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Absiract. Wo conzider in this paper the problem of recursive identification for stechastic syabems
whan tha noise mosdal does not matiafy the pesitive reel condiilon sesccinted with convergence of
standazd algoritbems, To aveid the positive real condition, adaptive spactral factorization technigues
are axploitad on the basis of a clam of non-standard time-verying vecursive Rivoati equations, The
agymptotic properiies of the Kiccati equations ave studied as a crucial step o the convergance rosulty
of the paper.
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1. Introduction

Congider a random process {z(¢)}, which is ihe ouiput process of a linear,
asympiotieally stable, finite-dimensional system driven by zero mean, stationary -
white noise {v(¢)} commencing in the infinitely remofe past, Then, {z({)} is &
stabionary process with power speetrum matrix

@) = rﬁﬂE[z{t}s"‘ 0y,

It is known that, for some mafrices ¥, H, M and L, @(z) can be expressed by
(e.g. [11): '

D)=L+ H (gl -F") M- M"(z"1] - F)1H, (1.1
- based on which one then ean find W{z) and £ such that
P iz) = W (z) W7 (™), (1.2)

where W (z) is the transfer function of the system penerating {2{¢)} and 2 iz the
covariance of the driven noige {¢(#)}, This tadk is known as apeetral factorization.

Usually, the matrices &', H, M, L are not available; one then uses estimates
F(t), H{t), M(t) and L(¢) consiructed by use of the observation data up to fime ¢
%0 replace them, and solve the corresponding spectral fastorization problem to get
an eslimnsbe W (z) for Wz}, When W,{z) is compuied on-line and recursively, the
task is termed adaptive spectral factorization,

In this paper, we propose an on-line recursive algorithm for computing W, (e).
We give mfficient conditions for convergence of Wi(e) to Wi(z) and rates of
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oconvergenee in terms of those of F(¢), H(#), - to F, H, ---, Then, we apply the
obtained results to the linear regression model and moving average process
identification.

An initial motivation for the present work was the challenga of avording a
gtrict positive real condition for convergence of recursive ARMAX model
identification. Preliminary and incomplete results for this are in an earlier work
[2]. This paper and & companion paper [3] are an atfempt t0 astrengthen the
insights of [2] and place them in a rigorous mathematieal framework. During the
course of this study, thers has emerged the connection that adaptive specsral
factorigation algorithms should be considered as a fundamental building block for
recursive on-line identification just as are recursive least squares algorithms.

2, Adaptive Spectral Factorization Algorithm and Its Convergence

To be precise, let us mssume that {F(), H(4), M(), L(t)} are the same
dimengional estimates of {F, H, M, L} with I.(t) symmetria for all $=0. Define
the estimates &, (2) for the spectrum matrix @(z) as follows:

@,(2) = L(t) +H*(t) (2] - F*(£) 1M () + M~ () [2*] - F()] *H(t). (2.1)

Let us introduce the following recursive Riccati equation for computing
mairices {Z;(5), O<s<[logt], i=1}:

2+ L) =P (1) 2,(s)F(t) - [FT(#) Z,(s) H(E) + M()I[H" (1) 2, (s) H (1) + L(1)]"
FDELVHD)+M(O]™, O0<e<[log?d], t2=1}, Z,(0) =0, (2.2)
where X' denotes the Moore-Penrose peeudo-inverse of a matrix X, and where
[log®t] denoties the integer part of a real number log?i.

Rather than set an estimate £(§) = Z,(s) with 2,(0) = X,_,(s) for some positive

integer s, as is conventional, here we set

5(¢) & 2.([log?s]), 1. (2.3)
The estimabes 3(¢) and W,(¢) for @ and W (g) are then defined by _
G06) = H* () 2(6) H () + L), (2.4)
Welz) =T+H (t) [zl - F* ()] R (8), (2.5)
where
B =[F®2H@)+M()]07(3). (2.8)
Let ua introduce the following conditions for the gpectrum matrix ag defined in
(1.1): :

(A1) @(z) is positive definite hermitian on the unit cirele, i.e., @(g)>0,
g|=1.
o (A2) The matrix quadruple {F, H, M, L/2} is minimal, i, e., [F, H] and
[F, M] are respectively controllable and observable,

{A3) All eigenvalues of F lie in the unit circle, ie., [M(F)|<1, 1<é<m
(dimension of F}.

