantial and
important class of dynamical systems that does satisfy this condition.

Example 1. Let the single-input and single-output system be described by the
following system with additive noise:

(26) y, Go(S)[I + txG,(S)]Sut + v,,

where Go(S) B(S)/A(S) represents the nominal transfer function, whereas G(S) is
the unmodeled transfer function and is assumed to be stable and proper.

When the additive noise v, is identically equal to zero, then the system is reduced
to the deterministic one, and it coincides with the model considered (e.g., [6]) in the
robustness analysis for deterministic systems.

Putting the expression for Go(S) into (26) leads to

A(S)y, B(S)u, + la.SG(S)B(S)ut q- A(S)vt.

Comparing this to (7) shows that in the present case

(27) , tzG,(S)B(S)u,.

We now prove that Assumption 1 is satisfied for the system (26). For this the
following auxiliary result is needed. We formulate it as a lemma, as it will also be
used in the proof of the main results to follow.

LEMMA 1. Let E(S) and F(S) be matrix polynomials in the integral operator S,
such that the transfer matrix F(S)E-(s) is stable and proper. Then

[IF(S)E-’(S)xII 2 dz<= c Ilxzll = dz

for any square integrable function {x,}, where c is a constant depending on E(s) and
F(S) only.

Proof Let us write

E (S) I + ES +. + EdSd, F(S) I + F,S +. + FdSa
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 517

and set

7.. sd-Iz, E -’(S)x,, Z, [z, z, ].

Similar to (22) we have

Z, FeSZt q-[x’, 0’’’ 0]7"(28)

with

-E Ed
I 0 0

0 I 0

The above linear differential equation has the solution

Z,=Fe exp{Fe(t-s)}[x2,O" .O]7"ds+[x,O. .0]7".

Since Fe is stable, there are constants c 1 and p > 0 such that

Ilexp (Ft}ll c, e-or tt 0

where here and hereafter ci, 1, 2,. ., denote constants.
It then follows that

IlZll dz<=2llFll exp [F(z-s)][x, 0... 0]7" ds

(29)

and

(30)

exp [-p(z s)] ds exp [-p(z s)]llx,ll ds / [Ix=ll dz

Furthermore, by (28) it follows that

SZ,=(Fe)-’

by (29).
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518 H.-F. CHEN AND L. GUO

Finally, the lemma follows from (29) and (30):

IIF(S)E-’(S)xI[ ds IIz, + F, Sz, +... + F,Sez.[[ ds

[[[I, 0... 0]z, + IF,... Fd ]SZ ds

We now turn back to show that , given by (27) satisfies Assumption 1.
Set

We then have

x,

IIx,ll 2 ds<=l 2 IIB, u+"’ "+BqSq-’u[I ds<=l2car,,

where r, is defined by (25) and ca. is a constant.
Finally, applying Lemma 1 to (27), we find that

IIj[] ds<= iiG,(S)x[[ dsc [[x.,]] ds,2ccr,,

which verifies (23) with e 2cc3.
Example 2. Consider the following system:

A(S)y, SB(S)u, + C(S)v, + S,(y, u).

When the last term is identically zero, this model becomes the continuous-time analogue
of an ARMAX model (see, e.g., [9]-[12]).

It is clear that Assumption 1 is verified if the nonlinear part ,(y, u) is one of the
following forms:, (y, u) e,y, sin (t) + e u, cos (t),

,(y, u) e sin (y,)+ ez sin (u,), ee[0, e], i=1,2,

and so on.

3. Robustness of parameter estimation. We now show that the estimation error is
proportional to the constant e defined in (23) if the input-output data is persistently
exciting.

