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Lp-STABILITY OF ESTIMATION ERRORS OF KALMAN 
FILTER FOR TRACKING TIME-VARYING PARAMETERS 
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SUMMARY 
The Kalman filtering algorithm, owing to its optimality in some sense, is widely used in systems and 
control, signal processing and many other fields. This paper presents a detailed analysis for the L,- 
stability of tracking errors when the Kalman filter is used for tracking unknown time-varying parameters. 
The results of this paper differ from the previous ones in that the regression vector (in a linear regression 
model) or the output matrix (in state space terminology) is random rather than deterministic. The context 
is kept general so that, in particular, the time-varying parameter is allowed to be unbounded, and no 
assumption of stationarity or independence for signals is made. 
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1. INTRODUCTION 

Consider the time-varying linear model 

yk = (p& + v k .  vk 2 0 (1) 

where yk and Uk are the scalar output and noise respectively and (pk and Ok are the r- 
dimensional stochastic regression vector and the unknown time-varying parameter 
respectively. For simplicity of notation, denote the parameter variation at time instant k by wk: 

W k 8 e k - e k +  v k 2  1 (2) 

In the special case where uk is a moving average process and (an consists of input-output data, 
i.e. 

PkT = [Yk-1  ... Y k - s  Uk-1 ... U k - t l  

with uk being the input signal, then the linear model (1) is reduced to the ARMAX model with 
time-varying coefficients. 

Tracking or estimating a system or a signal whose properties vary with time is a fundamental 
problem in system identification and signal processing. This problem has received considerable 
attention in the field of signal processing (see e.g. References 1-7), where most of the works 
are concerned with the study of the so-called least mean squares (LMS) algorithm or the 
normalized gradient algorithm, and usually some sort of stationarity and/or independence is 
required. In contrast to this, few precise studies have been done on the time-varying parameter- 
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tracking problem in the area of system identification, and most of the works are concentrated 
on the constant-parameter case, i.e. w k  = 0 in (2) (see e.g. References 8-10). 

Note that if we regard (1) and (2) as a state space model with state 6k, then it is natural to 
use the Kalman filter to estimate the time-varying parameter 6 k  (see e.g. References 6 and 
11-14). The Kalman filter takes the form 

where PO 2 0, R > 0, Q > 0 and 80 are deterministic and can be arbitrarily chosen (here R and 
Q may be regarded as the a priori estimates for the variances of Uk and Wk respectively). 

It is well known that if (Pk is gk-1-measurable, where 9i-I = o(yi,  i < k- 11, and ( W k ,  Uk)  

is a Gaussian white noise process, then 6 k  generated by ( 3 )  and (4) is the minimum variance 
estimate for 6 k  and P k  is the estimation error covariance, i.e. 

8k = E ( 6 k  I g k  - I ), P k  = E(8& I g k -  1) ( 8 k  = dk - 8 k )  ( 5 )  

provided that Q = E ( w k w k T ) ,  R = Eu;, 80 = E 8 0  and PO = E(808of) (see e.g. References 15 and 

In studying asymptotic properties of the above algorithm, the primary issue is to establish 
boundedness (in some sense) of the tracking error 8 k .  This problem is obviously related to the 
stability theory of the Kalman filter, and the standard condition for such a stability 
(boundedness) is that the regression vector p k  is deterministic and satisfies 

(16). 

for some positive constants a, P and integer h (see e.g. Reference 17). 
As pointed out by Guo," condition (6) is mainly a deterministic hypothesis; it excludes 

standard stochastic signals, including the Gaussian signal and white noise signals, and hence 
(6) is unsuitable for the stability study of the Kalman filter when p k  is a random process. To 
the best of our knowledge, the first result which guarantees the stability of (3) and (4) and 
allows ( p k )  to be a large class of stochastic processes appears in the recent work of Guo,'* 
where it is assumed that ((ck, g k )  is an adapted process ( S k  is any family of non-decreasing 
o-algebras) satisfying 

for some constant a > 0 and integer h. 
In this paper we will weaken condition (7) and generalize results in Reference 18, and at the 

same time provide new results and insights. The paper is organized as follows. In Section 2 
we present our main results. Section 3 provides some lemmas and establishes the properties of 
( P k )  . The proof of the theorems is put into Section 4. Finally, in the Appendix the proof of 
auxiliary results which are used in the text is provided. 

