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Abstract 
The paper presents, what we believe to be, the first non-asymptotic analy- 
sis of properties of weighted least squares (WLS) adaptive filters used for 
identification of time-varying systems. We show that the problem of mean- 
square boundedness of WLS estimates is closely related to the problem of 
invertibility - in the mean sense - of the corresponding regression matrix. We 
discuss conditions under which such invertibility is guaranteed. Based on 
that, a number of results are derived paralleling those already obtained for 
least mean square (LMS) filters and the problem of “statistical robustness” 
of the WLS estimator is discussed. 

1 Introduction 
Consider the following timevarying stochastic system 

Y(t) = aT(t)4( t )  + ( 1) 

where 4(t)  = [ u l ( t ) ,  . . . , u,(t)IT is the measurable input vector, a( t )  = 
[ ~ l ( t ) ,  . . . ,a,(t)lT is the unknown (time dependent) parameter vector and 
{“(t)} denotes the unobservable (scalar) measurement noise. We will assume 
that 

( A l )  the noise process {n(t)} is a sequence of zero-mean independent and 
identically distributed random variables and E[nz(t)] = PO. 

(A2) the input process { d ( t ) } ,  independent of {n(t)}, is a sequence 
of indentically distributed m-dependent random vectors (i.e. 3m such 
that Vt sequences { g ( i ) ,  i < t }  and { 4 ( i ) , i  2 t + m} are independent) 
and E[4(t)dT(t)] = Ra > 0. 

(A3) timevarying parameters form a sequence {a(t)},  independent of {4( t ) }  
and {n(t)}, which is bounded in the mean square sense, i.e. 

~[114~)11zl 5 A < 03 vt 

Assumption about m-dependence of the input sequence is not critical and 
will be relaxed to include weaker mixing (asymptotic independence) and CO- 

variance conditions later on. 
Note that in the case where 

ui( t )  = u(t - i ) ,  i = 1,. . . , r (‘4 
(1) specializes to the dynamic finite impulse response (FIR) model widely 
used in adaptive filtering, e.g. for the purpose of adaptive equalization of 
communication channels. 
If parameters in (1) vary sufficiently slowly with time the method of weighted 
least squares (WLS) can be used for the purpose of tracking of a(t) .  Let 
{ w ( t ) }  denote the nonnegative and nonincreasing weighting sequence, such 
that 

f - w ( t )  = 1 (3) 
t=o 

(the normalization constraint (3) is not essential for our analysis and was in- 
troduced for the sake of notational convenience). Assuming, for convenience, 
that the infinite observation history is available a t  the instant t ,  the WLS 
estimator can be defined in the following way 

& ( t )  = arg min 
W 

w(i)[y(t - i )  - aT4(t - i)lZ 
01 

,=O 

with obvious definitions of fi(t) and S(t) .  
In practice the requirement that the WLS estimator should be recursively 
computable limits our choice of w ( t )  to several standard windows. If, for 

example, the exponential window is used ( ~ ( 2 )  = (1 - X)X’, 0 < X < 1) one 
can replace (4) by the following recursive algorithm [l] 

& ( t )  = &(t - 1) + D(t)d(t)E(t)  
r ( t )  = y(t) - &T(t - 1)4(t) (5) 

where the matrix D ( t )  can be updated using the well-known formula 

Similar (but basically two-step) algorithm can be derived for the sliding rec- 
tangular window (w( t )  = 1/N for t < N and = 0 for t 2 N) - see e.g. [l]. 
Various fast versions of the WLS algorithm are also available but they usually 
require “safety jacketing” because of possible numerical ill-conditioning - see 
Cioffi [2]. 
If the data-dependent adaptation matrix D(t)  in (5) is replaced by a small 
adaptation gain p one arrives a t  the so-called least mean square (LMS) algo- 
rithm 

