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significantly simplify the results of [2] for testing Hurwitz and Schur
stability of symmetric interval matrices.
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Stability, Convergence, and Performance of an
Adaptive Control Algorithm Applied to a
Randomly Varying System

S. P. Meyn and L. Guo

Abstract—The stability and performance of a stochastic adaptive
control algorithm applied to a randomly varying linear system is investi-
gated. We demonstrate that

i) loss functions on the input-output process converge 10 their expec-
tation with respect to an invariant probability at a geometric rate. Hence
a form of stochastic exponential asymptotic stability is established;

ii) when the parameter variation and measurement noise is small, itis
shown that the performance is nearly optimal. If an excitation signal is
added in the control law, near istency of the par ter estimates is
obtained.

Further results include central limit theorems and the law of large
numbers for the input-output and parameter processes.

1. INTRODUCTION

In this note, we consider an adaptive control algorithm applied to
a stochastic time-varying system.

We extend the stability proof of [3] to show that a projected
version of the gradient estimation algorithm induces a controller
which is stabilizing for a broad class of linear time-varying stochas-
tic systems. This result is used together with recent results from the
ergodic theory of Markov chains to show that loss functions on the
input-output process converge to their expectation with respect to
an invariant measure at a geometric rate. Related ergodic results
such as convergence of loss functions on the sample paths is also
established.

We also demonstrate that the parameter estimates are nearly
consistent under an appropriate modification to the control law.

These results constitute a broad extension of the ideas initiated in
[11] and [4). The stability proof presented in these papers is fairly
involved, however, the system model is highly specialized and it is
hard to see how the results can be extended to more complex
models. In the present note we will examine a standard adaptive
control scheme, and our results will depend on general and natural
hypotheses on the system and parameter process.
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Methodology

The techniques to be introduced in the following are generaliza-
tions of the Lyapunov approach of for instance [7] to the stochastic
framework. These techniques are extremely general and may be
applied to a large class of problems in stochastic systems theory.

It has been widely accepted that associated supermartingales
should play the role of stochastic Lyapunov functions. However, in
the stability analysis to follow it may be seen that the supermartin-
gale approach which has previously been successful in stochastic
adaptive control is not appropriate here. Our approach is to take a
version of the Lyapunov function which may be used to establish
ultimate boundedness in the deterministic case, and use this test
function to prove that the distributions governing the state process
are generated by an exponentially asymptotically stable dynamical
system whose state space consists of probability measures. In the
terminology of [13], the state process is geometrically ergodic. This
result may then be used to infer stability results for the input-output
process, and associated variables in the control process.

A general technique introduced in this note is the collection of
results described in Appendix A, and applied in the proof of the
consistency and optimality results (16)-(18) in Theorem 1. As
discussed immediately after the proof of Theorem 1, we do not at
present know of any proof which does not rely on the methods
introduced in Appendix A.

Overview

The note is organized as follows: in Section II we describe the
system and control algorithm subject to analysis, and present our
main results.

In Section III we construct a specific Lyapunov function on a
Markovian state process for the controlled system. A further analy-
sis of the state process is made in Section IV. In particular, it is
shown here that the existence of the Lyapunov function implies that
the distributions governing the system, and hence also loss functions
on the input—output process converge to their stationary values at a
geometric rate. This, together with some results from the Appendix,
provides a proof of the main result.

II. SysTEM DESCRIPTION AND MAIN RESULTS

We consider the stochastic time-varying system
Y1 = a(k)ye+ -+ +”p(k)yk-p+|

+up+ vy, k=1

(1)
where y,, u,, and v, are the (scalar) output, input, and disturbance
processes, respectively, and the parameters a,(k), 1 <i<p, k=
0, are partially observed through the input-output process (u#, y).

Our goal is to choose a control law which stabilizes this system in
a mean square sense.

First, we collect together our assumptions on the disturbance and
parameter processes. Observe that the system (1) may be written in
the regression form y,,, = Or¢; + 4, + vy, , where

0k = (Vi3 Yeopsr) and 0% = (@ (k). -+, a,(k)).