2. MAIN RESULTS 

In the sequel the norm 11 XI[ for a matrix X is defined as 1) X(I = (h,,,(XXT)) '", and 
Am,,(X) (Amin(X))  denotes the largest (smallest) eigenvalue of X. Let us first give a definition. 
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Defrnition 1 

called &-stable (p > 0) in the sample average sense if 
A random vector sequence (xk, k 2 0) defined on the basic probability space (a, S, P) is 

SUP E )I xk 11' < a~ 
k)O 

and in the time average sense if 

l k  
SUP - C 11 x iJ Ip  < QO, p > 0, as .  
k > O  k i=o 

We now give the main condition that will be used in the paper. 

Condition 1 

of non-decreasing a-algebras) and there exists an integer h > 0 such that 
(pk, &) is an adapted sequence (i.e. pk is &-measurable for any k, where [ &) is a family 

Here ( a m ,  gm) is an adapted non-negative sequence satisfying 

where ( v m ,  &) is an adapted non-negative sequence, 

and where a 6 [0, l ) ,  0 < 6 < 00 and 0 < M < 00 are constants. 

Remark I 
At first glance, Condition 1 looks rather complicated; however, it does have a clear meaning 

and is satisfied by a large class of stochastic signals. Note first that if in (9) we take a = 0 and 
q m  = a-' for some a > 0, then (8) reduces to (7), which is weaker than (6), and hence 
Condition 1 includes (6) and (7). Next note that the sequence (ak) required in (8) may not be 
bounded in the sample path and hence the matrix on the LHS of (8) may not be uniformly 
positive definite, so (8) is really weaker than (7). 

Let us further illustrate Condition 1 by the following examples. 

Example I 

Let (pk) be an r-dimensional +mixing process; that is, there i s  a deterministic sequence 

(0 1$(h) -+0  ash - roo  

( 4 ( h ) ,  h 2 0) such that 
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where, for any non-negative integers s 2 0 and h 2 0,  3% ii U ( ( D k , o  < k < s) and 
c + h  4 U ( ( D k , s +  h < k <  00). 

Suppose further that 

Then Condition 1 holds with S,,, = 9-Z. 
The proof of this example is given in the Appendix. We remark that any h-dependent 

random process (including moving average processes of order h )  is +mixing. This kind of 
condition has been previously used, for example, by Eweda and M a ~ c h i , ~  Macchi4 and 
Kushner" in their study of the LMS algorithm. 

Example 2 

Let ((Dk) be the output of the linear stochastic model 

X k = A X k - l + B & ,  v k 2  1, EIlxoI15 < 00 (12) 

p k  = C X k  + fk, V k  2 0 (13) 

where A € R" ', B E R" 
is output-controllable in the sense of Fortmann and Hitz. 2o 

and satisfy 

and C E R r x  are deterministic matrices, A is stable and ( A ,  B,  C) 

Suppose that [ ( k )  and I l k )  are independent processes which are also mutually independent 

EEk = 0,  E f k  = 0 (14) 

for some constants E > 0, p > 0 and A4 > 0. Then Condition 1 is fulfilled. 
The proof is given in the Appendix. It is worth noting that it is generally hard to show that 

((Dk) defined in Example 2 satisfies condition (7) unless the noise process [ ( k ,  f k )  is assumed 
to be bounded (see Reference 18, Example 2). We now present the main results of the paper. 

Theorem 1 

which satisfies for some p > 0 and /3 > 1 
Consider the time-varying model (1) and (2) .  Suppose that ( U k ,  W k )  is a stochastic sequence 

where z k  = 11 Uk 1 1  + 11 W k + l I ( ,  J0 = eo - e0 and Uk,  W k ,  eo and 80 are given by (1)-(4) 
respectively. Then under Condition 1 the estimation error ( e k  - 8 k ,  k 2 0) generated by (3) and 
(4) is ,&-stable in the sample average sense and 

( e  + G91 lim sup E (1 6 k  - 8 k  ( I p  < A [up log 1 + 3 p / 2  

k - t w  

where A is a finite constant dependent on h,  a, M ,  MO and 6 only. 
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Moreover, if uk = 0 and wk = 0 (i.e. 6 k  = &), then 

E ) I  & - 8k )lP-+O as k -+ 00 

E (1 O k  - I% 1) -+ 0, exponentially fast 

for any q € (0, p ) .  

The proof is given in Section 4. 

Remark 2 

stability of (& - &) , condition (17) can be replace by a weaker one: 
If in Theorem 1 (pk]  and ( u k ,  w k ]  are assumed to be mutually independent, then for the Lp- 

SUP EZf < 00 
k>O 

This condition is obviously a natural one for the desired L,-stability. What condition (17) 
effectively means is that if the independence between (pk) and ( u k ,  wk] is removed, then the 
&,-stability of (& - &) is still preserved provided that the moment condition (22) is slightly 
strengthened. 