& ( t )  = & (t - 1) + pb(t)c(t) (7) 
Although computationally less demanding than the WLS algorithm, the LMS 
algorithm may suffer from a very slow initial convergence - a disadvantageous 
effect if rapid adaptation is required. Despite this difference both algorithms 
have very similar parameter tracking properties - see e.g. Eleftheriou and 
Falconer [3]. 
While the statistical properties of LMS filters seem to be well-explored and 
documented the situation is less clear for the WLS filters. So far all the 
analyses were based on asymptotic arguments, i.e. strictly speaking, they 
dealt with the case where the effective length of the window tended to  infinity. 
Almost no precise results seem to exist for strictly finite-length windows - the 
recent paper of Macchi and Eweda [I91 being the only noticeable exception’. 
However, even the results presented in [19] rely critically on the assumption 
about inveribility of a certain stochastic regression matrix (assumption (A2) 
in [19]) which is postulated but is very difficult to verify. 
In this paper we present, what we believe to be, the first non-asymptotic 
analysis of properties of the WLS estimator based on realistic and verifiable 
assumptions. We show that the problem of the mean-square boundedness of 
h(l)  is closely related to the problem of invertibility - in the mean sense - of 
the regression matrix R(t )  in (4). We discuss conditions under which such 
invertibility is guaranteed if sufficiently strong mixing (asymptotic indepen- 
dence) and/or covariance conditions are imposed on {d(t)}. Based on that, a 
number of results can be derived paralleling those obtained for LMS estima- 
tors by Macchi and Eweda [4],[5] and the problem of “statistical robustness” 
of the WLS estimator can be properly addressed. 

2 Review of Known Results 
From among a large number of results on stability and tracking bounds for 
the LMS algorithm we would like to point to a sequence of insightful papers 
by Macchi and Eweda [4]-[7]. 
Assuming that the input sequence is stationary and m-dependent the authors 
were able to show that, for sufficiently small but non-zero gain p 

E[llW - “(t)1l21 I C ( P )  < 00 (8) 

In the constant parameter case (a(t) = ao) we have [6] 

C(P) = C’P (9) 

that is, the bound on random fluctuations in steady state decreases with the 
stepsize in a linear way. 
If system parameters vary with time the choice of p becomes a trade-off be- 
tween the steady-state accuracy and tracking ability of the estimation algo- 
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rithm. Assuming, for example, that {a(t)}  evolves according to the random 
walk model it is possible to show that [6] 

( 10) 
c2 C(P) = ClP + - 
P 

which illustrates the need for compromise mentioned above. 
Denote by i the equivalent width of the window { w ( f ) }  (equivalent number 
of observations) 

m 

1 = 1/ 3 ( t )  (11) 
t=o 

deciding upon the “memory” of the WLS filter [SI. One can argue that the 
quantity 1/i determines the adaptation gain of the WLS algorithm, i.e. it 
plays exactly the same role as the stepsize p in the LMS filter. 
Basically, two different approaches were used to analyse properties of WLS 
estimators: 

- the approach based on Taylor series approximations (for any weighting 
sequence), see e.g. Niediwiecki [8], [9]. [lo], [ l l ]  

- the approach based on ODE approximations (for exponential weighting), 
see e.g. Benveniste [12], [13], Kushner and Huang [14] and Ljung [15]. 

In both cases the derived results hold only asymptotically, that is for i - CO. 

Almost no results seem to exist if i is finite and fixed. For example, for 
the constant parameter case only a considerably weaker version of (8)-(9) is 
available. According to Eweda and Macchi [7] for arbitrarily small E > 0 the 
estimation error Il&(t) - ~ 0 1 1 ’  has an upper bound proportional to 1/i with 
probability 1 - E .  

The finite mean square tracking bound established subsequently in [19] rests 
on an implicit assumption that there exist an integer NO and a constant 

0 < e <  CO such that V N 2 N0,V t 

I t  turns out, however, that verification of assumptions similar to  (12) is far 
from being obvious and constitutes the very core of the tracking assessment 
problem. We will consider this issue in more detail in section 4. 

3 “Idealized” WLS Estimator 
Since under (A2) we have 

m 

R(t )  = Cu(i)b(t - i)bT(t - i )  , T ~ R ~  (13) 
i = O  

where convergence takes place either in the mean square sense or with proba- 
bility one [9], for sufficiently large L one can attempt to  replace the regression 
matrix k(t) in (4) by its expectation. The resulting “idealized” WLS esti- 
mator 

is analytically easy to  handle. Moreover, provided that the difference 
h(t) = R$3(t) (14) 

E[llW - 6(t)ll’l (15) 

is sufficiently small one can infer about properties of the WLS estimator h(t) 
by analysing properties of its “idealized” counterpart - that was the line of 
thinking in [SI, [lo]. One of the points behind studying properties of (15) is 
that, via the inequality 

(16) 

boundedness of (15) implies boundedness of the mean square tracking error 
(under (Al) - (A3) boundedness of the second term on the right hand side 
of (16) can be shown quite easily). 
Not surprisingly, the problem of boundedness of (15) can_ be related to  the 
problem of invertibility, in the mean sense, of the matrix R(t). In particular, 
we have the following: 

Lemma 1. Under assumptions (Al) - (A3) we have 

E[IIh(t) - a(t)IIzI I 2E[lI&(i) - h(t)l121 + 2E[lIh(t) - a(t)lIzI 

E[IlW - h(t)lBI = O(tr{E[A(t)l)) (17) 

where A(t) = ?I-’(t) - R;’. 

