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'Abstract

An LMB-like algorithm i applied for estimating the time-varying parameter 4, in the linear

" mmodel y,=@Z6,+v,, which is general in the sense that none of the probabilistic properties such as

stationarity, Markov property, independence and ergodicity is imposed on ‘any of the procesdes

{¥n}s {Pn}, {6a} and {v,}. It is shown that the a—th moment of the estimation error is of order of
the a~th moment of the observation noise and the parameter variation w,Q6,—6p-1.

§ 1. Introduction.

For linear stochastio systems with constant parameters there has been made &
great progress on the paameter estimation problem. Systems with constant param-—
eters may be viewed as a first approximation to the real processes which, as a matter
of faoct, mostly are time-varying in practice, and such an spproximation is not al-
wayi satisfied by the practitioners. By.this reason for recent years a considerable.;
attention has been paid to analysing systems with unknown time-varying parame- .
ters by researchers in the areas such as control theory, signal processing and time
geries analysis,

It is natural to expect that the ﬁrst seb of results on parameter egbimation (or’
tracking)and adaptive control for systems with time-varying parameters is obtained
under some statistical law assumptions on the regressor or on the observation moise
or on the parameter itself, For example, it is assumed that the regressor is stationary
and independent of the obssrvation noise (Macchi, 1986), the observation noise is
Gaussian (Kitagava and Gersh, 1985) and the parameter is a Markov prooess (Chen’
a.hd Oaines, 1990; Guo and Meyn, 1989; Ji and Chizeck, 1988). Without any doubt
the assumptions made in the papers mentioned above are reasonable in certain
circumstances, but they are restrictive in general, For example, the stationarity
assumption on the regressor excludes the feedback control system, from consideration,
for which the regressor cannot be independent of the noise either.

In this paper we consider the following system with unknown tlme—va.rylng .
parameter {6;}:
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Wi =@+ vk, a.n
where y; is the one-dimensional system oubtpub, @i is the r-dimensional regressor
and o, is the system noise,

Qlearly, in the special casc where

PE= (Y1 *** Yu-s Ui-1 *** Upo_t]
and 1, is a moving average process System (1.1) turns to be the ordinary ARMAX
model with time—varying parameters.

The problem stated in this paper is to on-line estimate or to track the time-
varying parameter ; based on the observed data y, and @;, ¢<<k.

We would like to emphasize that System (1.1) is quite general in the class of
linear models: For processes {y:}, {@x}, {0x} and {v} we do not make any assumption
on their statistical relationship and do not require them to be processes of a restri-
cted olass such as stationary proocess, Markov process ete.

'We characterize the observation error {v;} and the parameter variation

w,,=0,. -0,,-1 (1-2)
either by
o‘aés%)E(l'v,.I“+wa,.n“) 1.3)
or by
8 glm>§up%§' (ol ®+ e, a. s 1.4)

for some constant &>0,

In such a set—up of the problem, Guo (1990) provides a detailed analysis for
estimation error 5,,@0,.—-9,., when é,. is ealoulated according to a Kalman—filter-like
recursion for which a time~varying matrix adaptation gain is used. Guo’s results
are then strengthened (Zhang, Guo and Chen 1990). It is shown that a—th moment
of the estimation error ig of order a, or &, in accordance with the average taken in
the sample space sense or in the time domain sengs, respectively.

In this paper we establish similar results for the estimate d, produced by an
LMS-like algorithm, which ig characterized by its simplicity for computation:

Bni1=0n+ ttun (v~ @30,), (1.5)
where {u,} is bounded by a positive constant with w,|@.|?’<1, V n>>0 and u, is
measurable with respect to the o—algebra generated by {v,, 6,, @i, ¢<<n}. It is easy
to sec that the algorithm (1.5) becomes the well-known LMS adaptive filter with
step size u considered by Widrow et al (1976), Macchi (1986), Bitmead and Ande~
rson (1980), Benveniste et al (1987), if wy=u € (0, 1), and it turns to be the
projection (or gradient) algorithm (see, e.g. Anderson et al, 1986; Chen and Guo,

1987) with step size w if ,.bFI:LﬁE.
k

In comparison with the previous work we note that the tracking error bounds
are established when LMS is applied to tracking deberministic time-varying
parameter. (Eweda and Maocchi, 1985). However, they assumed that the time varia-
tion |#,—0._| is bounded in % and {yx, @i} is an M~dependent sequence. For the
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constant parameter § the convergence of LMS estimate is proved under ths assump—
tion that gy is purely nondeterminisitio and {p;, ©;} is striotly stationary, while
for the time-varying parameter an additional assumption is required that {d, — 6.1}
iy stationary, zero mean and independent of {@:, v,} (Solo, 1990).