Next we present a result on the time average of the estimation error ( k  - 8 4 .  

Theorem 2 

Consider the time-varying model (1) and (2). Suppose that [uk, wk] is a stochastic sequence 
and for some p > 0 

Then under Condition 1 ( & - 8 k , k  201 is L,-stable in the time average sense for any 
q c  ( O , P ) ,  and 

(24) lim SUP - C 11 8i - Oi 1)‘ < B ( E ~ ) * ’ ~  

where B is a finite deterministic constant depending on q, h,  a , M ,  MO and 6 only. 
Furthermore, if Uk = 0 and 13k = 80 ,  then 

l k  
k-a, k ;=o 

8 k  -+ eo, as . ,  exponentially fast (25) 
The proof of this theorem is also given in Section 4. 
We remark that both Theorems 1 and 2 are significant extensions of those in a recent work 

of Guo. l8  For example, Guo l 8  has only studied the Lz-stability of ( 8 k  - Ok) , for which he has 
assumed that 

sup EZk3+P < 00 
k > O  

while here for such a stability we only need 

sup EZt [log( e + &)I 3 + 8  < 00 
k20 

where > 1 is a constant. 
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3 .  PROPERTIES OF ( P k ]  

In this section we establish some properties of I & ] ,  which is a basic step in the stability study 
of ( e k  - e k ] .  To this end we first give some lemmas. 

Lemma I 

Let (a,, Sin) be an adapted random process satisfying 

a m  C [O, 11, E ( a i n + l  I g m )  2 1 / a m ,  v m  2 0 (26) 

where [a,") satisfies properties (9) and (10). Then there exist two constants C > 0 and y E (0, 1) 
such that 

f l  

, v n > m > O  (27) n - m + l  E ( l - a k + l ) , < C y  
k = m  

where C and y depend on a,  M ,  MO and 6 only. 

The proof of this lemma is given in the Appendix. 

Lemma 2 

Let ( x k ,  &k) be an adapted non-negative random process satisfying 

X k + l  < ( 1  - a k + l ) a X k  + c, vk  2 0, XO'l (28) 

where ( a k )  is defined as in Lemma 1 and a and C are finite, positive constants. Then there 
exists a constant a* > 1 such that when a E [ 1 ,  a*) 

where C' is a constant. 

The proof is also presented in the Appendix. 

Lemma 3 

Let ( p k ]  be generated by (4). Then 

where 
mh-1 

k = ( m -  I)h 
Tm= t r P k + l ,  To = 0 

d =  t h(h + 1)trQ 

and where h is the constant appearing in Condition 1 .  

(32) 

(33) 
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Proof. Note that by (4) 

P k  Q P k - 1 - k  Q Q ... Q P m h  + hQ (34) 

holds for any k € [mh, (m + l)h] . Hence by the matrix inverse formula it follows that for any 
k E [mh, (m + 1)hI 

p k + l  = (Pzl R-'PkPZ)-' + Q 
Q [(Pmh + hQ)-' + R-'PkPkTI -' + Q 

T 

Summing both sides of (35) and taking into account (31) and (32), we obtain 

Tm+1 Q htrPmh - am+ihtrPmh + h(h + 1)trQ (36) 

Again, by (31) and (34) 

< Tm + $ h(h + 1)trQ 

Substituting this into (36), we get the desired relation (30). 0 

We are now in a position to prove the following main result of this section. 

Lemma 4 

For ( P k )  generated by (4), if Condition 1 holds, then there exists a constant E* > 0 such that 
for any E E  [o, E * )  

SUP E exp(E II p k  II ) Q C (37) 
k)O 

l k  lim sup - C exp(E)( Pi 1) ) < C ' .  a s .  
k-a, k i = O  

where C and C' are constants. 

proof. Denote %m = $&,-I, where ( LFm] is the same as in Condition 1. Then it is clear that 
for Tm and am defined by (31) and (32), Tm and a m  are 3Ym-measurable, and moreover, by (32) 
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and Condition 1 

Set 

Then we have 

E ( u ~ + I  I W m )  2 l / P m  (40) 

Om+]  < c;Pm + ?*+I, m 2 0, EPo < (41) 

It is easy to verify that (Om, %) is an adapted sequence which satisfies via (9) and (10) 

where ii= ah and (iM, Wm) is an adapted sequence satisfying 

SUP E(&++SI 1 Wm) G M 
m 2 0  

for some constant R> 0. 
Consequently, by applying Lemma 1, we obtain 

E fi (1 - a k + ~ )  < Cy"-m+l  , v n > m > O  
k=m 

for some constants C > 0 and y E (0,l) .  
Next, from Lemma 3 it follows that for any E > 0 

exp(ETm+ 1 )  < exp [(I - am+ 1 ) E T ~ I  8f 
Consequently, noticing the obvious inequality 

we get 
exp(ax) - 1 G a exp(x), 0 < a! < 1, x > 0 

(43) 