Proof 

Fig.1 Rectangular windows “inscribed” in { ~ ( i ) }  

where 

z(i) = m ~ ( t ) b ( t  - i), v ( i )  = \ / ; ;T;i[~’(t  - i)o(t - i )  + n(t - i ) ]  

Using the Schwartz inequalty one gets 

Observe that 

4 

4.1 Preliminary considerations 

Invertibility of the Regression Matrix 

According to  Lemma 1, proving boundedness of the mean square tracking 
error amounts to  finding conditions under which 

E[R-’(t)] < CO 
i.e. under which the stochastic regression matrix k(t) is invertible in the 
mean sense. Let { ~ ’ ( t ) } :  

denote a rectangular window “inscribed” in { ~ ( t ) }  - see Fig. 1. Since f i ( t )  2 
cR(f) where 

N-1 

~ ( t )  = +(t - i ) # ( t  - i )  
i = O  

the overbounding technique can be used, i.e. the boundedness results for 
general windows are implied by the corresponding results for the “inscribed” 
rectangular wndows. However, even under uniform weighting the problem Of 
invertibility of the stochastic regression matrix is conspicuously absent from 
the statistical literature. Observe that 

and hence, using Holder inequality, one gets (k > 1) 

Imposing some moment conditions on ui(t), i = 1,. . . , r  namely 

(A4) 3 > 0 such that 

~[(u;(t))~(‘-’)+‘] < a, v t , i  = 1,. . . , r  
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and choosing k sufficiently large so that 2(r- l ) / ( k -  1) 5 E one can guarantee 
boundedness of the second factor on the right hand side of (19). Therefore 
to prove invertibility of R(t) in the mean it suffices to find conditions under 
which the determinant of R(t)  is invertible in kth-moment 

E[(detR(t))-'] < 00 (20) 
for sufficiently large k. 

4.2 Need for additional constraints 
Quite obviously, in order to satisfy (20) one needs 

P(detR(t) = 0) = 0 (21) 

E[4WT(t)1 > 0 Vt (22) 

which can not be guaranteed by imposing only moment conditions on {4 ( t ) } ,  
such as 

We will clarify this point by means of the following example: 

Example 
Consider the case where (2) holds and { u ( t ) }  is an i.i.d. sequence taking 
only two values: + 1  and -1 with probabilities p (0 < p < 1) and 1 - p ,  
respectively. Then it is straightforward to show that for any finite N (21) is 

I 

Quite clearly, additional constraint is needed to rule out cases such as the 
one above. The following result, which can be thought of as a refinement of 
(21), will be very useful for our further purposes. 

Lemma 2. The determinant of R(t)  is invertible in k-th moment provided 
that 320, 9 > 0, L 2 k + 1 such that Vz : 20 > z > 0 and Vt it holds 

not fulfilled even though (22) is. 

P(detR(t) I z) I qzL (23) 

Proof 
Using (23) one gets 

4.3 Explicit invertibility condition 
We will show that the implicit condition (23) can be met if N in (18) is 
sufficiently large and 

(A5) ay, 6,  20 > 0 such that Vz : 10 > z > 0, and Vt 

In order to  simplify the analysis we will derive the main result under the 
assumption that {4 ( t ) }  is an i.i.d. sequence and then we will extend it t o  
more general cases. 

Lemma 3 (key technical lemma) . Suppcxe that { + ( t ) }  is an i.i.d. se- 
quence obeying assumption (AS). Then the condition (23) of Lemma 2 is 
fulfilled and the number L in (23) can be made arbitrarily large by increas- 
ing N .  