Assumptions

Al: The parameter process 0, k =0, is a constant plus a
moving average process of the form

_ g0
0,=0"+me  + B+ +B, s

A2: The joint process w £ (7, v) is an independent and identi-
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cally distributed (i.i.d.) process on R”*!, and the distribution 7™
of w,, k=0, possesses a lower semicontinuous density which is
positive at the origin.

A3: For some M, ¢, >0, 83, M, < «

E[exp (eov2)] =< exp (M,)
E[CXP (Mo |8, |%)] = exp (8)
where A,, k = 1, is defined to be the parameter variation process
A28, -0,

The constants defined in condition A3 are not chosen arbitrarily.
The constant M,, is assumed to be larger than some bound M, and
the constant 6, will be assumed to be smaller than a bound 6.
Their precise values may be found from an examination of the
proofs below.

We now describe the estimation algorithm. Let L > 0 and d > 0
be two constants. We define the domain D C R” as

D= {xeR”:|x| =L, 1s=isp) (2

and ITp{ x} is defined to be the nearest point from x to D under the
Euclidian norm.

The parameter estimates @ of the parameter process § are gener-
ated by the following projected gradient algorithm:

k=ng

Pk

Gepr = Tpl6, + —2%
k+1 D{k d+ o |2

(yk+1 — U~ ¢Iak)}. (3)
We stress that the parameter process @ is not assumed to evolve in
the set D. However, we assume that §° € D, and the stability proof
below requires the assumption that L is sufficiently large, so that
there is a high probability that 8, lies in D for each k = 1. A
precise lower bound on the magnitude of the constant L may be
obtained from the stability proof.
We collect the initial conditions in a vector

T A T 4T
®, = (‘Po’oos"o’ ‘"l—n0+l)

which we assume is a deterministic constant, or more generally, is
independent of the process w defined in condition A2.

Given the parameter estimates (3), we apply the certainty equiva-
lent minimum variance adaptive control law

Up = — ‘Pzék . (4)

Incorporation of Excitation and e-Parameterizations

When the disturbance sequence w is small in a certain sense, then
we will see in Theorem 1 that, after a transient period, the
input-output process will be small in L2 norm. A natural question
arises: is it true that the norm of the parameter estimation error | |
will also be small after a transient period? A complete answer to this
question is not at present available. However, by modifying the
control law (4) by the addition of a *‘dither sequence’* as in, for
example, [1], we may obtain near consistency of the parameter
estimates.

In a portion of the results to follow we will assume that the
control law takes the form

U= —pbi + 4, ()
where we will require the hypothesis.

A4: The stochastic process e is i.i.d. and independent of (®,,
w), and the distribution p, of e,, k = 1, is uniform on the interval
[- V3062, V3621

To discuss the behavior of the closed-loop system when the

disturbance w is small, it will be helpful to define an e-para-
meterized family of systems of the form described above. Suppose

that for each e€(0, 1] a disturbance process w® = (v, ) is
defined, and take w® = 0. In this case, we will assume that the
following substitute for conditions A2 and A3 holds.

AS5: For each ee(0, 1] Condition A2 holds, and there exist
constants €, and M, such that

lim E[exp (&(v§)?)] = lim E[exp (Mo| 7i1%)] = 1.

Under condition A5 it follows that w§ — w2 as ¢ — 0 in every L”
space, and hence also in probability.

Construction of a Markovian State Process

Under conditions A1-A4, the system description (1), either con-
trol law (4) or (5), and the form of the parameter estimator (3), it
follows that the stochastic process & defined as

‘I’kz(‘PI’ﬂ""k"" keZ,, (6)

is a Feller-Markov chain with stationary transition probabilities
P* k = 1, defined as

P{d,e4|®} = P(®;,4) k=1, Ae2B(X).

This fact will be proven here. For definitions of these terms, the
reader is refered to [16].

Lemma 1.1: Suppose that conditions A1-A4 hold and that either
control law (4) or (5) is applied. Then the stochastic process &
evolving on X £ R” x D x R™ defined in (6) is a Feller-Markov
chain.