(44) 

exp(cTm+i) G ed'[(1- am+i)exp(cTm) + 11 (45) 

Hence from \his and (43) it is easy to convince oneself that if E* > 0 is taken small enough 
such that edE y < 1, then 

sup E exp(d"') < m, V E E  (0, c*) 
m>O 

This proves the first assertion (37) of the lemma, while the second assertion (38) follows 
immediately by applying Lemma 2 with x k  = exp(&Tk) and a = @ to (45). 

0 Hence the proof is completed. 

The following result is a direct consequence of Lemma 4. 
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Corollary 1 

For ( P k )  generated by (4), if Condition 1 holds, then for any m > 0 

l k  Iim sup - C 11 P; 11" < C, a s .  
k - + m  k ;=o 

where C is a constant. 

4. PROOF OF THEOREMS 

In this section we will give the proof for Theorems 1 and 2. Let us first prove some lemmas. 
Denoting 

8 k  = e k  - 8 k  and Vk = 8zPk18k, Vk 2 0 (46) 
we then have the following result. 

Lemma 5 

For any q > 0 there exist two constants ~ L E  (0,l) and C 2 1 such that 

Proof. From Lemma 6 of Reference 18 we know that 

holds for some constants p~ € (0 , l )  and C1 < 00. 

Hence it follows from (48) that 
We first consider the case where q > 1. Note that in this case xq, x > 0, is a convex function. 

VR+1< (1 - A ) V R + A  ( Cl(1 + trPkIZ ze>. 
P I  1 + trPk 1 + trPk 

which implies the desired result. 

(48) by applying the following elementary inequalities: 
We now assume q E [ 0,1] . In this case the desired result (47) can also be easily derived from 

(X+y)q<xq+yq ,  V X 2 0 ,  y 2 0 ,  qE [0,1] 
( l - x ) Q < l - q x ,  O < x < l ,  4E[O,1] 

This completes the proof. 0 

Lemma 6 

Let (xk, S k ]  be a non-negative adapted process, Xk 2 1, which satisfies 

xk+l < (1 - ak+l)xk + c, vk20, Ex; < 00 (49) 
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where C > 0 is a constant, (ak)  is defined as in Lemma 1 and a k  € [O,G], a < 1 .  Then there 
exist constants N > 0 and X E (0,l) such that 

This lemma can be proved along the lines of arguments of Lemma 4 in Reference 18. For 
a detail derivation see the Appendix. 

Lemma 7 

constants N > 0 and X € (0,l)  such that 
Let ( p k )  be defined by (4) with ( ( o k )  satisfying Condition 1 .  Then for any 1.1 € ( 0 , l )  there exist 

Proof. Let us denote 

where T m  is defined by (31); then it follows from Lemma 3 that 

h + d  
P 

xm+1 C (1 - a m + l ) X m  +- 

Hence by noting (39)-(42), we see that Lemma 6 is applicable. So there are NO > 0 and 
XO E ( 0 , l )  such that 

E n  1-- < N o X ~ " - ~ + ' ,  vn >, m >, 0 
k = m  PI ( Xk1+l) 

From this it is easy to conclude (51) (see the proof of Lemma 5 in Reference 18). 0 

Lemma 8 

Let C n k  E [0,1], n 2 k > 0, be a double-indexed stochastic sequence satisfying 

ECnk < mnmk, Vn 2 k 2 0 

for some constants N > 0 and X E ( 0 , l ) .  If ( x k )  is a non-negative stochastic sequence and 

U & SUP E X k  loga(, 4- x k )  < 00 
k2O 

for some p > 1 ,  then 
n 

E ( C n k X k )  < C [ U  lOg(e + U-')], n >, 0 
k=O 

where C is a constant depending on 0, N and A. 