Proof 
For convenience take N = rM. We have 

M-1 r-1  

~ ( t )  = C ~ ; ( t ) ,  ~ ; ( t )  = Cd(t - j r  - k ) d T ( t  - j r  - .E) 
j = O  k=O 

since for nonnegative definite matrices A and B we have det(A+E) 2 detA+ 
de tB it holds 

detR(t) 2 detHj(t) 
M - 1  

j = O  

and consequently 

M-1 

P(detR(t) 5 z) 5 P (  detHj(t) 5 z) 5 [P(detHo(t) 5 z)]" 
j = O  

-since the matrices H;( t )  are mutually independent. Observe that detHo(t) = 
(detW(t))* where 

ul(t) ... u l ( t - r + l )  

u,(t)  . . .  u,(t - r +  1) 

and 

detW(t) = x ( - l ) i - l u i ( t ) z i ( t )  4 4 T ( t ) z ( t )  

where z ( t )  is a collection of corresponding minors of the matrix W(t) .  Note 
that 

i= l  

7-1 

z?(t )  = d e t ( C d ~ i ] ( t - j ) 4 ~ ] ( t - j ) )  
,=1 

$[i](t) = [ui(t), . . . ,ui- i ( t ) ,ui+i(t) ,  . . .u7(t)IT 

Rewrite detHo(t) in the form detHo(t) = llz(t)11'(BT(t)4(t))' where B( t )  = 
z( t ) / l lz( t ) ! l  for all z ( t )  # 0. Using simple calculations based on conditional 
probabilities one gets, for any z < 20: 

P(detHo(t) 5 z) = P(detHo(t) 5 21 11~(1)11' t 4P( I I z ( t ) l 12  2 fi) 

+P(detHo(t) I 4  Ilz(t)l12 < flP(l14t)llz < 4 
I p( (BT( t )4 ( t ) )*  I &I Ilz(t)ll' t fi) + P(llz(t)1I2 < 6) (25) 

where it was assumed that for any positive z : P(l l~( t )11~ < e) > 0 so that 
the corresponding conditional probability is well-defined (If not, a simple 
modificat,ion can be introduced). 
Owing t o  the fact that the regression vector 4( t )  is independent of z ( t )  = 
f(q5(t - l) ,  . . . , d ( t  - r + 1)) and that IIB(t)ll = 1 we get (c.f. (A5)): 

P ( ( P T ( t ) $ ( t ) ) 2  5 &I 1 1 ~ ( ~ ) 1 1 2  1 6) 5 SUP P((PT4(l))2 I 6) I Yza'z 
11811=1 

(26) 
Consider, in turn, the second term on the right hand side of (25) 

~( l l~( t )112 < 4 = .(E $( t )  < 6) 5 P(z,"(t) < &) (27) 
i= l  i = l  

We shall prove, by induction, that under conditions implied by (A5) the 
following proposition is true. 

Proposition. 3&, r, > 0 such that Vz : 20 > z > 0 and Vt 

Actually, suppose that the proposition is true for r - 1, i.e. for all (r - 1)- 
dimensional subvectors of 4(t)  there exist constants &- I ,  rF-l such that 

P ( $ ( t )  5 z) = P ( d e t ~ O ~ i ] ( l - j ) O ~ ] ( t - i ) ]  j = 1  5 2 )  

I <r-lzTr-', i = 1,. . . , r  

Now, combining this with (27) one gets P(llz(t)llz < 6) I rtv-lzr'-' 7 and 
consequently, using (25), (26) and the bound obtained above one has 

P(detHo(t) 5 z) 5 y z f  + r&-lz- 5 &z" 

for z E (0,1], r, = min ( d ,  v) and appropriately chosen & .  
Since proposition stems immediately from (A5) in the case where r = 1, it is 
also true in the general case. Finally, observe that 

P(detR(t) 5 z) 5 [P(detHo(t) 5 . ) I M  5 (&)MzM" = 9zL 

where L = Mr,  can be made arbitrarily large by increasing M (i.e. N ) .  I 

Remark 1 
I t  is known that distribution of any r-dimensional random vector 4 can be 
factored as (Lebesgue decomposition theorem) 

F('#') = PcFc($) + PdFd(6) + PsFa($) 

where F,, F d ,  F, are continuous discrete and singular distributions, respec- 
tively and pc, pd, ps are nonnegative constants such that pc + pd + ps = 1 .  
What (A5) effectively says is that F ( 4 )  should be free of discrete and singular 
(supported on hyperplanes) components. Additionally it rules out "almost 
discrete" and "almost singular" components in the continuous distribution. 
We note that (A5) admits a very large class of continuous distributions, 
e.g. all ones characterized by bounded probability density functions (such as 
Gaussian, uniform etc.). 
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Remark 2 
Note that the dependence structure of { + ( t ) }  was not used when we derived 
the moment condition (A4). If the input sequence is m-dependent existence 
of second-order moments (implied by (A2)) is sufficient to  prove boundedneas 
of the second term on the right hand side of (20). 