Proof: For simplicity we consider only the case where the
control law (4) is applied. To prove the lemma recall that w = (v,
7). We will construct a continuous function F: X x R#*' > X
such that & appears as &, ,, = F(®,, w,, ). By assumption A2
the result will follow. .

First, observe that setting 6, = 0, — 6,, ke 2, we have by (1)

_(;I
Craq =
k+1 [ I

By (1), (3), and (4) we have

’ ”k—no+l)T

0]¢k+(uk+,,o,---,o)? )

ék+l=HD{0k
¢¢T(9 + 7 + B+ - +B, g )
+ k¥r\Yo k+1 1k ng'tk—ng+1
d+ |e|?
_ ‘Pk‘PZOk PiVi+1 (8)
d+lee|?  d+|el?

which shows that the process & is of the form &,,, = F(®,,
W;+1) Where the function F: X X R?*' - X is continuous. [J
We may now state our main results.

Main Results

A fundamental object in the theory of Markov chains is the
invariant probability. A probability = on #(X) is called invariant
if &, has distribution 7 for all k = 1 when &, has distribution =
[13].

It is a well known fact (see, for example, [6] or [17]) that the
distributions governing a Feller-Markov chain are generated by a
(semi) dynamical system whose state space consists of probabilities.
The folloWing result uses the fact, which we shall prove below, that
in the present example this dynamical system is exponentially
asymptotically stable.

When the initial condition of a Markov chain & is a deterministic
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constant x€ X, it is customary to denote the expectation of a
random variable Y as E,[Y]. In the sequel, we will follow this
convention and when @, has distribution x, we will let E_[Y]
denote the expectation of the random variable Y.

Theorem 1: Suppose that either i) conditions A1-A3 hold and
the control law (4) is applied, or ii) conditions A1-A4 hold and the
control (5) is applied. Then the state process ® defined in (6)
possesses a unique invariant probability «, and the following limits
hold.

Exponential Stability: There exists a function C on X and a
constant p, < 1, such that for all € > 0 and every initial condition
xeX

[P{yE + ui > ¢} —P,{y§+u(2)>e}|SC(x)p(’,‘ (9)
|BL[yi + ui] - B [05 +uf][<C(x)of (1)
|EL[10:1°] - E,[18512]| = C(x)0k (11)

Sample Path Convergence: We have for every initial condition
xeX.

1 N
135"@ ~ kX_:] (Di+u}) =E [9+u4] as. (12)
1 N 2
; |2
aim 5 X 07 =E[161°]  as. (13)

lim Px{L f: (y,%+ui—Ex[y,f+ui])<t} = F(1)
(14)

. ! il a 12 a |2

lim PX{WEI(H),J —E,[16,] ])<z} = G(t) (15)

N—oo

where F and G are distribution functions of Gaussian random
variables.

Consistency and Performance: Suppose that conditions Al and
A5 hold for the e-parameterized process {$€: 0 < ¢ < 1}, and let
7¢ denote the invariant probability for &¢. Then under the control
law (4) we have

(16)

If the control (5) is applied and conditions A1, A4, and A5 hold
then
(17)

(18)

The proof of Theorem 1 comprises the remainder of this paper.

3 2 2] _
lim E.[yi+u}] =0.

lim E [¥5+ud] = (16°)12 +2)q?
e

tim B[ 16,°] = 0.

III. CONSTRUCTION OF A LYAPUNOV FUNCTION

Here we present an extension of the stability proof in [3] in order
to construct a certain Lyapunov function on the process .

In this section, we assume for simplicity that the control law @) is
applied. The control (5) may be considered in the same way as
below, with only notational changes.