The proof is given in the Appendix. 
We are now in a position to  prove our main theorems. 
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Proof of Theorem I 

We will repeatedly use the following inequality 

f y <  up exp(ex)+ Clu[log"(e+a,')+log"(e+y)~ 

< up exp(ex) + 2c1 [Iog(e + up')]"y log"(e + y )  

where x ,  y, E and a are any non-negative numbers, up is as defined by (17) and 

Inequality (53) follows directly from (52), while (52) may be derived from the well-known 

Denote 
Young's inequality (see the Appendix). 

f ( x )  = x Iogp/2(e + x ) ,  p > 0, x 2 o (54) 

Then from (52) (with a = p/2) and the definition of v k  in (46) it follows that for any p>O 

(1 gn (1' B (1 P n  l ( P / 2 ~ , P / 2  < U, exp(e 11 P n  11 ) + C' [logP/'(e + ~P')v,P/' + ~(v,P/')J (55)  

where and hereafter C' denotes some constant, which may be different from place to place. 
The first term on the RHS of ( 5 5 )  is easy to deal with, since by Lemma 4 

We now proceed to estimate EV!" and Ef(Y,P/2).  By Lemma 5 we know that 

V R : ~  < (1 - k) V R / ~  + C ( I +  trPk)PZR 

Note that f ( x )  defined by (54) is convex. It follows from (57) that 

where 

(57) 

(58 )  

It is easy to see that 

(59) 
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From this and (59) we arrive at 

Now let us define @(n,k) as follows: 

*(n + 1, k )  = [l - --]@(n, k), +(k, k) = I .  
1 + trP, 

Then by Lemma 7 we known that (+(n + 1, k)) satisfies the same condition as that of C n k  in 
Lemma 8. 

By (60) and (61) it follows from (58) that (EE (0, f * / r ) )  
n +  1 

k=O 
f ( ~ K : ) < c p ( n +  ~ , o ) ~ ( v ~ ‘ / ~ ) + c ‘ u ~  C @(n+ l ,k)exp[r(l  + t r ~ k ) l  

k=O 

By Lemma 7 it is seen that 

E@(n+ 1,k)  < N X n P k ,  V n  2 k 2 0 (63) 

for some constants n > 0 and A E (0,l) .  Hence we have 

E[Xl“@(n + 1,O)l < N ( X A i ) “ ,  V X i  € (1, l/X) 

which implies 
Al”@(n+ l , O ) + O ,  a s .  

Hence the expectation of the first term on the RHS of (62) converges to zero by condition (18) 
and the dominated convergence theorem, while the other two terms can be estimated by 
applying Lemma 8. Therefore we have 

lim sup Ef(Vt::) Q C’u, 10g3p/2+1 ( e +  up’) 
n - m  

Next we estimate EVi””. By (53) it is seen that 

( I  + trPk)PZR Q up exp [&(I + t r ~ k ) ]  + C’ [log(e + up’)] PzP logP(e + z R )  
Hence, in exactly the same way as the proof of (65), from (57) we conclude that 

lim sup EV{i{ < C’u, logP+’(e+ up1) 
n+oD 

Finally, substituting (65) and (66) in (55) and taking account of (56), we obtain 

(e  + up1) 3p /2+  1 lim SUP E 11 gn < C’u, log 
n - + -  

This proves the first assertion (19). 
We now prove (20) and (21). In this case z k  3 0, so by (57) and (58) 

V!:: < @(n + 1,0)VB/2 

f( E::) < @ (n + l ,O)f(  VfY2 1 
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Note that ( 5 5 )  is true for any up > 0 (not necessarily the one defined by (17)). Consequently, 
by (67), (68) and the dominated convergence theorem we see from ( 5 5 )  that 

lim sup E 11 6 n  11' < C'u,, 
n - m  

Hence (20) follows by letting up -+ 0. 

inequality we have 
For the proof of (21) we take s > 1 and t > 1 so that 

E ( 1  6 n  11" < E 11 P n  11q/2V#/2 
< ( 1  PO1 II '12E I( P n  II q / 2 W n ,  0) II 60 \ I q  
< 11 PO' Ilq/2(E 11 P n  llqs/2)'/s[E~(n,0)1 '"(E I 

a, > 0 

/s + l / t  + q /p  = 1; then by the Holder 

Hence by virtue of Corollary 1 ,  (63) and (18), E 11 Jn [ I q  tends to zero exponentially fast. This 
0 completes the proof of Theorem 1 .  

