INIERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, VOL . 7, 525537 (1993)

PERFORMANCE ANALYSIS OF THE FORGETTING
FACTOR RLS ALGORITHM

LEI GUO
Institute of Systems Science, Academica Sinica, Beijing 100080, China

LENNART 1L JUNG
Department of Electrical Engineering, 1inkoping University, 5-581 83 Linkdping, Sweden

AND

PIERRE PRIOUREIL
Laboratoire de Probabilités, Université Plerre et Marie Curie, F-75252 Paris, France

SUMMARY

An analysis is given of the performance of the standard forgetting factor recursive least squares (RLS)
algorithm when used for tracking time-vatying linear regression models. Three basic results are obtained:
(1) the * P-matrix’ in the algorithm remains bounded if and only if the (time-varying) covariance matrix
of the regressors is uniformly non-singular; (2) if so, the parameter tracking error covariance matrix is
of the order O(u + 'yz/ n), where g = 1 — A, A is the forgetting factor and v is a quantity reflecting the speed
of the parameter variations; (3) this covariance matrix can be arbitrarily well approximated (for small
enough p) by an expression that is easy to compute.
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1. INTRODUCTION
Consider the linear time-varying regression
YO =0 O -D+el), 20 oy

where y(f) and e(¢) are the observation and the noise respectively at time ¢, ¢(f) € R is the
regressor and #(¢) is the unknown parameter vector to be estimated.
The well-known least squares estimator with constant forgetting factor A € (0, 1) is defined

by
0ty = argmin 3, N1L(0) — 07 ()] @
6‘€le I=0

The quantity g 2 1 — \ is nsually referred to as the speed of adaptation. Intuitively speaking,
when the parameter process {0(¢)} is slowly time-varying, the adaptation speed should also be

slow (i.e. u small). A
Since the function to be minimized in (2) is quadratic, the minimizer 6(¢) can be found
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explicitly. Consequently, with some simple manipulations involving the use of the matrix
inversion formuia (as in e.g. Reference 1), it is easy to see that #(¢f) may be computed by the
recursion (the RLS)

b(t)=08(t- D+ PO Iy - 2" (O - 1)) &)

_ 1 (pyop_, PE-De®e OPE~1)
P m_l—.u(P(t D=p 1-#+#¢*T(t)P(t—1)¢(t)) @

with deterministic initial conditions §(0) and P(0) > 0.

Although this RLS algorithm is well motivated, a complete and rigorous analysis for its
tracking performance does not seem to be given in the literature. Among the various previous
studies on RLS we mention the works of Benveniste? for the case of x — 0, Macchi and Eweda?
for the case of constant parameters, Ljung and Priouret* for results obtained under a certain
moment (stability) condition, Bittanti and Campi®® for a special class of linear models,
Niedzwiecki and Guo” for results over finite time horizons and Guo® for some stability studies.

In this paper we will first investigate the relationship between various excitation conditions
and the I uniform boundedness of the matrix P(z), which is crucial to the performance
analysis. Then we establish the tracking error bounds and give some simple approximations
tor the covariance matrix of this error. These results do not require that the time horizons are
finite nor that the adaptation gain is decreasing (i.e. g — Q).

Throughout the paper the minimum eigenvalue of a real matrix X is denoted by Amin(X),
the norm || X'|| is defined as its maximum singular value, and by || X ||, we mean the Z ,-norm
defined by || X[, = (E]| X |7} 7.

2. THE UNIFORM BOUNDEDNESS OF || P(f) |i,

Let {¢(f), %} be an R%valued adapted sequence with {%} being a non-decreasing sequence
of ¢-algebras defined on the basic probability space (R, &, P) For any integer & > 0 let Ax(f)
be the matrix sequence defined by

t+h

A= 2 ehe'(), 120 )

i=f+1
Our first result concerns the minimum excitation condition needed for boundedness of
| P} s P21

Proposition 1
Let sup; E || ¢(2)|*> < oo. If sup: E| P(#)| <  holds for some € (0, 1), then there exists
an integer A > 0 such that

inf EAmin(Aa(t)) >0 (6)
Proof. By (4) and the matrix inversion formula,
R()=(1 =R - 1)+ po(®)e' (), R(@®) &P )
Consequently, for any 2> 0
Amin(R(2+ 1)) < (1 =) | RO |+ Amin (A1) ®)