Proposition 3.1: Under conditions A1-A3 we have for all n = 0

n-1 n-—1

lenl> <&, + > x""'( IT(1+ 2K.x~'a,))gi (19)
i=0 j=i

where

k=0

A D, Ky =pNP7D, and o, = (| ¢} |D/(d + | 0,12,

Proof: We have forall n > 1

n n

lenl?= XX g|2 =< 3 NK, y?

i=1

i=1
n
= Z] )\"AiZKl( l el 1812 + v})
iz
n

= YN 2K [(leiy 1>+ d) oy, + v?]
(=1
:1—1 ) n _ -
= X NTTRK e P+ 3ONTRK[d]6]7 + 0.
i=1

i=

It follows that
n—1
AR [(2K1>‘_1“i))‘_i|¢’i|2]
i=0
n
+4Kd*Y N0+ 0+ 1] (21)
i=0

Letting x; = AN/l g;|%, h, = 2K\ 'a;, and f, =
4K, d*T7_oN"[]6;]2 + v? + 1] one obtains from (21)

n-1

X, Sfo+ Y hix,
i=0

for each n =2 1. To make this inequality valid for n = 0 set
Sfo £ 4K d%[|64|2 + v3 + | po|? + 1]. Proposition 3.1 then fol-
lows from the Bellman-Gronwall lemma (see [2, p. 254]). O

Using Proposition 3.1 we now construct a stochastic process
possessing a Lyapunov-like property. Throughout the rest of the
note let r2ny+1 and 9, = %, k=0, where G =
o{®,, -, &)

Proposition 3.2: Suppose that conditions A1-A3 hold, and that
the initial condition ®,, satisfies E[ | ,|®] < oo. Then there exists
an adapted sequence {V,, G,} such that V, is positive for all
k = 0, and constants p < 1 and Dy, D, < o which do not depend
on &, such that for all k = 1

E[Vi| 9c_\] <oVi_, + D,.
Forall k=1, |, |* < D,V, and hence
Dy D,

limsup E[ y§] =<
k— o 1-

O

A major step in the proof of Proposition 3.2 is to obtain bounds
on a; and IT/Z(1 + 2K\ A" lax)).

Lemma 3.1: Suppose that conditions A1-A3 hold, and let A,
£0,,,~0, Forany n>k=0

ak52(|§k|2 - |€k+l|2)
+(8/d)vi,,
+l6(p'/2L + | Apys |)|Ak+1|

+12(p'2L + |0k|)|ak|l{0k¢D} (22)

n—1
IT (1 +2k 2 "a))*
Jj=k

- n—1
S"-"P(16K1)‘7l’(’k|2) Hk e"l’(81(1)\_l(8/d)”}+1)
j=

n—1
X Hk exp (8K, N'16( p' 2L + 14, 1)1 4,44 1)
i=

n—1
X Hk exp (8K, \"'12( p' 2L +16;]) 10;1140,¢y)-
j=

(23)
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The first inequality follows from a long chain of estimates involv-
ing (1) (see [3]). The second result follows from the first by using
the estimate 1 + x < e*. O

Proof of Proposition 3.2: By (19) it follows that

n
len|? = ;}X"”E,bi
i=
where b, = l,and for0<i<n -1

H(l+2K)\‘ ).

j i
By the Cauchy-Schwartz inequality

( 52 zw (&8 + o).

Hence substituting the values of b into the equation above and
recalling that r = ny + 1, we have by (23)
= 1+ Z NI ]

1
‘= U _—
|¢rk| rk ( )\)

1 rk
+ o | S X iexp (4K, (r + 2
201N [EO p(B4KAT(r +2)

'(I\I/-I2+ Im+1|2+ I9°|2))
r rk

I=1 m=1
(0," 77,‘,' ) 77-1!-—n0+1)v and

Y £ exp (r32K,\7'(8/d) v, )

where y] =
(25)
(26)
27)

Y2 2exp(ra2K N (p' 2L+ 18,,,1)14,,,1)
P& exp (r32K NT'2( AL + 16;1)16;1 144 41y)-
We now define the stochastic process {V,} as

Vi & E[Ur(k+1)| gk]

(28)
where ¥, = Z,. From the definition of U, in (24) it is easy to
see that

|¢rk| Uy and Y |* < Uy
Hence,
(/N 1@ |* = (U2DIN (L @i |* + 19a1*) = NUyp < Uy

It follows that with D, £ 4\~" we have | &, |* < D,V,,.
Under conditions A1-A3 the stochastic process { ¥} satisfies the
remaining conclusions of Proposition 3.2. To see this, consider

rik+1) k
Vk(l,m) - E Z )\r(k+l)—: H Y_/+m‘ ?}/
i=0 Jj=li/rl

for / and m fixed. The process { ¥} may be written as a finite sum
of random variables of this form, plus two remaining terms which
may be dealt with in the same way as below.