§ 2. Main Results

Recursively define

D (n+1, m) = (I - pnps) @ (n, m), ®(m, m) =I, Va>m>0, @.1)
From (1.1), (1.2), (1.5) and (2.1) it is easy to see that
Oni1= (T = 1o u?) Ot 11 — o0, 2.2)
=O@+1, 0+ B(n+1, i+1) @2.3)
where
022000, and  £,108Wnp1 — fnPulas 2.4

We always assume that
EB|fo*< oo.

From (2.8) we see that the tracking error {6,} strongly depends upon the
behavior of {@(n, m), Vn=>m=>0}. For analysing (2.3) the essential role is played
by the “conditional richness” condition (Guo, 1990) and (Zhang, Guo and Chen,
1990) :

There is a nondecreasing sequence {% ,} of o—algebras such that u,EF,, ¢,E
F ,and

m th )
{ 21 p’l@w’a 'gz_m}>7“}— I a'-S-) Vm}oy (2 . 5)
where h is a positive integer and {@m, # m} is an adapted nonnegative sequence

satisfying a,>1, and

O 41 @ O+ TImz1,  VMm=20, Haftl<oo .6)
where a € (0, 1) is a constant and {7, F =} is an adapted nonnegative sequenoce
such that

sup B[t | Fml <M as. (2.7)
ma>
with §>>0 and M <co being constants.

Remark 1. In the cas> where ;= Condition (2.5) is an extension

1+ ll TH+eal®
of the one introduced in (Guo, 1990). It is noted in (Zhang, Guo and Chen, 1990)
that the conditional richness condition (2.5) is satisfied by a large olass of processes..
For example, if {@s} is & ¢-mixing process with

mfsup 2" Epupin>0 and sup Elgi)*<oo,

k  lot=
then (2.5) holds. Also, if {@} is an output of a stable and output-—-controllable
linear system, then (2.5) holds, Finally, (2.5) is obviously satisfied if its determi-
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nistio version is fulfilled. By the determinisbic version of (2.5) we mean the one
that was introduced in Lomma 2 of Chen & Guo (1987), and whioh is weaker tham
the well-known sufficient richness condition,

Theorem 1. If the conditional richness condition (2.5) is satisfied, then the
parameter tracking error is estimated by

lim sup Eué,,llka(aa)g, VBE (0, &) (2.8)

where U is a positive constant.
Moreover, if v,=0 and w,=0, then

E)6,.1)° —>0 exponentially fast, VBE (0, ) 2.9)

and
B —=> 0 exponentially fast. (2.10)

Theorem 2, If Condition (2.5) holds, then for any B€ (0, &) satisfying

6>—£% there exists a constant A>>0 such that

B 8
lim sup—i—zo 10 05<A(ea)® a. 5. (2.11)

i=
where § is the constant appearing in Condition (2.5).
The idea of the proof for Theorem 1 comes from the following enlightening fact,
the proof of which is given in Appendix.

: . 1
Proposition 1, Assume that r=1, B|f,|<<co and {uZp,} is a sequence of
mutually independent vectors. Then sup E|§,]<co for any {£,}€.# 2 {{{.}:

n>0
1
sugE]f,] < oo, {{,} is independent of {wZp,}} if and only if there exist constants
n>

O0>0 and y & (0, 1) such that
ED(n, b)<Oy" %, Vaz=k>=0, (2.12)
where {#,} and {£,} are related by (2.2)—(2.3)

From this Proposition it is seen that in order to prove Theorem 1 the first
thing we ought to do is to investigate whether or not (2.12) is satisfied as has been
done in many references (ses, e.g. Eweda and Mauchi, 1985; Macchi, 1986).