4.4 Extension to weaker mixing and covariance condi- 
tions 

The requirement that the sequence of regression vectors {b ( t ) }  should be 
white (as stated in conditions of Lemma 3) is, quite clearly, very inconve- 
nient. Note, for example, that it is never met for FIR models (2), even if 
the input sequence is white ! (since successive regression vectors share r - 1 
components) . 
Basically, the results of Lemma 3 can be extended in two different direc- 
tions - to weaker mixing (asymptotic independence) conditions and weaker 
covariance (rate of decorrelation) conditions. 
As far as mixing is concerned relaxation of i.i.d. assumption to m-dependence 
(consistent e.g. with (2) under white noise excitation) is straightforward. 
Suppose that { d ( t ) }  is an identically distributed and m-dependent sequence 
obeying (A5). Then {b(tm)} is an i.i.d. sequence and hence, for suitably 
large N 

E[R-'(t)] 5 E [ ( c 4 ( t  - im)4T(t - im))-'] < 00 

Extension to weaker mixing conditions is also possible. In particular, denote 
by 7; the sigma-algebra generated by the {d(i); 1 5 i 5 s}. If the following 
mixing (asymptotic independence) condition is fulfilled: 

t 

IP(AW - P(A)P(B)I 5 I l (n)P(A)P(B)  

for any events A E F-- and B E Fr, where n = s - 1 and $(n) + 0 for 
n + 00 (the sequence { Q ( t ) }  is called super-uniformly mixing or $-mixing). 
Then all previous results can be easily extended to  such sequences. 

From the practical point of view much more interesting results can be ob- 
tained by means of relaxing covariance conditions imposed on {+ ( t ) } .  Actu- 
ally, consider the case where b(t) is the output of the state space model 

z(t + 1) = Az(t) + Bv(t) 
4(t) = CzW + DvW (29) 

Then we have the following result 

Theorem 1. Lemma 3 holds if the model (29) is output reachable and { 9 ( t ) }  
is an i.i.d. sequence obeying (A5). 

Outline of proof 
The proof is based on the following basic inequality valid for output reachable 
state space models (see e.g. [17], [IS]) 

N-1 N+v-1  

Xmin [ d(t - i)4'(t - i)] 2 cXmin [ Q(t - i)QT(t - i ) ]  , Vt (30) 
i = O  i=O 

where q(t)  = [qT( t ) ,  . . . , qT(t - U)]', U is the McMillan degree of the system 
(29) and c > 0. 
The following example will illustrate the main steps in the proof of Theorem 1 

Example 
Let {u(t)} be generated from the following AR(p) model: 

u(t) + alu(t - 1) + . . . + apu(t - p) = c ( t )  

where { ~ ( t ) }  is an i.i.d. sequence satisfying P(Ic(t)l 5 z) 5 yz6, 
y > 0, 6 > 0. Then Lemma 3 also holds with #( t )  = [ ~ ( t  - l ) ,  . . . , u(t -.)IT. 

Proof 
Let us denote 

where a0 = 1 and q- l  is the backwards shift operator, and define 

@(t)  = A(g-')d(t), Ri(t) = @(t - W T ( t  - i )  

for some 

A(q-') = a0 + a1q-l + . . . + apq-p 

N-p-1 

i = O  

Then by the Schwarz inequality it is seen that for any vector a E R', 

P P N-p-1 P 

5 a; [a'b(t - i - j)]' 5 (p + 1) a3ar R(t)a 
j = O  j = O  i=O j = O  

Consequently, by the arbitrariness of a, 

Hence the desired result follows by observing that 

and that $ ( t )  = [c(t  - l ) ,  . . . , c( t  - r)], is an r-dependent sequence. I 
Theorem 1 extends the invertibility result to a very general class of stationary 
signals with rational spectra. Extension to  a limited class of nonstationary 
signals is also possible using the same approach (c.f. [17]). 