THEOREM 1. If Assumptions 1 and 2 are satisfied, then

lim sup Ot- 0 ake, a.s.

where a (0, c) is a constant, e is defined in (23), and

k lim sup rt//-min(t) < c

where Amin(t denotes the minimum eigenvalue of
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 519

For the proof of this theorem we need the following lemmas.
LEMMA 2. Under the conditions of Theorem 1, there is a constant ko> 0 such that

tr/p-I/, 0(1)+ 0 IIg,, = ds + O(log r)

I(  tlo 1+2 ko- IIg,]l = as+-c IIO(S)C- S).ll as

where O, 0 0,, gt O, qbt.
Proof. By (7) and (16) it is easy to see that

and hence

(31)

or

(32)

dy, 049 dt + dv, + il, dt

0 49, dt + 0dp, dt + dv, + , dt

(33)

Od?, dt dy, 0 6t dt + O,- 0)6, dt- dvt fl, dt

dt- 0, dt dr,- fl, dt

-d, O;4, dt- , dt

C(S) \--] -g, fl,

Let us now set

Vr/> 0, c>0,

it then follows that

(34)

or ’d--] C-’(S)(g’ + ’0’)"

f, {[.C(S)- D(S)]} , + g_!.
S 2’

f [ D(S)C-l(S) -] gt + {[D(S)C-(S) I]}S

(35)

(36)

From this and Assumption 2 there are constants ko> 0, k > 0 such that

o’
g.{f.,. +[i- D(S)C-l(s)]s kog] as + k > O.

From (10), (32), and (33) it follows that

d, -P,O,O(S)[dy;- oh;O, at]

-P,6,D(S)[dv,-d,]"

-Ptdp,[ dw,- d,- D1 , dt DrSr-1 , dt]

[ C(S)-D(S) ]"-P,49, g, dt + , dt +
S

, dt + dw,

-P,d, f dt +- g, dt + l, dt + dw,
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520 H.-F. CHEN AND L. GUO

Applying Ito’s formula, we obtain

d[tr ff;P? ff,] -2g;[f, dt + , dt + dw,]+ 4,P,4, dt

-2g’{f +[I- D(S)C-’(S)]fl,- kog,} dt

+ 2g[1- O(S)C-a(S)]ft, dt-2koilg, dt

-2g "q, dt-2g dw, + qb,Pc, dt;

then by (35)

(37)

0 <_- tr P-’,

--_tr ;Pgo+ d2Psd,ds+2kl

Io ;o }/2 -ko IIgll2as- gO(S)f-*(S),ds- gdw

Noting the following elementary facts"

2 a:b, ds c [la,[] 2 ds + c-’ Ilbll 2 ds Vc > o,

6P ds tr P ds tr P ae

[" d(det P;)_ O(log
o det PT

and applying the following estimate for the Ito integral (see, e.g., [16, Lemma 4]):

(3a) x: d.=O()+o IIxll ds a.s. > 0,.

for any predictable process (x,, F,), we can easily conclude the lemma from (37).
LMa 3. If Fe defined by (21) is stable, then

(39) -1 o VV2dsR a.s. ast

where V is defined in (19) and

R g exp {Fel }
0

exp {F51 } dl.

Proo Since Fe is stable, there exists a positive-definite matrix P > 0 such that

PFe + F}P -I.

By this and the Ito formula we see from (22) that

I I

d[V;PV,]= V(PF,+FSP)V, dt+tr [I, 0...0]Pd+2VP dw,

I

-I g, de + tr
0

P dt + 2 VP dw,.D
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 521

So it follows by applying (38) that

(40) VTPV,+ IIv,ll ds=tr

Consequently, we conclude that

(41) ff V, as o(t),

Again, by the Ito formula we get

and hence

Pt+o w, 2 as
0

a,So

V,V, V.Vs ds Fd +Fa V,Vds +
0

I

+ dw.V+ Vs dw[I, 0.. 0]

(42)

f VV ds

I

exp[Fa(t-z)] dw,V2+ V, dw2[I,O... 0] ’exp[Fa(t-z)]dz

+ exp [Fa(t- z)] z exp [FS(t- z) dz.