Lemma 1, Under Condition (2.5), the following inequality holds

1 ,
pk<1—m, VL>O, (2.13)
where
O =Amax (B[P (B+h+1, k+1)D(k+h+1, k+1)|F]). (2.14)

where An.,(X) denotes the maximum eigenvalue of a matrix X .

Lemma 2. Suppose that {xm, #,} and {4, ¥} are adapted sequences such
that z,>1, 440, Ym=0,

Bt <oo, sup B[454|Ww] <M  a.s. (2.15)

and
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wm+1<lmm + Am+17 Vm>0, - (2 . 16)
whero € [0, 1), >0 and M < oo are constants. ‘
Then there exist adapted processes {ym, %} and {5,, #,} such that

Ym20m=1,  8pi1>>0, VYm0 @.17)
sup ERLH| Y n]<M as. (2.18)
sup EBmu1|Zml<d a.s. (2.19)
and
" Ymir =Yt Bmes, M0, Byit'<oo, (2.20)

where b€ (0, 1) and M< co are constants.
Lemma 8. Let {am, #m} be an adapted random prooess satisfying

an€ [0, 1], Bansa| ¥l >, VYm0,

where {o,} is given by Lemma 2, Then there exist constants >0 and y€ (0, 1)
such that

E 11 (1~ @) <Oy™3,  Vammi>0.
Lemma 4, Under Oondition (2.5) there are constants O and 7€ (0, 1) such
that |
E|D(n, m)|2<Oy"™, Vazm>0. (2.21)
Lemma 6. Let {fi, #i}, {v, %} and {ax, #:} be nonnegative adapted
random proocesses satisfying
Fri1S (L - 1) futvia, V=0, Efi<oco (2.22)
for some a>0 and let the following conditions be held

B A l-im"_:up —i— g vi<loco a.s., EE(P Ev§, 1 <oo, (2.28)
@€ [0, 11, B{ans1|¥ i} >—;‘- @.248)

where {2} is defined by Lemma 2. Then there exists L>>0 such that
lin'L iup—ql;- ‘2:0 f<LB§ a. 8, VBE (0, @) (2.26)

, where v is the constant appearing in (2.15).

whenever v>a2_'8 B
The proof for Lemmas1, 4 and 5 is given in Section 4, while the proof for

Lemmas 2 and 3 can be found in Zhang, Guo and Chen (1990).
§ 3. Proof of Theorems

Proof of Theorem 1. We first show (2.9) and (2.10).
1t “_BB >2, then from |&(n+1, §){<1 and (2.21) it follows that

a
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BB (nt1, §)|ET<E|® (1, 6)|2<0y™'~, Vn>i>0. 3.1)

If uﬂiﬁ 3 <2, then by the Holder inequality and (2.21), we have, for any n>
>0,

BlO@+1, §) |57 < (BI®(n+1, ) |HTB < Oy i) Tom,  (3.2)

Hence for any 8€ (0, a), from (8.1)—(3.2) there always exist constants U, &
(0, c0) and y; & (0, 1) such that

E|®(n+1, 6) |5 = <Oy, n=>6>0, 3.3
In the case where v,=0 and w,==0, it follows from (2.3) that
0pi1=D(n+1, 0)50 (3.4

Applying the Holder inequality to (3.4) ( B 1= - B) from (3.3) we see that
(2.9) is true, i. e, there are constants £& (0, 1) and ¢, >0 such thab
E|6,|%¢ <6, Vn=O0.
By the Borel-Cantelli lemma it is casy o see that
}‘imllénllﬁg""/2=0 a. s.
which proves (2.10).
It remains to prove (2.8).

From the definition (2.4) of £, it is easy $o see that there exists a constant N
such that

sup Blé“<No. 3.5)

For a given B€ (0, &), if BE (0, 1], from (2.3) and the following elementary
inequality

(v+y)i<af+ys, Vaz=0, y=0,
it follows that

E|f,.1|*<E|®(n+1, 0) "5"50”'94"25 B|D(n+1, ¢+1)[#|&wmal?,
which by the Hélder inequality yields

BBl P < (BI (n+1, 0) |75 (Ellﬁoll“)“

+2 (BN (n+1, 6-+1) 7))+ (Bl isal®)5, (3.6)

If B>1, from (2.3) by the Minkowski inequality and Holder inequality we
have

(ElBnial D5 < (BIP(n+1, 0) Il"llgoll")%Jri] (B|@(m+1, 6+1) )&l )5

<{E|D@+1, 05" <Eueou“> Y
+B{ED@+1, 6+1)|70) T @l
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= BB @+1, 0)|F5) 5 (BIF|)E

2 _al_ a—8 1
+2 (BI®(+1, 6+ 1) |5%) & (B |éial )= 3.7)
By (3.3) from (3.6) and (8.7) the desired result (2.8) follows immediately.
Q.E.D.