(A4) The matrix (det )L - M"[Adj F] H is nonsingular.
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We now make soms comments on the above conditions, Oonditions (Al) and

{A2) imply that the transfer function

Ay(e) ~H* (2T -F*)IM
ia strictly discrete positive real. Condition (A3) is the stationary eondition for the
procesa {z(1); mentioned in SBeetion 1, and condition [A4) is the nonsingularity
requirement of @(oa) when det F 0 ginve (det F)I,,~F[Ad] F1,

Recall that & matrix funotion W(z) is termed (asymptobically) stable and
minimum phase if the following two conditions are satisfied:

{1} W (%) has congtans rank in g =1,

(1iy Wg) is analytio in |2/ =1,
and further, if in (i) |¢|>>1 is replaced by |¢|>1, then the term (aﬂympho'hicmll}r)
gtable sirictly minimum phase applies,

Before proceeding with new results, leb us first review some theory on matrix
gpectral faotorization summarized in the following lemma,

Lemma 2.1. Oonsider the power spectrum matriz @(z) defined in (1 1). Asguma
that conditions (Al)-—(A3) are setisfied. Then

(i) There exists a factorization of T(e) as

D(z) =T (z)@W (™), 2.7y
ahere W(z) is a square, real, rational, asymptotically stable sirvictly minémum phase
transfor function matriz W(ee) =1, and Q=0.

Moveover, Wie) with W(eo) —1I and 2 are unigue within the class of asymp-
totically slable, minimum phase transfer function mairices and the class of positive
definite matrices respectively.

{i1) The factorization W (z) and 2 can be sxpressed by

Wizg)=I+H"(zI - F*)K, (2.8}
A=H"XH+L, (2.9

wheare
KL(F EH+MQ1 ' (2.10)

and Z is the limiting solution of ihe following egquation (i.e., Euam )

S =F I F — [F*3,H -+ M] [H*Z,H + L) * [F3:.H + M]"
with Z,=0, and satisfies the following algebraic Riccalé equation:
E=F'ZF-(FFEH+M|[H'ZH+L]'[F'ZH+ M)~ (2.11)

(i) |M(F - HE")| <1, for all i, L<i<m.

Proof. The first conclusion of the lemma follows direotly from Theorem 4.1
and its remarks in [1] (p. 240—241), For the second oconeclusion, we note that
H=(zI = F*3*M +(L/2) is a sbrictly positive real tranafer funotson with minimal
realization {F, H M, L/2}, and hence a stable minimum phase speotral factor
Waiz) of @(z) (Le. @(z) =W, (2) Wi(z™*)) can be congtruoted by ([4], p. T46):

Welg)=[I+H*(zI -~ F ) (FEZH+M)(N"N)*IN~,
where N is such that N7N = H*E H + L. Oomparing this with (2.7) and using the
unirpueness of factorization, we obtain conclusion (i), Finally, conclusion (1) s
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provided in [4] (p. 747).

Remark. We note that the Riccati equation defined by (2.11) eorresponda
to a special variational problem, the solution of whioch may not be unique [4]. It ia
different from the umal one considered in IQ control problems and Kalman
filtering problems, Hence the analysis of the resulting adaptive Riccati equation
(2.2} is completely different from those in e.g. [7].

We now proceed i0 state the convergence resulis of the adapiive speotral
faptorization algorithm defined by (2.1)—(2.6).

As usual, for a complex-valued matrix funotion G(g) which is defined and
bounded on the unit eirele |g| =1, we denote itsa norm by

|G (2) | = P [hune (@ ()G (2)],

where “«" denotes the transpose complex conjugste, When & is a constent matrix,
we shall write

1
1G] = [(Auax (GG*)]T.