We now consider the first term on the right-hand side (42). By (38), (41), and the
stability of Fd, it is easy to see that there is a constant p > 0 such that

I

exp [Fa.( t- z)] dw.V+ V. dw[I, 0... 0] exp [Fa( t- z)] dz

=0 exp[-2p(t-z)] IIvll = ds dz +O(1)

=0 exp[-2p(t-z)]z/2+n dz =O(t/+) V>0.

Hence the lemma follows immediately from this and (42).
Proof of eorem 1. Since D(S)C-(S) is strictly positive real, C(S) is stable.

Then by Lemma 1 and Assumption 1, it follows that

fo [[D(S)C-(S)h[I 2 ds ecor, for some Co> 0.

Taking c < 2ko in Lemma 2, we see that

(  )Io(43) 0NtrPlN O(1) ko-
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522 H.-F. CHEN AND L. GUO

Then for sufficiently large

~ tr (P-t)
tr O,tN

Amin(t)

(44) < 1____{ ( )Io" }"--Amin(/) O(1)- ko- IIg[[ z as+ O(er,)+ O(log

( ) (  )Iolog r, k
ko- IIgll 2 as+ O(ek)Ok r, -r

Since c < 2ko, the desired result will follow if we can show that r,
We prove this as follows.

From (32) it follows that

V=- exp{F(t-s)}[g+,] ds.

Then by (43) and Assumption 1, we have for some O > 0 and c > 0

II1Qz[ dz exp {F(z s)}[g + .] ds dz

(c,) exp[-p(z-s)][llg, ll+lO.l] ds dz

2(c,)2 exp[-p(z-s)]ds exp[-p(z-s)][llg, llZ+ll,llZ]dsdz

(45) 2o-(c) exp[-o(z-s)] dz [lg+.] ds

2P-(c’) f [[g’l]+ IIsll =] ds

2p-(Cl){O(log r,)+ O(er,)+ er,}

O(log r,)+ O(er,).

Assume the converse were true, i.e., r was bounded in t; then from (45) it would
follow that o zll = d woud be bounded. But by (20) and (25) it is clear that

, zll=,dz v112 dz + [I 2 dz- 2 v: dz.

From this and the boundedness of r, and $’o z = dz, it follows that

o11Wz
11= dz is bounded,

This contradicts Lemma 3. Hence r, , a.s., and Theorem 1 holds.
Remark 1. If in (7) the unmodeled dynamics {,} are identically zero, then we

may take e as zero in Assumption 1. In this case, it follows from (44) that

This result is the continuous-time version of that obtained in the discrete-time case
(see, e.g., [13]-[14]). See also [12] for related results.
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 523

4. Robustness of adaptive tracking. Let {u,*} be a bounded deterministic and
differentiable reference signal with Uo* 0. Our objective here is to design the adaptive
control u,, so .that the output {y,} tracks the output of the following reference model:

E(S)y* :u*,

where E(S) I + E1S +" + EpS p is a stable matrix polynomial.
Similar to (18), we set

Y*t [Y* St’-’Y*, .
By a representation similar to (22), it is easy to see that { Y,*} is a bounded sequence.

From now on, we assume that the upper bound for the order of the polynomial
A(S) is equal to that of C(S), i.e., p r.

Similar to the discrete-time case, we need the following standard minimum phase
condition.

Assumption 3. B(S) is stable.
Let us define the adaptive control ut via the following equation:

(46) 04, dy_.*,
dr"

This together with (1), (10), and (11) form a system of nonlinear stochastic differential
equations, for which the existence and uniqueness of the strong solution is assumed.

THEOREM 2. Consider the system (1)-(6) with p- r, and the estimation algorithm
(10)-(11). If Assumptions 1-3 hold, and the control law is defined from (46), then there
exists el > 0 such that whenever e in (23) lies in the interval [0, e), thefollowingproperties
hold:

(47) limsup (llY, IIZ+llu, a.s.
Tx

and

1;?(48) lim sup - Y, Y*,II dt tr R + 6
T->

where 161 O(e/2), and R is defined in Lemma 3.
Proof. From (13) and (46) it is easy to see that

(49) y,-y,* 3,, Y,*- Yt Q,- Vt.
Note that

(50) rv= ([I g, llZ/ IIg,[l=/ f’,ll =) dt+e.