Proof of Theorem 2. For any fixed =0, 1, ---, h, seb N
ou(8) = |Bursnynsl, VB0, 3.8)
Notioing from (2.2) and (2.4)
Basnastse=B((+1) (h+1) +s, E(h+1) +8)Guninse

(+1)CA+1)+s-1

D((k+1) (h+1) +s, 6+1) s,

' , i=k(hr1)+s
then by the boundedness of u, we have
Dy (&) <N B ((B+1) (h+1) +8, b(h+1) +8) nsnypal +Ersa (8), (3.9
where ,
! E+DA+D)+s-1
IO (|oe} +lwigal) - (8.10)
=k +1)+8
Let .
1- 1D ((b+1) (h+1) +s, k(h+1) 48) Brnsnsel , if ugmu)“u >0
ar41(8) = ng)ﬂ)w !
3 if “gl(hj-l)+3l| =0
(8.11)
It is olear that
a(8) >0, @ (8) € Funsnse @(®) € [0, 1], (3.12)
and
By41 (8) < (1 — rga (8) ) 2 () + Eraa (8) (3.13)
We now show that
. - 1
E{a41(8) | Farsn)+e] SR Pommns’ a.8. (3.14)

Bet Ay (s) = {w: |Gursny4sl =0}. Obviously we have Ay (s) € F unsnr+s and

IA,(:)E [ak+1 (3) ,ﬁ- m+1)+s] =F [Gk+1 (S)IA.(a) Iﬁ' fb(»+1)+:] =IA¢(:)» (3-15)
which means that (3.14) is true on A4;(s) Since w:=>1, VE=0.
From Schwarz inequality and Lemma 1 we see that

ElDO(k+1) (h+1)+s, k(h+1)+8) Grrsvsel | Fronsnreel
<{IB(E+D) B+ D) 45, b+D) +)Funsnnl’| Fnsnidd

1

: 1 5 .

_= <(1—-(-1—_T_-‘m) (% |
_{- 1 AYY .

| L<(1— 2(1+h) 2ak(h+1)+n)ﬂ9m+1"+.r.

—
e




334 ACTA MATHEMATICA SCIENTIA Vol. 11

Henece by (3.11),
I Af (8) E [0k+1 (s) ].9' ic(h+;)+c] =K [I Af(8) Frs1 (s) ]ﬂ' m+1)+t]

=140 (1 <1 2(1+4) ouri 1 49
=7 L
AA® ST+ h) 2ak<rg+1)+- ’

which together with (3.15) implies (3.14).
Finally, applying Lemma 6 to (3.13) we obtain

‘ hm sup——Za; (s)<A,(3a)a, §=0, 1, -, b,

where A4,< oo are constants. This verifies the desired result (2.11).

§ 4. Proof of Lemmas

Proof of Lemma 1. We first note that this lemma is the stochasfio version
of the result proved in Lemms 2 of Chen and Guo (1987 ¢) and the reader will find

some gimilar ideas for their proof,

Let 2., be the unit eigenvector corresponding to the largest eigenvalue p,_; of

the matrix
B(D"(k+h, )DUe+h, k) | F-n)
For any j>k, define z, recursively by
25 = (L — wpsp7) 2;-1.
It follows from (4.2) and the definition (2.1) that
Zupn-1=D(k+h, k)2ra,
and hence,
B (|zxsn-1ll?| F 1-1) =2_1B (D" (b +h, B)D(k+h, k) | F o-1)

= Pr-1f 21| % = pr—1,

Pr-1=1 (| zxsn-1|* Iﬁ'k_l)
We now proceed 1o find connections between Pie—1 and a;,_.l.
Notiice (4.2), we bhave

i
"‘"J =2pey — El-bi?’@}rzt_y Vic€lk k+h-1],
whioh leads to

: i~1 2
E(|%1y~tal?| For) =B [ﬂg}:ﬁ BP DT

<E (S mletaal®(E mled?)| #ia]

| Fra ]

<hB (S mhpteal’| Fis), Vi€ lhb+hl.