Let us denote the estimation error for the realization {F, H, M, L} by d4(t),
ie,

A(p)= | [F(¢), H(s), M(2)] - [F, H, M]j+|L(2) - LJ. (2.12)
It is straightforward to show [see next section (3.6)] that if 4(¢)—0, then for ¢ ()
and @,(z) defined by (1.1) and (2.1), there holds
|Pi(2) —@(e) |.=0(A(2)), asi>oo,
We now proceed with the main purpose of this paper, which is to establish
convergence rates of the adaptive speetral factors W.(z) to W(z).

Theorem 3.1. Oonsider the adaptive spectral factorization algoréthm dgfined by
(2.1)—(2.6). Assume that the power tpectrum matric (z) defined by (1.1) satisfies
conddtéons (AL)—(A4). If 4(i)—0, then the fullowing convergencs rates hold:

[Wi(=) - W (@) |a=0(4(2)) +0(s7="r") (2.13)
and
1G(4) - Q] =0(4()) +0(E™*") (2.14)
for soms pesitive constant a >0, where {Q, W (z)} are given from the uniqus spsciral
faetorization specifisd in Lemma 2.1, and where A(t) ds definad by (2.13),

Bemarks. (i) We remark that Wf{:} is generally noi a speotral factor of
@, (c) defined by (2.1), henoe the existing resmlts on continuity of spectral
factorizations (e, g, [8]) can not be direcily used in t_he present case,

(ii) Actually, there are many ways to define 3(#), for example, if £(3) is
defined as _

25 =281 >0,
where d(#) >0 is any sequence such that d(t+1)>d(t) and d(f)—>oo, then the
resulting convergenoe rate is now O(A4(t))+4-0(e™™") for some a=0,
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3. Convergence Analysis of the Algorithm

For the proof of Theorem 2.1, we need to establish the following results,

Lemma 8.1. Oonsider the specirum estimates B, (z) defined as dn (2.1), Cunsider
also that the conditions of Theorem 2.1 apply. Then for approprictely lavgs & (say
=1y, Bye) has the following unigque faetordzaidon:

@y(2) =W, () QB WT(a™), (3.1)
awhere W,(z) de the (asymplotically) stable, sivietly mintmum phases spactral fact v with
Wi(os) =1 and Q(t) =0, Further, Wi(z) and Q(#) can be expressed by

W(e) =1+ H7(t) (eI - F*(t)] K (1), (3.2)
Q) =H~*($H Z @) H () + LD, (3.3)
whera
E(t)= [F*() Z(8) H () + M) ]27(¢)
and X(f) satigfies the following algebraie equation:
S)=F () Z()F () - [F(0) () L&) + M ()]
[HT@IWH($)+ L)) [FT(HI () H () +M($)]". (3.4)
Also, |M[F@) - H@EK*(#)1| <1 for oll 6 and all t=t,, and 25(1) has the following
« nreTgencs rales:
[E(8) - 2 =0(d(®), #>ee, (3.6)
where I is given in Lemma 2.1, and A(#) ds defined by (2.12),
Proof, We first establish the following estimation property mentioned in
Section 2

|De(2) — P(2) E=0(4(H)), >0, (3.6)
For this, we nead only to show that
|07 (#) [z - F($)] 7 H(4) - M* (7] - F] 7' H | .= 0(4(t)). (3.7)

Note that
[z -F($)] - ("I -F) .
=l [z7 I - F(&] [ (3) - F] [z - F] .
< T -F()1 |t | F ) - Fle 27 - F1 7. (3.8)
Since F(t)—F, for appropriately large { we know that |A,[F(¢)] | <1 by eondition
{A3). Uonsequently, we have the following expansion on [z| =1:
[ - F($)) e D[P (B (3.9)

We need the following fact: if matrices G converge %o a matriz G with
|%(G)| =1, then there are constants A& (0, 1), %>=0, and ¢>>0 such that ([5], p.
191):

[[G) | =el, YWhs=ke, Viéz=0, (3.10)
By (8.10) from (3.9) it is evident that for large ¢
[ - F{$)]7|.. is uniformly bounded in £, (3.11)
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Bo, by (8.8) it is olear that as {—»es,