Remark 
Generally speaking, the higher is dimension r of regression vector and the 
weaker is mixing condition imposed on { d ( t ) } ,  the larger should be N in 
order to guarantee sufficiently large value of L in (23). We note however that 
the lower bound on L resulting from our analysis is a deterministic quantity 
obtained without referring to any asymptotic arguments. 

5 Results for Sliding Window LS Estimators 
- the Gaussian Case 

5.1 Tighter bounds for R-'(t) 
Much stronger results can be obtained if we assume that the sequence {r$(t)} 
is normally distibuted. Assume, for convenience that N = mK. Then we 
have the following 

Lemma 4. If the sequence {4(t)} is stationary, Gaussian and m-dependent 
then 

Proof 
Observe that 

m 

~ ( t )  = Gj (1) (32) 
j=1 

K-1 
where 

~ j ( t )  = 4(t -j - i m +  l)b'(t-j-  i m +  1) 
i = O  

Since the sequences {d( t  - j - im + l ) ,  i 2 0) are i.i.d. and Gaussian, the 
matrices Gj  (t) are Wishart-distributed with K degrees of freedom 

Gj(t) * W(KRo,K) (33) 

Hence, using properties of the inverted Wishart distribution [16] 

(34) 
R,' 

E[G;'(t)] = - 
K - r - 1  

Using the inequality (see Appendix 1) 

(35) 

and combining it with (32)-(34) one obtains 

which is nothing but the upper bound in (31). The lower bound in (31) stems 
from the fact that (see Appendix 2) 

EIR- (t)l 2 [E[R(t)ll- (36) 

(the matrix variant of the Jensen inequality for inverses) 

5.2 
Several conclusions can be drawn from (31) for the sliding window LS esti- 
mators. First, observe that for the rectangular window 

Evaluation of parameter tracking bounds 

- 1  
R(t) = FR(L) 

and hence using (31) and (36) one gets 

Consequently, for N > m(r + 1) we have (c.f. Lemma 1) 

1788 

- 
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where 6 - we emphasise this fact strongly - is a determinstic constant not 
depending on N and t .  We will look for the bound on the mean square 
parameter tracking error in the form 

E[llh(t) - 4t)1l21 5 D ( N )  

First, we consider the case of time-invariant parameters: a( t )  = ao. One can 
show that under (Al)-(A3) h(t) is an unbiased estimate of a0 and 

COV[&(~)] = poE[R-'(t)] 

Consequently 
D D ( N )  = 2 
N 

which parallels (9), the result derived by Macchi and Eweda for LMS filters. 
The counterpart of (10) can be derived using the inequality (16). Note that 

E[llh(t) - "(t)1lZ1 = E[llh(t) -o(t)llZ1 + E[IlW - a(t)llZ1 (39) 

where {&( t ) }  denotes the average path of parameter estimates 

6( t )  = E[h( t ) lA( t ) ]  = 5 w(i)a( t  - i) = a(t - i) 
i = O  r = O  

A ( t )  = {a(t) ,a( t  - l ) ,  . . .] 
and observe that there is noAcross-coupling term on the right-hand side of 
(39) due to  orthogonality of &( t )  - &(t)  and & ( t )  - a( t ) .  
Assuming that the true parameter trajectory can be modelled as random walk 
in sufficiently long but finite time interval T = [t1,12], tz - 11 >> N, one 

can show that ( t  E T )  : E[llh(t) - &(t)112] = 0(1), E[116(t) - a(t)llz] = O(N)  
resulting in 

We note however, that (40) is - unlike (10) - a local result, valid for finite, 
though possibly very long time intervals. Extension to infinite time intervals 
is forbidden under (A3) (only the mean square bounded parameter trajecto- 
ries can be analyzed in the present framework). 

5.3 Extension to the case of non-uniform weighting and 
non-Gaussian regressors 

By applying th_e central limit theorem to  the properly normalized elements 
of the matrix R(t) - Ro and using the appropriate truncation technique one 
can show that 

E[llh(t) - &(t)llZ] = O(f) 

in the case of non-uniform weighting and non-Gaussian regressors. This, 
however, is based on asymptotic theory we were trying to avoid so far. Hence, 
it holds only as long as I ++ 03. 