4.1)

(4.2)

(4.3)

(4.4)
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. From (2. 5) and the Minkowski inequality we conolude that
- rk+l—1 . ! R+h~1 1
ak31< zrf-:EL § M:‘Pﬂ’:lfxd]ﬂk-x) =-(E[ 2 15| @301 |2 F st ])

( [ 2 M:l?ﬂ;—ﬂ lfk—a,]) +(E ﬂz;-1—¢k-1 Ifk-l])i--
From this and (4.4) it follows that
: . 1

I
“k—1< (1+h)<E = M:I%h—ll 4 k—:])
t. e.
1@ KR~ jﬂ-
[?.‘L K| @Fes-1] | u.1]>——-—r(1 L (4.5)
Obviously, to complete the proof we should find the relationship between gz
and :

k+h-1

E[ > I"ll‘PfZ!qulgrkA]-
1=k

From (4.2) it is easy to see thai
252,25 ~125-1 — oy | PTEs-1 |2
which implies thab ‘
sl <leeal =3} milofersl?=1-"3 wlpfil". (4.6)

=k =k
Taking conditional expectations with respect o F#3_, for both sides of (4.6)
and noticing (4.3) we have

k+h—1
prea=B(Nonn-al| Fa) <L-B [ 3 sl @t1cal*| Fua |

whioh combining with (4.8) gives the desired result (2.13),
Q. E. D,
Proof of Lemmsa 4, Let
L ko=min{k: m<kh<n}, ki =max{h: m<kh<n}. 4.7
It is olear that, if one of %, and %, exists, then the other one also exists and
&1>2%0>>0,
Notioing the inequalities
E|@(n, m) |P°<E|D(ksh, koh)|? and pIl=hgyn—m (4.8

- which holds because (ky+1)a>n and (b — 1)k<m, we find that for (2.21) it suffices
" to show that there exist constants 0€ (0, o) and ¥ € (0, 1) such that

E|® (byh, koh) |2<Oy®—ktIh ik, >k, o (4.9)
‘We now proceed to prove (4.9).
Set ‘
Pty ™= Mmax (B (D (ksh, koh) D (Kah, Kok)]) (4.10)

and o, be a unit eigenvector of the matrix B [D*(ksh, koh) D (kih, koh)] correspond-
ing o its largest eigenvalue py,,x,. Denote
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2= (kh, (E—1)h)zyer. VEE [Fo+1, Bi], 26,=Dr, ke (4.11)
From (4.10)—(4.11) and Lemma 1 it follows that
%E Fia-1> Prare= 2115 (4.12)
‘ SN S 2 4.13
Bl F oen) <(1- (g o (4.13)

and
leaal 2 <) D (KR, B—1D)E)|2|tea)’<|z-a])® VEE [Ko+1, Fa]. (4.14)
Notioe that from (2.6) we can get
h~1
(1+5) 2aqsp-1<a® A +h) *wg 1+ (1+h)? ,% Nr1h-1~1)
h—1
then identifying @m= (1+5)20m-1, u=0" dpi1= 1+54)? g} & Nimivi-t-0Y m=F mn-1

and =38 in Lemma 2 we know that there exists a constant b& (0, 1) and two
nonnegative adapted processes {y;, %} and {&, %} depending only on {w;} such
that '

ye=> (1+h) *aig-1, (4.18)
Yupr=0Y+04sy, VE=0, BV <00 (4.16)

and
sup E[53| 9 <M, sup E[311| %] <b, (4.17)

where M< co is a constant,
We are now in a position 1o complete the proof of (4.9).
From (4.12)—(4.17) it is easy to see that

Pr o= B2, 2 < By, 20| * = B (byr,-1 -+, | 2,2
=bE [¢fe-1.E () 2] *| F -vn-1) ] + B, 2,12

<bE [yk‘_l (1 -3 1 )” zk,—lﬂz] + Edy, [l o1 ]2

Ky—~1

=bE [yp-1l| 2,111 — OB |21 ]*+ B [ 21 °E (8| F = 1n=2)]
=bE [yu,-1]20,-1) 7} <= <O He By,

=(Ey0+ 7 E 3 )bk;—kn,

whioch implies (4.9), and hence (2.21) holds.