(eI = F(£)] 7 = (221 = F)2| .= 0(4(2)). (3.12)
By (3.11) and (3.12) with some simple manipulations, it is readily shown that
(3.7) and hence (3.6) hold,

Note that $(z) is analytic on |z| =1, so that by (3.6) and condition (Al) it s

evident that on |z| =1,

Dy(2) =Dz} + [D(e) —D(2)]

>min A [B()] -1 ~ [Bi(e) - B()]-T

=1 min A [0(£)17>0

provided that ¢ is appropriately large. Therefore, from here and A4(f)—0 we know
that there exists some #,>-0 such that for all ¢=>14, @,(z) satisfies conditions (Al)—
(A4) with &(z) replaced by ®;(z). Hence, Lemma 2.1 is applicable 40 @;(z) for
t=t, and then all conelusions of the lemma except (3.5) follow immediatley,

We now proceed to prove the last conclusion (3.5). First let na establish
convergence,

Substitnting (3.2) into (3.1) and applying (2.1) and (3.9), we find that for
=,

L#) =il—1cfa By(2)a-2dz

-0(t) 2 ﬂiﬁﬁa H () (eI - F*())]K () Q) E*(3)
(2 I -F(#)] H(t)z  de
-0+ ui:{, H*($)[F*($) 'K (#$)Q) K~ () [F(H)1'H (1),
where j&~/ -1 and the integral is around the unit circle |z| =1. From here we
have

m=1

L) > Q) +3r S QF () K7() [F($)1'H (6) H* @) [F* () 'K ()07 (£)

=trQ(8)+[ir K () Q(H) E(1)] '?'--su(-gl [F(i}]'H(t)H'(i){F'{t)]')
(8.18)
Bince [F(#), H(#)1—=[F, H] and [F, H] is controllable, it is evidens that
lim 8y (3 OF O H H*G) [P (1)) >0.

Ho from here and (3.18) it is known that both the sequence {Q(#)} and the sequence
{E (#)Q(#) E*(£)} are bounded. We now rhow that {K(#)} is also a boanded
sequence, For this, by (3.18) it suffices to show that

inf hun [Q(#)] >0, (3.14)

Again, substituting (3.2) into (8.1) and noilng (2.1) we have the following
identity.
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L)+ H7(8) [ ~ F*(£)) M)+ M*(§) [+ - F(8)]2H ()
w { L HY($) [2l — F7 ()] 7K (4 M) {I -+ K7 (1) (27 - F(t)) " H(t)}.
From here by uss of the following relation
[+ - B (#)]* = Adj[=I - F(8)]/des[] - F7(¢)]
it then follows that
Lit)det[el - F*(£)] 2] - F ()] +H*($)Adj[=I - F*($)]1 M (#)det[272] — ()]
+M (8 Adjle™] - F(&) ] H () det[2 - F7($)]
={det[z] - Fr{$)]1I+H*$)Adjlel - Fr{)]1E ($)}Q(#) {det[T - F($) ]I
+E ($)Adj[z I -F(i)]H(E) ).
Recall that F(t) is an m »xm matrix, Jomparing the coefficienta of z® on both
gides of the preceding identity il is not diffieult to show that
L(t) [det F(£)]- (- 1"+ M*"($) [AdjF ()1 H (e} (- 1)
=08 -1 det F(#) I+ -1)" K (£) [AdjF ()] H(L)}.
Then it follows that

Q3 (1) (@ (1)det F(#) - 0F () K*(1) [AG F ()1 H (1)}
= [det F ()] L{&) - M (¢) [AdjF($)] HU)}:?D (det F1L-M*[Adj F]1H
(8.15)
whioh is nongingnlar by condition (A4),

Sinoe both {€* (1)} and {Q%(¢) K (¢)} are bounded sequences, from (3.15) and

the nonsingularity of ita limit, it is evident that any limit points of {.llli’-‘1 ($)} are
nongingular. Consequently, we conclnde that any limit points of {Q(t)} are
nonsingular, From this, it is easy to conelnude {3.14) and hence the bonndedness of
{K ()},

Next, we show that )

K (#)—K and Q(t)—0, (8.16)

where K and 2 are given in Lemma 2.1.