Proof of Theorem 2 

Let us take s E (q, p ) .  Then by Corollary 1 and the Holder inequality we have (q /s  + l / t  = 1) 

where C' is a constant. 
Summing both sides of (47) leads to 

Then, applying the Holder inequality (l /u + s / p  = l), we see that 

Hence from this, (69) and condition (23) it follows that 

This proves (24). 
To prove (25), we first note that by (38) of Lemma 4 

1 
lim sup - exp(el1 P n  1 1 )  c 00, a s .  

n+m n 
and hence 

lim sup - 11 '"1 c co, a s .  
n - m  log n 



168 J .  F. ZHANG, L. GUO AND H. F. CHEN 

Therefore from this and (64) we see that 

I( fin 1 1  < vn 11 p n  I( < + ( n ,  0)vo 11 Pn 1 1  
tends to  zero exponentially fast. Hence the proof of Theorem 2 is complete. 
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APPENDIX 

Proof of Examples 1 and 2 

Proof of Example 1. From Reference 19 it is shown that 

We will need the following inequality: ’’ 

For the proof of this let us denote x as the unit 

0 

Then by the Schwarz inequality we see that 

Hence (72) is true, Therefore by (i), (11) and (71) we see that there is a constant a > 0 such that 

holds for all m 2 0 and large h.  This shows that (7) and hence Condition 1 are true. 

Proof of Example 2. Let us denote gm = o(x0, &, t i ,  i < n). Similar to (72), it is not difficult to see that 

We now proceed to estimate respectively the numerator and denominator on the RHS of (73). 
From (12) and (13) it follows that 

m t h  
( O m t h  = CAhxm + C CAmth-’B€i + { m + h  

i=m+I  
(74) 
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From this, (14) and (15) we then have 

i = m +  I 

h -  1 

2 E CAiB(CAiB)T 2 aZ> 0, v m  20, vh  2 n (75) 
i = O  

where the last inequality is derived by the output controllability of ( A ,  B, C )  and CY is a constant. 

denoted by 11.111) satisfies I( A (11% a < 1 .  Consequently, by (12) we have 
Since A is a stable matrix, there exists a norm 1 1  * 111 on R" such that its induced matrix norm (also 

since x i  is convex for x 2 0 and i 2 1. From this it is easy to find a constant b 2 0 such that 

I I  x m + l I I :  + (1 x m + l  It': < a( I )  x m  II: + )I x m  It':) + b( I I  € m + ~  (I: + I I  € m + l I I f >  (76) 

Again from (74) and (14)-(16) it is easy to see that there exists a constant d > 0 such that 

E( 11 (Dm+lIl + II p m + l  I g m )  G d (  I) x m  I) + (I x m  114)  + d 

Consequently, by the equivalency of the norms 11 * )I and 11 - 111 we know that there is dl > 0 such that 

E(II v m + l  / I z  + II p m + ~  I t 4  I yt,) < dl( I I  x m  114 + II x m  ( I f >  + d (77) 

Set 

Q!m = Q! - 'd l ( ( (  Xm (I?+ ( I  x m  I I ' :>+ a-'d 

This completes the proof. 
Then from (73), (75) and (77) we see that (8) holds, while (9) and (10) can be seen from (76) and (16). 

Proof of Lemmas 1 and 2 

Let us first construct an adapted process (Om,  S m )  such that Om 2 1, 

E(am+i  1 g m )  2 l / P m ,  Pm 2 1 

P m + l = b P m + E m + l ,  O < b <  1 ,  E/30'+6 4 00 

and (&, g k ]  is an adapted sequence satisfying 

t k  2 0, sup EELZq < 00 
kgO 

SUP E(&+I J &c) < b 
kgO 

The property (81) characterizes the key difference between ( I J ~ ]  and ( & I .  
We proceed as follows. 
Define a constant L by 

L = max [ I ,  ( 2 ~ )  " * I  
where 6 and M are the same as in (10). Then we take b as 

L + (1 - 4 2  b =  
L + (1 - a )  

where a is the same as in (9). Obviously, b E ( 0 , l )  and b > a. 
Next let us introduce two processes (aL1)] and (Q!~")  as follows: 

CYE:)~ = a(rP+t lk+ l~(qk+l  L ) ,  ah1) = 0 

Q!L?I = b a L z )  + vk+ I ~ ( I J ~ +  I 2 L ) ,  ad2) = a0 
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Obviously, a/$') 6 L/(1 - a ) ,  vk 3 0, and by (9) and the fact that b 2 a we have 
L 

a k  6 a/$'' + ah2' 6 - + a/$'' 
1 - a  

Now define P k  = L/ ( 1  - a )  + ah'). Then a k  6 P k ,  P k  2 1 and hence (78) holds. Furthermore, from (84) 
it follows that 

P k + l = b P k + € k + l  

where [ k + ~  = ( I  - b)L/(I  - a )  + qk+ll(qk+l 2 L ) ;  hence (79) is true and we need only to verify that ( [ k )  

satisfies (80) and (81). 
By (10) and (82) we know that 

1 ( 1 - b ) L  
2 1 - u  

b=-+- 

and hence (81) holds, while (80) is obvious. This proves (78)-(81). 
We are now in a position to prove Lemmas 1 and 2. 