We have by (39), (45), and (49) that

(51) g, dt= O(T)+ec3rv+O(log rT),

From this, (7) and the stability of B(S), we have

(52) U,[I dt: O(T)+ 6C4rT d- O(log rr)

do So
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524 H.-F. CHEN AND L. GUO

Note also that by (45) and Lemma 3, we have

g, ll dt <-_ O( T) + 2 g, ll2 dt <-<_ O( T) / ec, rT / O(log r.).

Hence, combining (50)-(52), we have

r, <-<_ O( t) + ec6rt / O(1og r,),

lim sup
r,

which yields

with e 1/Y6" Thus (47) is true.

for any e [0, e)

We now proceed to prove (48). From (45) we have for any e [0, e),

(53) - f’,ll dt O l0 r
+ O();

then by (49)

l for-’f Y, r*, )( Y, Y*, ) dt

(54

T v,v; dt + , dt V, + ,V;) dr,

e +e
].

Hence (48) is also true.
Remark 2. if the initial value of the reference signal is not zero, i.e., u 0, then

we may replace (46) by

dz0,
dt

where z E-(S){u-exp (-t2)u}. In this case, Theorem 2 is true for {z}, which
approximates {y} exponentially.

5. Asymptotic behavior of adaptive tracking. In this section we assume , 0 in
(7). For this ideal case we give the convergence rate for the adaptive tracking errors.
it is worth noting that the corresponding discrete-time results have not yet been
established (see, e.g., [17], for related discussions).

LEMMA 4. Let {x,} be any measurable process adapted to {F,}, satisfying

l forlim sup [Ix, [[ dt k < a.s.
T

for some constant kl. en

(55) limrsup’(rg"l lo’g") ii x, dw < a.s.
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CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 525

Proof. Without loss of generality, we assume that x, and w, are scalars. Taking a
constant k2 so large that

(k2) k2 + 2(1 k2) k, > 0, k > 1,

we have

(k2+x,)2 dt>= (x,) dt+(k2):T-2k Ix,] dt

>-_ (x,) dt+(k)-r-k2 T+ (x,) dt

--> k2( k2 1) T+ 2(1 k2) kl T.

Consequently,

o
(k + xt) dt

Now, define the following stopping time:

It is known that

a.s.

r(t)=inf s" (k2+xz)2 dz=

f kz + x. dw.,

is a Brownian motion (see, e.g., [18, Thm. 4.5]). Then by the law of the iterated
logarithm for Wiener processes, we have

(56) (tloglogt)l/ (k2+x.)dws =O(1) a.s.

Denoting

(57) a(t)= (k+xz) dz,

it is evident that a(r(t))= t. Then (56) and (57) imply

Io[a(T) logloga(T)]l/ (k+xs) dw =0(1) a.s.

as T ee. From this and the fact that a(T)/T 0(1), it follows that

1 fo
r

[TloglogT]/
(k+x.)dw =O(1) a.s.

and hence

T log log T] 1/2 xs dw.

1 { kl wl +T log log T]/

0(1) a.s. as T-->,
completing the proof.
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526 H.oF. CHEN AND L. GUO

We are now in a position to prove the following main result of this section.
THEOREM 3. Consider the system described by (7) with 7, =0 and p=r, and

estimation algorithm (10)-(11). IfAssumptions 2 and 3 are satisfied, and if the adaptive
control is defined from (46), then

(58) a.s. as T
\1/

where R is given in Lemma 3 and

l forR= Y,- Y*, )( Y,- r*, ) dt.

Proof. We first consider the convergence rate of 1/T V,V dt.
From (40) it is clear that

Then Lemma 4 implies

lim sup - V 2 ds <= 2 tr
T--

which verifies (58). Hence the proof is complete.