Let {K', ('} be any limit point of {K (¢), ()}, It is known from the ahove
that £'=0,

Without loss of generality, we assume

lim K () = K*, lim Q(t) -2,

Taking limits on both sides of (3.1), (3.2) and noting (2.7}, (8.7) and (3.8)
we have
W(z)QW* (e ) =W'(e)@ W™ (=),
where
W e)—=I+H*(zI - F*)'K". (2.17)
Mote that for all =>4, W,(2) iz asympiotically stable and striotly minimom phase
with W,{ee)— I, Yizt,. Evidently, its limit, W' (z) with W' (ee) =1, is asymptotic—
glly stable minimum phase, Hence by the uniqueness of fastorizations we know that
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Q'=0, Wi()=W(). (3.18)
We now show that K'=K. By (2.8), (3.17) and (3.18) it follows that

ﬁ; Hr(F*) K" —i}} H*(F*)'E's*, |z| =1.

[ E]

- Hr
[ H’F"’ }E‘=J: H".F' }E"
Hi{jﬁjm—l H*r{j'r:l,m—i-

and consequently K = K' by the controllability assumption of [F, H],

Thus, we have shown that any limit point of {K (1), 2(¢)} concides with {I,
Q}. This proves (3.16).

Now, by the definiiion of K () and Q(f) we see that Z(t) defined by (3.4) can
be rewriiten as

This implies that

E(@)=F () XZ(8)F(3) - K($)Q($)K*(t)
or

W)= -FFOIE@AOE O FW®], >k (3.19)

Now, by use of (3.10) and the boundedness of {K(t), £2(¢)} it i3 readily shown
that the series in (3.19) is uniformly eonvergent in i=>#,, 20 by taking the limit
wa got
() g - 2 (P)'EQEF'= 3, (3.20)
where I ig given by (2.11).
We are now in a position 1o establish the eonvergence rate (3.5).
Since Z{4)—=% and 4(#)—0, from (3.4), with some manipulations it ia easy to
g06 that
() =F($)Z(1)F(t) -K(#)Q#) K~ ($)1+0(4($)), (3.21)
whera
E()=[FE(t)H+MQYt), (i)=H " Z($)H+ L. (3.22)
Consequently, by (2.9)—(2.11) and (3.21)—(3.223), it follows that
3(8) - B=F [3(t) - S1F - K@)Q() K (1) + KQE*+0( 4(t))
—F'[E() - Z1F - K@) E"(1)+ EQE"+ K [Q - Q(#)) K" (8)
+KH[E(s) - Z1HE"(3)+0(4(8))
=F*[E(t) - Z1F - [K($)Q(t) -EQ)E"(3) - K[Q(#)E*($) - QK]
+ K H[E() -Z1HE*(#)+0(4(8))
=(F-HE")"[5() - Z][F - HE"(1)] +0(4(#)), (3.23)
Now by (3.20) and (3.22) we know that
F_HE'{‘};_._;F -HK"
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which satisfies |M(F - HK"} | <1 by Lemma 2.1, Bo from (3.23) and inequality
{8.10) we sea that for sufficiently large ¢,

I() - = ';_?_’;? [F— KH)O(4(8)) [F- HE*($)]*=0(4(8)).

This proves the last eonclusion of Lemma 3.1 and the proof of the lemma is
completad,

We are now able to prove Theorem 2,1,

Proof of Theorem 2.1, Since for suffieiently large £, {F{£), H(#), M(t),
Li(4)/2} ia a minimal realization of M~(#) [~ - F ()] *H{{)+ L{$)/2, which is a
discrete positive real transfer funetion (see Lemma 3.1), for any sufficiently large
but fixed & applying a result in [4, p. T45] we know that 2,(s) defined by (2.2)
monotonically deereases in § and Z,(s) =X (#), for any s=0, where Z (i) is given in
Lemma 3.1, Consequently, for appropriately large &, [H*Z(s)H+L{$)] is non-
singular for any s=0, By (2.2) and (3.4), a similar freatment as used in the
derivation of (3.23) leads to

Zy(s+1) - Z(H) = [F(t) - HOK*(£)]" [E(s) - 20 [F @) - @) Kis)],
3.24)
for sufficiently large ¢ and any 2:=0, where
K(s)=[F(t) 2, H (1) + M ()10 (5),

Q,(s)~H () E,(s)H(#)+ L3).