Foreach /, m,and k = 1

E[ Vlgl'm) | % 1]

r(k+1) k
=E E[ Z )\r(k+l)~i H
i=0

. 1 +m“7k l]+m]| rik— l)]
J=li/r]
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r(k+1)

Z )"k '()\rM(IM))J I_II Yj+m| rik—1)

< ()\’M”‘"')) Vk(lA,rln) + (l _ )\)_IM("”‘)

where the constant M“™ = E[Y/,, ] is less than A\™” and may
be defined in terms of the constants used in assumption A3. O

IV. ANALYSIS OF ¢

The stability proof above sets the stage for an analysis of the state
process ®.

Stochastic Controllability

To prove Theorem 1 we apply the techniques developed in [12],
10].

[ 'I]‘he following is the main result in this section.

Proposition 4.1: Suppose that conditions A1-A4 hold and that
either control (4) or (5) is applied. Then there exists a unique
invariant probability 7. Furthermore, there exists a fixed probabil-
ity u on B(X) with the following property: for each compact set
F C X there exists ¢ > 0 and N = 1 such that

N
Y. P¥(x, B) = eu{B}
k=1
for all xeF, and BefB(X). -
A set F and measure p satisfying (30) are called petite (see [10])
and Corollary 4.1 implies that the Markov chain @ is irreducible
(see [14], [13]).
Proof (sketch):
By Theorem 3.1 of [12], the proposition will hold for all initial
conditions @, € X if the matrix

I®
M A M
= 29
% a(wl’... ( )

has full-row rank for some sequence (w,," - -, w,,) which does not
drive the state &;,, 1 < i < M to the boundary of X. Furthermore,
the sequence (w,**, wy,) must evolve within the support of the
distribution g, of w;.

Uniqueness of the invariant probability must also be established;
this follows by verifying that the nonlinear control system associated
with @ (with the disturbance w replaced by an input) is asymptoti-
cally controllable to some fixed state $* € X.

Lengthy calculations show that this is indeed the case, and hence
we have the proposition. O

(30)

’ w”') (Wi, =, W)

Periodicity

One consequence of irreducibility is periodicity. Suppose that
conditions A1-A3 hold, and let supp 7 denote the support of the
invariant probability # — supp = is equal to the smallest closed
subset of X which has 7-measure one. It is shown in [12] (see also
[14]) that the support of = may be written supp = = UL,D,,
where the sets {D,,- -, D,} are closed and disjoint, and \ is the
period of .

It may be seen that m will be aperiodic (i.e., A = 1) if the set
supp  contains a fixed point. That is, a state x* € supp = with the
property that &, ,, = x* when &, = x* and w,,, =0. It is
possible to show that in this example a fixed point lying in supp
does exist, and has the form x* = (0, 6* , 0). Hence we have the
following lemma.

Lemma 4.1: Under the conditions of Proposition 4.1, the invari-
ant probability 7 is aperiodic. O

Proof of Theorem 1

Exponential Stability: Tt follows from Corollary 4.1, Lemma
4.1, Proposition 4.2, and Theorem 6.3 of [10] that ® is geometri-
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cally ergodic. Result (9) follows from this, and results (10) and (11)
follow from Proposition 3.2 and Theorem 6.3 of [10].

Sample Path Convergence: Results (12) and (13) follow from
Harris recurrence and Theorem 7.1 of [10]. Results (14) and (15)
follow from Corollary 4.1, Proposition 4.2, and a result of [10].

Consistency and Performance: For the proof of this part of
Theorem 1, we apply the general results of Appendix A.