A more conservative but non-asymptotic bound can be obtained using the 
Schwartz inequality. Observe that 

tr{E[A(t)]} = tr{E[R-'(t)(& - R(t))%']} = E[tr{A1(t)A~(t)}] 

where 
A,(t) = Ri 'R- ' ( t ) ,  Az(t) = Ro - R ( t )  

Let llA(t)112 = tr{A(t)AT(t)}. Using Schwartz inequality and (36) one gets 

0 I trIE[A(t)lI I (~[llAl(t)ll21) + ~~[llA2(t)l lZ1f 

By a similar argument to  that used in section 5.1 E[llAl(t)ll'] = O ( 1 ) .  In the 
case of i.i.d. regressors 

where d = E[llg5(t)114] - ( E [ ~ ~ ~ ( t ) ~ ~ z ] ) z .  More generally, one can show that for 
m-dependent regressors E[llAz(t)l12] = O ( ~ / L )  and hence, combining all the 
results given above with (17) one gets 

where c is a deterministic constant not depending on I and t .  Combining this 
with (39) a bound analogous to (40) (but expressed in terms of L )  can also 
be derived for an arbitrary WLS estimator. 
The bound (41) was derived for a system with time-varying coefficients. If 
the system is time-invariant, i.e. a( t )  = a. the problem is much easier to  
handle. Due to the mutual independence of the processes { d ( t ) )  and { n ( t ) } ,  

implied by assumption (A2), one has 

where n = l/(maxt w ( t ) )  is the quantity usually called the effective width of 
the window (effective number of observations). One can easily show that for 
a sequence of windows of the same shape but increasing width it holds n cx I ,  

i.e. both measure of the window size differ merely by a constant multiplier. 
According to  (42) the fluctuations of WLS parameter estimates E[ll Z( t )  - 
010 112] = tr{cov[G(t)]} are, under stationary conditions, inversly proportional 
to  the size of the applied window which is a further generalization of (38). 

6 Important Special Case - Exponentially 
Weighed LS Estimators 

Quite clearly, if the window used in the method of WLS is strictly finite- 
length (i.e. if w ( t )  = 0 Vt > t o )  our technical assumption (A5) is practically 
unavoidable. This is also a limitation of all results obtained using the concept 
of "inscribed" window. Using a slightly different technique we will show that 
(A5) is not needed any more if exponential weighting is applied. Rewrite the 
expression for the exponentially weighted LS estimator in the form 

h(t) = R-'( t )S( t )  (43) 

where now (0 < X < 1): 

1-1 t-1 

~ ( t )  = ~ ' 4 ( t  - i)P(t - i), s(t) = ~ l y ( t  - i ) # ( t  - i) 
i = O  i = O  

We note that (43) can be recursively updated using (5)-(6) (note: D ( t )  = 
R-'( t )  if the exact initialization is used, i.e. if D(t0) is set to  R-'(to) for 
sufficiently large t o ) .  Note also that 

R(t)  = XR(t - 1) + 4 ( t ) 8 ( t )  (44) 

Exact initialization corresponds to  taking R(0) = 0 in (44). However, in 
practice, recursion (6) is started using D(0)  = Do > 0 which amounts to 
taking 

in (44) and which will play a crucial role in our analysis. We are ready to  
prove the following: 

Lemma 5. Suppose that { d ( t ) }  is an i.i.d. sequencesuch that E[4(t)bT(t)] = 
& > 0. Then the condition (23) of Lemma 2 is fulfilled and the number L 
in (23) can be made arbitrarily large by increasing L = (1 + A)/(1 - A). 

Proof 
Note that R(t)  2 X'R(t - r) + Xr-'Q(t) where Q(t) = E::,' b(t - i )dT( t  - i) 
and 

where R'(1) = X'R(t - r), Q'(t) = Xr-'Q(t). 
We have 

R(0) > 0 (45) 

detR(1) 2 detR'(t) + detQ'(t) (46) 

P(detR(t)  5 z) = P(detR(t) 5 zldetQ'(t) < zo)P(detQ'(t) < zo) 

P(detR(t) 5 zldetQ'(t) 2 zo)P(detQ'(t) 2 20) + 
Using (46) and the fact that the matrices Q'(t) and R'(t) are independent 
we obtain P(detR(t) 5 zldetQ'(t) 2 20) = 0 for all z < 20, and 

P(detR(t) I zIdetQ'(t) < 20) 5 P(detR'(t) 5 z) 
which results in 

P(detR(1) 5 z) I P(detR'(t) 5 z)pb 

pb  = P(detQ'(t) < 20) = AV(r-1) 

(47) 

(48) 