By the boundedness of £ [l ¢(¢)||? it follows from (7) that sup; E|| R(f) || < . Also note that
| P¢t) || = Amin{R(2)). Then by Jensen’s inequality Elmin(R() = (E| P@)|)}"!. Therefore
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by the boundedness of E|| P(z)|| we have inf; EAmin(R(#)) > 0. Hence it is easy to choose A
large enough such that

inf EDuin(R(E+ 1) — (1 -p)* || R@)|1>0

This in conjunction with (8) yields (6). O

Since (6) is the necessary excitation condition for boundedness of PO}, P21, it is
natural to expect that it is also sufficient. Unfortunately, this is not true in general (a more
discussion will be given at the end of this section). To see this, we simply take d=1 and set
e()=¢#0, 20, with Ep?>0 and Eg 2=, Obviously (6) holds, but by (7}
EP(t)=ER™'(t) 2 E[(1 — p)’R(0) + ¢*] ~'—7==7 holds for all x€ (0, 1) by the monotonic
convergence theorem,

Now we consider the following two types of strengthened excitation conditions.

Ei(p). There exists an integer # > 0 such that
sup E[Mafa(A4r(2))] < 0
tz0

B, There exist an integer 4 > 0 and constants ¢ > 0 and & > 0 such that
P{Amin(Ax(t) 2| F) 28 vt20

We will prove that cither of the above two conditions ensures uniform boundedness of
|| P(#)||». For this we need the following lemma which is proved in Appendix I.

Lemma I

Let {wn, %} and {vs, %} be two non-negative adapted processes satisfying
P(Wne1 = c| &) 2 6 a.s. for some positive constants ¢ and 6. Also let

U
1=p)* (1 + ptaWss1)’

with constants p € (0,1) and 2> 0. Then for any p > 1 and any go€ (0,1 - (1 - 5)1/ 74y

nz20, vw#0

Vn+l -<-..
(

sup sup {{tnlp< o
pE0,m] 20

Theorem 1
Let {P(r)} be defined by (4).
(i) If condition E;(p) holds for some p > 1, then for any po € 1)

sup sup || P(1) |y < oo
p€ O p] £20
Gi) If condition E; holds, then for any p > 1 and any po€ (0,1 — (1 —8)"/?")
sup sup [[P()flp <=
p€0, ] 20
Proof. By (7) it is easy to see that we need only to prove the uniform boundedness of the
subsequence || P(An) |z n 2 1. By (7)

nh+h

RGwh+ )= (1= ) REW) +p 2 (1= 0™ o)’ () ©)
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Hence by (5)

Amin{R (A + R)} 2 (1 — p) Nmsa (R (A} + 1 — ) Amin(As (mh))
or
Unst Z N Un+ pWns1), A=1—p, n20 (10)
where #n & Amin{ R(nh)} and wne1 & Amin{As(nh)}.
Now let E;(p) hold for some p > 1. By (10) and the Schwarz inequality
n n 24 n -1
Un ?ﬂ}\h(z ()\h)n_ka) > ﬂ}\h(z (Ah)nwk) (2 (}\h)n—kw’:l)
k=1 k=1 k=1

Consequently, by E;(p) and the Minkowski inequality there exists a constant K such that

- —1y—hf & A —1y—n 1= -x 1
flurt{|? < Kn=™\ ’f(kgjl ()" “) =Kp~ '\ ”ngfha—m) ’*1_—)\,,,,-, #€ (0, uol

where for the last inequality we have used the fact that p~(1 — N*) < A, p€ (0, 1). Hence, by
noticing that (1-u)*, u€(0,1), is a decreasing function of u and that lm, -,
(1-p)"*=e"!, we have

i 1 a1
MS;U‘I:»‘_I | e [l < KR(L — po) IT(I"—_‘*W%K’!G—M) [meh<®™

On the other hand, by (10) ;' < A"*ug?, hence for p € (0, po]

sup [|luifp < A=) ™" Jus flo < (1 = w0) ™" ||uz™ |,
n&p

This completes the proof of assertion (i), while assertion (i) is a direct consequence of Lemma
1, since by setting v,=u;', we see from (10) that ver1 <A (1 + ptuWns1) 'va. This
completes the proof. [