Now, note that
F(t)- H)Ki(s) =F (i) - H()Q7 (8) [H™(8) 2,(s) F ($) + M ()]
=F(t) - H(#)Qr' (s} H*(¢) [Z,(s) - Z(D]F ()
H (807 (s) [H(8) E()F () + M7 (2)]
={I-H@Q7 (s)H(t)[Z(s) - E(8)}- F(1)
- H({I -0 () H (#) [2.(8) - S} HB)IK (1)
={I- HOQ (s)H*(2) [£:(s) - 2(1)]}
[F(t) —H{#)E"(#)].
SBubstituting this identity into (3.24) and noting the fact that for sufficiently
large t, Z(s) — () ==0, Ye=0, and 0,(s) =0(t) =0, Y&=0, we then have
Zya+1) - Z()=[F(t) - H$) K (t)]"[Z:(e) - Z(HI[F () -HEE ()]
<[F(1) - K@ ()] 15(0) - EWIIF @) - HO K (8)]™.
Again by the convergence of K (#)—>K, 4(1)—0 and |[A(F~HK")|<<1l and
inequality (3.10), from here it {ollows that
2@ - 2(0) = Z([log®®] - 2(8)
=0(A*log*t), AE(0, 1),

=0(t """, a=log -:-Eg-}ﬂ.

ﬂuns&;uanﬂy, by Lemma 3.1 we ses that
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2@) - B=[Z() - 2]+ [Z(#) - Z]=0(4()) +0(¢=ler?), (3.25)

To eomplete the proof of Theorem 2.1 we nead to establish similar eonvargenoa
rates for W,(z) and @(1), i.e., (2.13) and (2.14),

By the definition (2.4) for §(1) and (3.25) it is obvions that the conclusion
(2.14) holda,

Ry the definition (2.6) for £(#), (2.14), and (3.25) it is evident that after
gome gimple manipulations,

VR (2) - K| =0(A(£)) +0(gat),
where K is given in Lemma 2.1, From here and (3.12) and the expressions (2.5)
and (2.8) for W,(z) and W(z), it is elear that
[Wi(2) —W () lw=0(d(#)) +O ("),

This completies the proof of Theorem 2.1,

4, Application to Linear Regression Model Identification

Let us consider the following I-dimensional linear regresion model:

y(t) =box(t)+8(t), £=0, (4.1)
where y(1), 2(¢) and 8(¢) are the -, p~ and l-dimensional observation veotor,
regresaion vector and modelling error respectively, and where 6, the I xp nnknown
parameter matrix,

Assume that the system noise a(3) is a moving average process

a(t) —w(t) +Cw(t—1) -+ Caw(t - r) (4.2)
with unknown matrix coefficient (;, 1= j<r, where the driven noise {w(t)} is
assumed to be a Ganssian white noise sequence and

Bw(t)=0, Bw(fuw"(t)=R,>0, =0, (4.3)

Let ns denote
O(e) =I+0z  +e+027". (4.4)
To identify the unknown parameter #p and the unknown noise model O(z) and

R, consider the introduction of a Gaussian white noise sequence {v(¢)} which is
independent of {w(i)} with properties

Ev(#) =0, Ev($)v"($)=oil;,, oi=0, (4.5)
Define the “pre-whitening™ process {z(1)} as
#(8) =y (8) +v(t) (4.8)
snd consider the following predietion error algorithm:
B(t+1) =B(8) +P (&)W () [2* (4+1) - (£)H(1)], (4.7)

) Pt - D) () Pt - 1)
P()=P(t-1) - 1+¢'I:ﬂJP%—-1}¢{#} , P(0)>0, (4.8)