Q.E.D.
Proof of Lemma 5. We.need the following fact: for any martingale difference-

sequence {g,, #,}, if

sup B|g.|**°<oo, for some ¢>>0, (4.18)
n>
then

1 &

F;:":)gkmo a.s., (4.19)

To prove this, we note that (without loss of generality assume o€ (0, 1]),
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o [47;4_1]} E}yk 1+o

]01+° ©0,

2{ge(l4

k=1

and henoe

ZZ/ Ik—1]<°° a. 8,

k=1
COonsequently, by the martlngale convergence theorem (Chow, 1965) the series
g lk"— converges almost surely. From this and the Kronecker lemma, (4.19) follows
immediately. ‘
We now show that for any 6>>0 and d>>1 there is a constant ¢(s, ) such thab
(e+b)i<(1+8)a’+e(s, d)bS, Va0, b0, (4.20)
Notice that there is z, such that
1+z)é< (1+8)at Va;>a:o
which implies
(A+e)i<(1+8)a?+e(s d), Vz=>0 (4.21)
by sotting ¢(s, &) = (1+20)%.
From (4.21) we readily obtain (4.20). Hence for any &>>0 and any d>0 we
have

(a+d)!<f(s, Da’+9g(s, DY, Va=0, b>0, (4.22)
where
18, if d>1, c(s, d), ifd>1,
(o @)= { L g, 96 d)“{1, oo, (4.23)

Then from (2.22) we see that, for any B € (0, ),
a+p
fk-f1 <("l'_-taltwl)f( a+B)sz +g<5,a_+£)1’k+1 y V&k=>0 (4..24)\

and
f£+1< (1 - mk+1) f(S, B) f£+ 9(87 B) Vle+1’ Vb?o, (4: .25)\
where we have used the inequality
(1 - Gk+1) _2_< (1 - ak+1) ‘8< (1 - twk+1) with #¢=min (1, ﬁ) »

It is olear that Lemma 3 still holds if (@, %m) is replaced by ({gm #m). In
this case y should be written as ¥ (#) € (0, 1) to emphasize its dependence on ¢,

In order that 7(?) f(s, “_;B )<1, & should belong to the fellowing interval:

, s€ (0, (y@®)*-1) (4.26)
Then from Lemma. 3, (2.23) and (4.24) it follows that ‘
. swpE 7 oo, (4.27)

By Lemma 2 it is easy to see tha.’o for the given number ¢=min{1, B}, we can
find an adapted sequence {y,, ¥,} satlsfymg (2.18)—(2.20) and
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y,,.>%— om, Ym0 (4.28)

Now, let us set
L an— B (an|¥x-1) 848, - E Ok ¥ e-1) (4.29)
where {3;} is the process satisfying (2.20). By (4.28), (2.19) and (2.24). it is easy
{0 see that

Gk+1>. 1;+1+ t]?)k y 8;‘<5k+b. (4.30)

By this, (4.25) and (2.20) we have
Yrs1S511< (byt+0ie1) (U —tan) f (&, BYfE+g(8, B)vRs1ter
<bf (e, B) A+tani) fiyu+f (8, B) dusrfii+g(8, B)vistyuss

<vf (e, B(1-tanss L) o F (5, B) BuvatD)fE

+9(8, B) Y11y
=bf (8, B) fiyu— bf (8, B)taussflyu+1 (s, B)Susafs

+9(8 B)visiYusa. (4.31)
‘We now proceed to estimate the last three terms on the right hand side of
(4.31).
By (2.18), (2.20) and the fact that b€ (0, 1) it is easy to see that
sup Eyit*<oo, sup B|§;|***< oo, (4.82)
k>0 k>0