Proof of Lemma 1. Let us define a sequence [ X k )  , k E [m, n ]  , by 

x m =  1 x k +  1 = (1 - ak + 1 ) X k ,  

Then by (78)-(81) and (85)  it follows that 

E ( P k + l X k + l  I %) 6 E[(bPk+ F k + l ) ( l  - U k + l ) X k I  S k I  

6 b P k [ l -  E(ak+l I &)lxk + xkE(&+l I &) 

6 b P k ( 1  - 1 / @ k ) X k  Nxk 
= b P k X k  4- ( N -  b ) X k  < bPkXk  

Consequently, we have 

E( P n +  I X ~ +  1) 6 bE( P n x n )  6 ... 6 b"-m*lE( P m X m )  = b"-""EPm 6 b"-m+r ( E B o  + "-) 
1-b  

where for the last inequality we have (79) and (81). 
Finally, by (85) and (86) and noting that fin 2 1, we obtain 

n ( l eb )b f l -m+l  
E fl (1 - ak+d=Ex,+l  < E ( P n + ~ x f l + ~ )  6 EPo+- 

k = m  

Hence Lemma 1 holds. 0 

Proof of Lemma 2. We will need the following fact: for any martingale difference sequence [In, gn 1, if 

then as n + 00 

1 "  - C f k - + o ,  a s .  
n k=O 

TO prove this, we first note that (without loss of generality assume E E  (0 , l )  

so we have 
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Consequently, by Corollary 5 of Reference 2 1  we know that the series x?= 1 f k / k  converges almost surely. 
From this and the Kronecker lemma we see that (88) is true. 

Now let us denote 

6 k =  Uk  - E ( U k  I g k - l ) ,  - f k = t k - E ( t k )  g k - I )  

where ( t k )  is the process appearing in (79) - (81) .  By ( 7 8 )  and ( 8 1 )  it is easy to see that 

ak+l  2 a k + l  + 1/@k,  t k + l  < Fk+l + b  
By this, ( 2 8 )  and ( 7 9 )  we have 

@ k + l X k + l  < (b@k + t k + I ) ( l  - a k + l ) a X k  + c @ k + l  

< b @ k ( l  - @ k + l ) a X k  + tk++Laxk + c @ k + l  

< b @ k ( l - i i k + I -  1 / @ k ) ~ ~ k + ( t k + l + b ) ( Y X k + C @ t + I  

= ( Y b X k @ k - Q b f i k + l X k @ k  + t k + l f f x k +  c @ k + l  

( 8 9 )  

We now proceed to estimate the last three terms on the RHS of ( 9 0 ) .  By ( 7 9 )  and (80) it is easy to see 
that 

sup E @ j + 6  < 00 ( 9 1 )  
k 

By Lemma 1 and ( 2 8 )  it is easy to verify that 

SUP E(Xk)‘ C 00, V q  > 0 (92) 

Next let us take c c  (0,6), q = ( 1  + 6 ) ( 1  + c)/(B - c )  and define a*= min[l/b, l / y ,  ( l / ~ ) ” ~ l .  BY ( 9 1 1 ,  

k 

provided that a < min [ l / y ,  ( l / y ) ” q ] ,  where y €  ( 0 , l )  is the constant appearing in ( 2 7 ) .  

( 9 2 )  and the Holder inequality we get (I iik I < 1 )  
6 s u p ( E @ l + a ) ( l  + E ) / ( l  + a )  x $ ) ( & - € ) / ( ~  + & )  < 00 SUP E I Z k + l X k @ k  6 SUP E(Xk@k) l+‘  ( E  

k k k 

Similarly, we have 
S U ~ E ( [ ~ ; I + ~ X ~ I ~ + ~ < ~ O  

k 

Hence, applying ( 8 7 ) ,  we obtain 
1 ”  - ( - a b c k + l X k @ k  + a - f k + I X k )  + 0, a.S., as n --* 00 
n k = l  

Summing both sides of ( 7 9 )  and taking account of ( 8 9 ) ,  we see that 
n n 2 @ k < b @ o + b  C @ k +  c &+bn 

k= I k =  I k = l  

But by (80) and (88) we know that 
1 ”  - c [k-”+o,  a s . ,  as n-* 00 
n k = l  

lim sup - C @k < - 
Hence by ( 9 4 )  

a s .  1 ”  b 
,,.+* n k = l  1 - 6 ’  