P () = [27(8), 2" () ~ " (- 1)0() e, (b -7+1) - (E-r+1)]"
(4.9)
together with the following estimates for the covariance of the predietion errora:
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(there is a recursive form for Be(t) also).
Lt us denote
QY —o{a(i) +u(t), =<t} (4.11)
and asmme that the regression veetor {@(f), F;_,} is any adapted random sequence,
where F; is defined by
Fi=a{@F?1G}} (4.12)
with {G}} belng any family of non-decreasing o-algebras such that & is
independent of G4 for any i=0.
In [3] we have established the following convergenoce results,
Lemma 4.1. For the model and algoréthm desoribed by (4.1)—(4.12), éf in the
pre-whitening of (4.5)—(4.6), o} is chosen to savisfy
T Rl + | [Or 0] [* = A (R
ihen the following convergence raies hold:

(i) 1&@+1J-Eﬂ=@h%} 8.8, 1—>c0, (4.18)
(i) | Ba(t) - Rel =0 | L‘%&%gﬂ-]q-ﬂ [%ﬂ] (4.14)

Here
8= (6o, Dy, ++, Dy]" (4.15)

and {D,, 1<i<r, Ry} sabisfies

D(z) Re D™ (27™") = 0 (2) RoC* (2™ ) + 021 (4.16)

with
D) &I +Dw™ 4+ D™, (4.1

Here lgo, dpyx (8) [Muw (£)] denctes the mazimum (miénémum) eigenvalues of
S @U@ eI, 030,

Now we nse tha resnlts of the present paper to show how to recover the original
noise model O{z2) and R,
For this purpose, let us denote

@(2) =0(2)RO"(27Y) (4.18)
v L My ooe - Moz~" 4 Mg 4o 0e - M7, (4.19)
Bet
0 I u‘| 0 M,
Fe . , H=| - |, M=| - | (4.20)
" IJ . .
0 0 I M,y

Thm @i(z) can be expressed by
@() =L+ H (eI - F7) M+ M* (37T - F) *H. (4.21)
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In order to find estimaies &;(z) for $(z), let us write §(s) defined by (4.7) in
ita component form
8(8) = Ba(®), Du(s)--De()1" (4.22)
rnd set
Di(e) = I+ Dy(8)z 4+ D ()2, (4.23)
Then we can fnrmuiata';ﬁ,(z} as
& (2) = Dy(2) R ($) D7 (27 - 021
AL M (e e+ M ()27 M (2t 2 MT(1)e" (4.24)
which also can be expressed by
Fi(a) =Lt +H (sl - F)y ' M{t)+M"(8) (s I-F)'H (4.25)
with
M(3) = [M7(3)-M7(2)]". (4.28)

We now have the following results:

Theorem &1, .Assume that the conditdons of Lemma 4.1 are applied, that én the
adaptive speciral factorizetion algorithm (2.1)—(2.6), F(t)=F, H(t)=H and F,
H, L(t) and M (t) are specified én (4.20), (4.24) and (4.26), and that the following
oonditions are satisfied:

(i) O(g) 45 gtréetly mindmum phass and det Cp 50,

(11) 108 Amex (8)/Aaia (£)7220, 10G sz (£)/6-500.

T hen,
HW*(E}_G(S:L‘H([%;{EL]é)+G E?_‘:ﬁl)r
12(8) - R =”(f :-‘_,?::E;f” ]é)+ ”(ﬁ?ﬁ),

where W(e) and ((t) are given respectively by (2.5) and (2.4),
Proof, Lemma 4.1 guarantees that

a9 = o[ 1B 2=:t) ]‘zr)+ o(1E2en)

Henoe for Theorem 2.1 to apply we need only to verify that conditions (Al)—(A4)
are satistied in the present case, Dut this is straightforward since det (%0 ensures
det M, 0, which in iurn ensures the observability of [F, M] and condition (Ad),