(49) 

where 

and 

(since E[4(t)4T(t)] > 0). 
We will use inductive reasoning. 
R(t - T ), i.e. P(detR(1- r) 5 z) 5 q z L .  
Then Vz < 2 0 :  

po = P(detQ(t) < 20) < 1 

Suppose that our assertion is true for 

P(detR'(t) I z) = P(X"detR(1 - r )  5 z) 5 xzL, A' A' = ALr2 

and hence, according t o  (47) P(detR(t) 5 z) 5 (pbq/A')zL 5 v i L ,  i.e. our 
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assertion is true for R(t) provided that X 2 Xo such that 

Since R(t) 2 X‘R(O), t = 
1,. . . , P for all z < 20 = det(X‘R(0)) and arbitrarily large L .  Our assertion 
is therefore true for any t .  
Finally, note that arbitrarily large value of L can be guaranteed in (23) 

I 
Extension of Lemma 5 to $-mixing sequences (which includes m-dependence 
as a special case) and weaker covariance conditions is straightforward. There- 
fore, only assumptions (Al)-(A3) are needed to guarantee boundedness of the 
mean square parameter tracking error if the method of exponential weighting 
is used! 

t = 1 , .  . . , r  we get P(detR(t) 5 z) = 0 5 9zL 

provided that the forgetting constant X is sufficiently close to  1. 

7 Statistical Robustness 
On the qualitative level the results obtained in previous sections raise several 
important issues which can be easily overlooked if a mechanical, “bookkeep- 
ing” approach towards certain mathematical details is adopted. 
First of all, one should realize that results of Section 4 indicate certain non- 
robustness properties - as far as statistical analysis of WLS filters is concerned 
- of strictly finite-length windows. Assumption (A5) admits a large class of 
continuous distributions but rules out all discrete ones. Is it a serious limita- 
tion? In a way it is. In the world of computers and digital processing, random 
variables with continuous distributions belong in mathematical “science fic- 
tion”. Any form of quantization turns a continuous random variable into a 
discrete one. Hence, results of Section 4 are not robust against quantization. 
The situation is essentially different if exponential weighting is applied. Let 

Pmin = P(detQ(t) = 0) 

If pmin = 0 one can make PO, given by (49), arbitrarily small by decreasing 20. 

This corresponds to the case where there is no discrete or singular component 
in F(q5). Presence of such components, however, does not destroy invertibility 
of R(t) which was the case for finite length windows. Instead, it sets a lower 
bound on the forgetting constant X 

i.e. the minimum equivalent width of the windows for which invertibility is 
guaranteed. 
The related question is that of practical significance of the results based on 
(A5). If regression vector g ( t )  is subject to quantization - as it always happens 
in practice - the expected value of the mean square parameter tracking error 
is, a t  least theoretically, infinite and all the results laboriously derived in 
Sections 4 and 5 have hardly any meaning. Or have they not? The point 
is that even under very crude quantization ( like the one considered in our 
example in Section 4) the probability P(detR(t) = 0) will take extremely 
small values for typical window sizes. One can therefore argue that the 
insights provided by our analysis can be applied also, quite safely, to  the 
case where (A5) is formally not valid. In particular, if one is not scared of 
Maxwell’s demon, one can still explain properties of the WLS filter in t e r m  
of properties of its “idealized” version without being wrong once in one billion 
years! 
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Appendix 1 (derivation of (35)) 

The inequality can be easily proved by induction using the following propo- 
sition: 

Proposition. For any two positive-definite matrices A and B and any inte- 
ger m 

m2A-’ + E-’ 2 (m + 1)2(A + E)-’ 

Proof 
Proof is straightfoward in the scalar case. The multivariate case can be 
converted into the scalar one by performing the simultaneous diagonalization 
of matrices A and B (note: there exists a real matrix Q and a positive 

I 

Suppose that (35) holds for a certain m. Then, using the result of the propo- 
sition above, one gets 

diagonal matrix A such that: QTAQ = A and QTBQ = I). 

i.e. (35) is also true for m +  1. Since it is also true for m = 1 (c.f. proposition 
above) it remains valid for any m. 

Appendix 2 (proof of (36)) 

Observe that for & = E[&t)], i ( t )  = R(t ) /N : E [ k ’ ( t )  - &-‘I = 
= E [ ( k ’ ( t )  - R;’)k(t)(R-’(t) - R;’)] 2 0 which is nothing hut (36). 
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