Notioce that || <1, from (4.32), (4.27) and the Holder inequality (with p=

a+33+28y - a+3ﬁ+2,8u)
3B(A+v) q ot we see that

- 8, [1+2 (a—B)v-28
i&gElau:fnykl <oo, VAE (0, m] (4.33)
and
kY 81+ (e-B)v-28
zE?E|8k+1fkl < oo, VLE(O,m]. (434)
‘Therefore, by the fact mentioned by (4.18)—(4.19) we obtain that
73;— 1§1 (=bf (e, Bt veafiin+f(s, B) gkufﬁ):.: 0 a.s. (4.35)

By (4.31) and y>>1 for any ¥>>0, we know that
LS el S, rs
n kgofk< n k2=oy’°f'°
1 n—1 ~
<m [yo fe+2 (- bf (8, B)t waflyut+ £ (8 B)SusafD

+:2;: 9(s B) V£+1yk+1] (4.36)

1-bf(s, B)>0. (4.37)
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In the case where d<(1 for (4.37) is obviously true, while in the case whero
a>1, f(s, B) =1+s and for (4.37) it suffices to require

e<<b™t-1
which incorporating with the socond interval in (4.26) yields
8€ (0, (maxi{y(®), b}~ -1). (4.38)

Therefore, (4.36) holds if 2 is selected to satisfy (4.38).

To complete the proof it remains to analyse the last term on the right hand side
of (4.36),

From (2.18) and the faot mentioned by (4.18)—(4.19) it is not diffioult to see
that for a.ny o€ (0, v),

LSl 2E(51+°l%,1)+— 2 (33 - B3| %) =0(D),

'n k=1
which in conjunction with (2.20) yields that
_l_ 3 1+c=___
= 2y =0Q). (4.39)
Finally, from (4.35) and (4.36) we see that for (2.26) it remains to show
n—1
lim sup —_— ; Vi <L Ba (4.40)

for some constant I’ >0. By the Hilder inequality with p=— 3 v =73 ,3 the desi-

‘red result (4.40) follows from (2.23) and (4.39).

Q. E. D.

’§ 5. Conclusion

Apn LMS-like algorithm is applied for estimating the time-varying parameter
0, in the linear model (1.1). For the case where (2.5) holds, it is shown that the
o~th moment of the estimation error is of order of the a~th moment of the observa~
tion noise and the parameter variation w,A8,-6,_;. It is worth noticing that in
this paper we do not require {y,}, {@.}, {0.} and {v,} are stationary, Markovian,
independent, ergodic and purely nondeterministio. It is worth mentioning that if
we assume these processes are striotly stationary and ergodio then we can also obtain
the same limit results presented in (Solo, 1990), even under the weaker conditional
richness condition (2.5). '

Acknowledgement The second author would like to thank Dr. 8. P. Meyn

for his comments on the proof of an earlier version of Lemma 1.

Appendix

Proot of the Proposition, If (2.12) holds for some constants C>0 and 7€ (0, 1), then from (2.3) and
{D(n, i) | <1 (Vaz2i320) it is easy to see that sup ¥|6,| <oo for any {¢.} € 4.

We now show that if sug E’[e,,] <o for any {¢,} €., then there must exist constants C>0and v€
L2 <
(0, 1) such that (2.12) holds. To see this, we choose the sequence {¢n=1} which obviously belongs to 4.
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Hence, from (2.3), || <oo and sup E|&,| <o we conclude that
npu

sup 3V ED (n+1, i+1) <C< oo, (A1)
n»0 i=0
where C>0 is a constant.
Let i
Ba= 11 B (1 — 10D 4.2

Then from (A. 1) and by the independence of {u}.zp,‘} we see that
ki)
3 ED (n+1, $+1) ==§71”1"1+1E(1—u,¢,¢;)=b,,§‘ b1<C, Vazk=0
ik 1=k j=1 =

which implies that .
% b1, <<Cb by (A. 3)
=

Adding C ;i b;b, to both sides of (A. 3) leads to
a+0) B o0} v
i=k 7=,

e oy 1 1\ T 1 \n~%
3 oo (1+ )8, oiv(1+g)
From this and (A. 3) it is easy to see that
- _ 1 \n-—k
bansti' <O( )" 5 VnE=0,

which implies the desired result (2.12).
Q. E. D.
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