First, by the proof of Proposition 3.1 and Proposition 3.2, there
exists an extremely complex and nonlinear, but continuous function
g of the constant L used in the estimation algorithm, and the
constants D £ Efexp (o(v§)?)] and D; £ Elexp (M, | 75| ®)] such
that

E,[|®51*] = limsuwp E, [ | ®;|*] =g(L, D, D5). (31)
k— oo

By condition AS, the right-hand side of (31) is uniformly bounded in
e€[0, 1]. Since | - |* is a moment on X it follows that {=° :
0 < e < 1} is tight.

weakly
Next, by condition A5 we have pS, — 45 £ &,, where §,
denotes the probability concentrated at the origin in R”*'. It
follows by Proposition A.1 that P, > P, as ¢ = 0, where {P,}
are the Markov transition functions corresponding to the parameter-
ized family of Markov chains {&¢}. Applying Proposition A.2 we
have

weakly
¢ - S0 ase—0
where # © denotes the set of invariant probabilities for ®°. The
results then follow from (31) and the following lemma. O

Lemma 4.2: Suppose that conditions Al and A4 hold, that
w=0, and let #° denote the set of invariant probabilities for the
resulting state process ®°

i) if the control (4) is applied then y, = u, = 0 a.s. [P,0] for any

0 0.

’esY;

ii) if the control (5) is applied then .#° = {#°} is a singleton,

where 7° is defined so that for all ke 2,

ye=e,and 6,=0,=0° as.Po

Proof: When w = 0 we obtain for any invariant probability
6, = 8° a.s. [P,o], and by (3) it follows that

|‘/’I§k|2

G2 bl
I k+1| | kI d+|4pk12

a.s. [Pﬂ,o] .
Taking expectations of both sides with respect to P_o we obtain
| ‘PIék | :
d+ |el?

10

] =0, and hence ¢}6, =0  a.s.[P,o].

(32)
By (7) it immediately follows that y, = 0 a.s. P,o when the control
(4) is applied, and this proves i).
To prove ii), observe that (32) and (8) imply that for either
control

b, =6,=6, as. [P,o]. (33)

If the control (5) is applied then by (32) and (1) we have ¢, =
(€xs"**» € py+1)"» and it follows from (32) and (33) that

022 | 50 l ’= é‘gEro[‘pnﬂV’:n]go
= Ero[(wnugg)z | é.'0]
= B[ (0n,05,)"150]

=0 a.s. [P,o] .

Hence 6, = 6, a.s. [P,0], and this is what was wanted. O

A Remark on the Consistency Proof

At present we do not see any way of establishing results (16)-(18)
without the methods introduced in Appendix A.

It would seem that results (16)-(18) could be established directly
from (31), or perhaps a tighter version of this bound. The problem
with this direct approach is that the function g used in (31) is
dependent on the constant L, and in particular does not converge to
a useful limit for fixed L as (D;, Dy) = (1, 1).

However, if a stronger bound is obtainable, then it may be
possible to obtain ‘‘near consistency’’ without the- introduction of
the dither sequence e. This approach is currently under investiga-
tion.

APPENDIX

In the appendix we prove some new general results for Markov
chains on general state spaces.

Approximation of Markov Chains

Throughout this section we let {P, : 0 < e < 1} denote a family
of Feller-Markov transition functions, and {x, : 0 < e < 1} a set
of probabilities such that =, is invariant under P, for each e €[0,
1].

Our objective is to find general conditions on the Markov transi-

tion functions {P.} so that =, converges weakly to 7, (denoted
weakly
m, = mg as € — 0). The results of this section are based on [15]

and [18].

We say that the Markov transition functions {P, : 0 < e < 1}
converge to the Markov transition function P, and write P, = P,
as ¢ — 0, if for every x€X and fe C (the set of bounded and
continuous functions on X),

m P, /(x) = Pof ().

In other words, for each xe X, P.(x, -)we:k]yPo(x, *)as e~ 0.
We say that {P, : 0 < e < 1} converges uniformly on compact
sets to the Markov transition function P, if for every compact set
FC X and feC

lim sup | P, f(x) — Pyf(x)]| =0.
€20 xer
uonc

This shall be denoted P, — P,

We list here some assumptions which we will need to refer to in
this section.