Finally, summing both sides of ( 9 0 ) ,  we get 
“ - 1  2 Xk@k < ab 2 Xk@k + abXOP0 + c ( - a b C k +  lXk@k + a t k + l x k )  c 2 @k 

k= 1 k = l  k=O k =  I 

Consequently, taking account of ( 9 3 )  and ( 9 9 ,  we have 
1 ”  C 

,,-- n k = l  ( 1  - b ) ( 1  - a r b ) ’  
Iim sup - C Xk@k G 

( 9 3 )  

( 9 4 )  

( 9 5 )  

which implies the desired result ( 2 9 )  with a* = l / b  and C’ = C / ( l  - b ) ( l  - a b )  since 
@k 2 1, vk.  0 
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Proof of Lemmas 6 and 8 

Proof of Lemma 6. Without loss of generality we assume that 

xk+l= ( 1  - ak+l)xk + C, v k  2 0, Ex$ c 00 
We first prove (50) for the case C < 1 .  
Define a sequence (yk, k E [ m ,  nl 1 by 

Then we have 

xkYk=(xk- 1)yk-1 < ( 1  -ak)xk-lYk-l 
and then 

n 

k=m 
Yn < xnyn < ( 1  - ak)xtn-1 

Note that by Lemma 1 and (96) 

sup Exk2 c 00 
k 

Hence by this, Lemma 1 and the Schwarz inequality we obtain 

E fl 1 _ -  =Ey ,  < C'y("-m+l)/* , v n > r n ,  C' > O ,  Y E  (0.1) 
k = m  ( 3 

which shows that (50) is valid. 
Next we consider the case where C > 1. 
Let us take E = C- ' ;  then E E (0 , l )  and 

fxk+l = ( I  - a k + l ) & X k  + 1 ,  &Xk 2 1 ,  k 2 1 
Hence by the argument above we know that 

, V n 2 m  E fi ( I - & )  <c'Y ( i t -m+ 1 )/2 

k = m  

where C' > 0 and y E (0 , l ) .  
Since ak E [0, u] , u c 1 ,  we see from (99) that 

f X k + l 2 ( l - i ) + 1 ,  v k 2 1  

We need the following inequality: 

l - ~ ~ ( l - d x ) ( ~ - ' ) ' ' ' ,  O G d x g t e  1, d >  1 

To see this, let f ( x )  = x + ( 1  - dx)( l - ' ) /d  - 1 .  Then f ( 0 )  = 0 and the derivative of f ( x )  satisfies 
f ' ( x )  = 1 - ( 1  - t ) ( l  - dx)(l-')'d-l 2 1 - ( 1  - t ) ( l  - t ) ( l - ' ) /d- l= 1 - ( 1  - t)("')/'' 2 0 (101) 

Hence (101) holds. Now, substituting x =  l/xk, d =  l / r  and t = 1/ (2  - r i )  in (101). we have ( &lJl - U k l ( 2  - U )  

, v k 2 2  1 
1 - - <  1 - -  

xk 
Consequently, by the Holder inequality and (100) we get 

, for some C' > 0, Y E  (0, l ) ,  v n  2 m 2 2 ct ~ n - m + l  
\ 

By suitably adjusting C' we know that the above inequality holds for all n 2 m 2 0. Hence the proof 
of Lemma 6 is complete. 17 
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Proof of Lemma 8. Let us take a constant d > 1 such that dx < 1. Then we have 

E ( C n k ~ k )  = E(CnkXk)l(Xk Q ad"-k)+ E(CnkXk)Z(Xk > od"-&) 
x k  log8(e+xk) 
logs(e+ud"-k) 

Q U N ( ~ X ) " - ~ + E  

U Q aN(dX)"-k + 
logs(, + 

If u 2 1, then it is easy to see that 

QC', v n 2 0  
1 2 

k-0 logS(e+ud"-k) 
where C' is a constant independent of u. 

log( e + u- ') + 1. Thus we have 
If u < 1, define ko as the smallest integer such that u& 2 1; then it is easy to see that ko Q (log d)- '  

where C is some constant independent of u. 
Combining (102)-(104), we finally get 

2 E(Cn/cX/c) Q- u + u ( ~ '  + c'') + ~ " u  log(e + a-1) Q cu log(e + u-1) 
k = O  1 - dX 

for some constant C. This completes the proof of Lemma 8. 0 

Proof of equation (52) 

Take 9 ( t )  = exp(t'/*) - 1, + ( t )  = log"(t + 1) in the following Young's inequality (see e.g. Reference 
22): 

c x  c v  

We get 

xy Q x exp(x"") + y log*(l+ y )  

Note that 

x Q exp(ax'/*), v x  2 0, a > o 
So we have 

xy Q exp[(a + I)x'/*I + y log*(l+ y )  

Replacing x and y in the above inequality by 

respectively, we see that 
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