5. Application to Moving Average Model Identification

Consider the following moving average model M.A{r):
yit)=w(t) +Cww(i—1)+-+C0m(t-r) (6.1)
with unknown coefficients O, 1<é<r, and noise covariance R, and withont Ioss of
generality take C'(2) t0 be minimum phase,
Of eonrse, the model (6.1) is a specialization of the linear regression model
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(4.1). But, here we ghall show that in this pase there is no need to add white noise
{v(}} info the algorithm, the conditions imposed on {w(f)} are weaker, and the
results are stronger,
To be precise, let us assume that {w(i), F;} is a stationary ergodic martingale
differenoce sequence with
B w@w(#) | Fi] = B,>0 (5.2)

E[lw(4)]*| F+-.] =constant<_co, (B. 3}

Let ';!-"(z) be defined also by (4.18)—(4.21), In contrast with the precedin
section, we now formulate the estimates L{¢) and M%) for L and M, as follows,

and

Lu}rléyfs)m), (5.4)
M) =1 Dy(yr(s-4), 1<i<r, (5.5)

and set -
M) = Mty MT(1)]", . d (B.6)

Theorem 5.1. Congider the M A(r) model as deseribed above. Tonsider also that
in the adaptive spectral factorization algorithm (2.1)—(2.8), F(i)=F, H(i)=H
cand B, H, L(t) and M(t) are specified in (4.20) and (b5.4)—(5.6), If O(z) defined
by (4.4) de strictly mindmum phase and det O, +£0, then

1#2(2) —cczjlm—o([ﬂ%“‘i]‘l), as.

m 1
16¢t) - Rul =0 ([EEL]T), as.

Proof. TFor Theorem 2.1 to apply, we need only fo show ihat A(t) defined bj'
(2.12) satisfies

A@) = D( IIJE:GE#JE’ 2. (5.7)

Note that with {y(#)} given by (5.1) and L, M, defined in (4.19),
L=Ey@®y (6], M=Eyy (¢-6)].

Also, -with L{1), M(t) defined by (5.4)—(B.5), by the laws of the iterated
logarithm for stationary ergndm martingales ([6]) i1 is readily seen that

L) - 1] -0 ([EEL 1""'3-'*] ) a.s.
| M.(2) —M‘u=a([~1°%‘ﬁj ) 2.,
which imply (b.7), and the proof is completad.

6. Conclusions
In stochastic eystem identification, extended least squares algorithms converge
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under & positive real condition on the soloured noise model. Here, algorithms hased

on adaptive (recursive, on-line) spectral factorization are studied which converge
whether or not the positive real condition is satisfied. By seiting ap a specific form
for the adaptive spectral factorization, it is shown that there is no compromise on
convergence rates naing this approach, There is, however, a ocomputational ocost as
the time index { becomes large, being of the order of log#. In algorithms with
computational cost invariant of #, there is a mild convergence rate cost,

1]
(2]
[z]
[4]

[51]
(61

[73
2]

References

Anderson, B. D, O. and J. B, Moora, Cptimal Filtering, Prentice Hall, Ino., Engloweod Cliffa, M. J.,
1979, .

Moore, J. B., Bide-stepping the positive resl restriction for stochastic adaptive schemss, Hicherche IM
Automatica, 8 (1082), B01—523,

oo, L, L. Xia and J. B. Moors, Robuat recursive identifeation of multidimaneional linaar regresiion
models, Internationsl T, Control, 48 (1088) ,901—070.

Andarsen, B. D, O, E. L, Hitz and M. D. Dicm, Recursive algerithm for spectral factorization,
IEEE Trans. Cirewits and Bystems, QAB-21 (1074), T43—T5D.

Ohen, H. I., Recursive Estimation and Control for Stochastic 8yetems, John Wilay, New York, 1985,

Btout, W, F., The Hartman—Wintner laws of the iterated logarithm for martingsles, dan. Math.

Statistics, 41 (1070), 2158—160,

Chen, H. F. and L. Guo, Optimsz] adapdive control aod coosistent parameder estimates for ARMAX

model with quadratic cost, IAM J. on Conirol and Optimisation, 25 (1987, 845367,

lancay, E. and T. Ochherg, Factorization of Matriz Funciions and Bingnlar Integral Oparators,
Birkhansar Verlag, 1951