RO: P, possesses at most one invariant probability.

R1: The set of probabilities {=, : 0 < e < 1} is tight.

R2: For each fe C the collection of functions {P,f:0 <e < 1}
is equicontinuous on compact subsets of X.

It will be shown under general conditions that condition R2
implies R3.

R3: Whenever a family of probabilities {u,: 0 <e=<1} C A4
satisfy

weakly
Be = po ase—0
it follows that
weakly
w P, = P ase— 0.

n

Remark A.1: Tt follows that Ascoli’s theorem that P," 3 p, if
and only if P, = P, as ¢ — 0 and condition R2 holds.

Remark A.2: If a moment V on X together with a constant
B < oo exist such that

limsup P*V(x) < B

k—o
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for all xe X and all € € [0, 1], then it may be shown that condition
R1 holds.

The first result below concerns perturbations of a disturbance
distribution p,,. A related result may be found in [9].

Suppose that the Markov chains {®¢: 0 < ¢ < 1}, have the form

(34)

where F: X X R? - X is continuous, and for each e€[0, 1],
we & {ws: keZ,} is independent and identically distributed with
wy ~ u, foreach keZ,, and e €[0, 1]. Then the Markov transi-
tion functions P,, e €[0, 1], are defined for g€ C by

Pa(x) = | g(F(x 0.

&) = F(#;_,.wi)

(35)

Proposition A.1: For the Markov transition functions P,, e € [0,
1], defined in (35), suppose that the function F is continuous and

weakly 0 uonc
that * — p,, as e > 0. Then P, & Py as e > 0.
Proof: Fix § > 0, ge C, and define the functions

£.(1) =g(F(x,1)), xeX,teR”.
Letting G C X be compact we have
sup | P.g(x) — Pyg(x)|

xeG
[ edoman - [ edoan].

The family of functions {£, : x € G} is equicontinuous on compact
subsets of ®”, and it follows from weak convergence of {4} and
Theorem 6.8 of [15] that the right-hand side of the inequality above
converges to zero as ¢ — 0. This implies that P, g converges to
Py g uniformly on compact subsets of X, which was what was
wanted. 0

The following result will be used to prove the ‘‘near optimality’’
result in Theorem 1 of this paper. Part ii) of Proposition A.2 is
adapted from [5, Theorem 6 of Ch. 6, Section 4].

Proposition A.2:

) If P," 5 P, as ¢ —~ 0 then condition R3 is satisfied.

ii) Suppose that assumptions R1 and R3 hold, and that = P, = =,
for each ¢ > 0. Then

= sup
xeG

weakly

T, = F ase—0

(36)
where S C .4 is the set of probabilities which are invariant under
P,.

Proof:

weakly .
i) Let o, = p as €—0, and fix feC. Then, letting (v,

NE[fav
<I~‘¢Pg’f) =<"’<—’(Ps _Po)f) + <I“’(’P0f>‘

. uonc
Since P, — P, as e¢ — 0 the first summand converges to zero as
e = 0. Hence, because Py feC

lg?)(uGR»f) = (o, PoSf) = (roPo, [f)

weakly
which shows that p P, po Py as € — 0. Hence condition R3 is

satisfied, and this completes the proof of i).
ii) Let T be a limit point of {w, : 0 < € =< 1}. Then for some
sequence {¢;: i€Z,}, converging to zero

weakly

. = T
/

as [ — o,

weakly .
Applying assumption R3 we find that =, P, — TP, as i > .
Since w, P, = =, forall ieZ, we conclude that

TP, =T

and this completes the proof of the proposition. ]

Here we give a sufficient condition to ensure the convergence of
the invariant probabilities corresponding to a convergent sequence
of Markov transition functions.

Corollary A.2: Suppose that Pfucho as €0, and that
conditions RO and R1 hold. Then

weakly

T, > Wy ase > 0

where 7 is invariant under P,.
Proof: Follows immediately from Proposition A2. O
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