T- (TloglogT) 1/2
o

V, dw < a.s.,

and hence

I

exp [Fa(t- z)] dw, V2+Vsdw2[I,O...O] ’exp[FS(t-z)]dz

O({tloglog t}/) a.s.

Consequently, it follows from (42) that

VV ds- exp {FdS}
0

exp {Fs} ds

(59)

Setting e =0 in (53) and (54), and using (59), we see that

Io [: 0]Rr exp {Fes} exp {FSs} ds

O ({log 1;g T}l/2) 0 (,or) 0 ({1,0r} 1/2)
Io [:0]exp {Fes}

0
exp {F}s} ds + 0

T

REFERENCES

B. EGARDT, Stability analysis ofadaptive control systems with disturbances, Proc. JACC, San Francisco,
CA, 1980.

D
ow

nl
oa

de
d 

07
/1

0/
20

 to
 1

24
.1

6.
15

4.
24

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CONTINUOUS-TIME STOCHASTIC ADAPTIVE TRACKING 527

[2] C. E. ROHRS, L. VALAVANI, M. ATHANS, AND C. STEIN, Robustness of adaptive control algorithm in
the presence of unmodeled dynamics, Preprints of 21st IEEE Conference on Decision and Control,
Orlando, FL, 1982.

[3] B. D. RIEDLE AND P. V. KOKOTOVIC, Disturbance instabilities in an adaptive system, IEEE Trans.
Automat. Control, 29 (1984), pp. 822-824.

[4] R. ORTEGA, L. PRALY, AND I.D. LANDAU, Robustness of discrete-time direct adaptive controllers,
IEEE Trans. Automat. Control, 30 (1985).

[5] G. KREISSELMEIER AND B. D. O. ANDERSON, Robust model reference adaptive control, IEEE Trans.
Automat. Control, 31 (1986).

[6] P. A. IOANNOU AND K. TSAKLIS, A robust direct adaptive controller, IEEE Trans. Automat. Control,
31 (1986).

[7] H. F. CHEN AND L. Guo, Robustness analysis of identification and adaptive control for stochastic
systems, Systems Control Lett., 9 (1987), pp. 131-140.

[8] ., A robust stochastic adaptive controller, IEEE Trans. Automat. Control, 33 (1988), pp. 1035-1043.
[9] H. F. CHEN, Quasi-least-squares identification and its strong consistency, Internat. J. Control, 34 (1981),

pp. 921-936.
[10] J. H. VAN SCHUPPEN, Convergence results for continuous time adaptive stochastic filtering algorithms,

J. Math. Anal. Appl., 96 (1983), pp. 209-225.
[11] H. F. CHEN, Recursive Estimation and Control for Stochastic Systems, John Wiley, New York, 1985.
[12] H. F. CHEN AND J. B. MOORE, Convergence rate ofcontinuous time stochastic ELS parameter estimation,

IEEE Trans. Automat. Control, 32 (1987), pp. 267-269.
[13] T. L. LAI AND C. Z. WEI, Extended least squares and their application to adaptive control and prediction

in linear systems, IEEE Trans. Automat. Control, 31 (1986), pp. 898-906.
[14] H. F. CHEN AND L. Guo, Convergence rate of least squares identification and adaptive control for

stochastic systems, Internat. J. Control, 44 (1986), pp. 1459-1476.
[15] R. S. LIPSTER AND A. N. SHIRYAYEV, Statistics of Random Processes, I. General Theory, Springer-

Verlag, New York, 1977.
[16] N. CHR|STOPEIT, Quasi-least-squares estimation in semimartingale regression models, Stochastics, 16

(1986), pp. 255-278.
[17] P. R. KUMAR, Convergence of adaptive control schemes using least-squares parameter estimates, 1989,

submitted.
[18] A. FRIEDMAN, Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York,

1975.

D
ow

nl
oa

de
d 

07
/1

0/
20

 to
 1

24
.1

6.
15

4.
24

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