Remarks and discussion

(a) If under condition E; & can be taken arbitrarily close to unity and the horizon 4 {(which
may depend on ) satisfies z = o(| log(1 — §) | ) as 6 — 17, then in Theorem 1 (ii) po can be taken
as any value in (0, 1). However, in general, under condition E, #o cannot be arbitrarily close
to unity. In fact, we have the following example where 1 — (1 — §)!* is actually a critical point
for boundedness of || P(#)||;. Let {¢(¢)} be an i.i.d sequence with P(p(l)=0)=g=1—
P(p(1)=1). Then E; holds with A=1, ¢=1and §=1—g and hence 1 ~(1-8)""*=1-g¢.
However, for u>1—gq it is easy to see that EP(t) 2 E[P()(e(i)=0, 1<i<g )] =
(A=) 'R Y0 - .

(b) If {p(®)} is a (strictly) stationary sequence, then condition Ej {(p)} really is that
EDgR(Z]-1 oo’ (7))] < = for some integer /> 0. This condition was previously used
by Macchi and Eweda® and studied by Niedzwiecki and Guo.” If {¢(#)) is an i.i.d. sequence
of d-dimensional vectors with suitably high moment, then NiedZwiecki and Guo (Reference 7,
pp. 200-202) showed that condition Ei(p) holds for some p > 1 if and only if there exist
constants K > 0, y > 0 and xp > 0 such that for all 3¢ R?, | 8| = 1, P(|8%(1)| € x) € Kx",
0<x<x. In a similar way it is easy to show that condition E» holds if and onty if
P(B7p(1) % 0) > 0 v@ ¢ R? Furthermore, if P(8%e(l) # 0)=1 v@¢ R? then E, holds for
#=d and for all 6¢ (0,1) In many cases, as noted in Reference 7 the verification of the
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condition E; (or Ez) can be transferred to the ii.d situation. Typical examples are the
M-dependent case and the case where {¢(f)} is generated by a state space model

x(t + 1} = Ax(t) + By(1), () = Cx(t) + Dn(t) (11)

where the driving signal {%(f)}is an i.i.d sequence. The first case is trivial to handle. For the
second case we need only to note that for output-reachable model (11) there exists a constant
¢ > 0 such that (see ¢.g. Reference 9, p. 353)

t+h

xmm(Ah(t)»chmin( by ﬁ(i)ﬁl(i)), t20

f+1+p

holds for all A>v, where » is the McMillan degree of the system (11) and
@)= 6. »a -

(¢) Conditions E; and E: are not equivalent in general In the iid case, as implicitly
mentioned in (b), Ej is stronger than FE;; however, when the sequence {o(?)} is strongly
correlated (especially when the predictable part is not bounded from below), E is likely to be
weaker than E;. This can be easily seen by simply taking d=1, ¢(f)=¢ Vi, with
Elg|™ <o, P(le]<x)>0vx>0.

(d) If we are only concerned with the boundedness of || P(¢) || rather than the uniform (with
respect to i) boundedness as in Theorem 1, then condition E; may be further weakened so
that the case where {¢(7)} is generated by a class of time-varying models can be included. ®
However, without the uniform boundedness of || P(¢) || it is not known how to give a
meaningful performance analysis for the tracking algorithm (see the next two sections).

Next we proceed to show that for a large class of weakly dependent sequences [¢(?)}
condition £ is actually equivalent to the minimum condition (6)

Recall that a random process {x(i), i = 1} is called ¢-mixing or o-mixing it ¢(n) =0 or
afn) = 0 as n — «, where ¢(n) and «(n) are the mixing rates defined by

é(n) = sup sup | P(B| A)— P(B)|
kzl AcF,BeFg,n

a{n) = sup sup | P(AB) — P(A)P(B)|
k21 AcF, B Fun

with 9;' & glxg, iSk<€j), 1 €i<j< o, Obviously a{n) < ¢(n) and ¢(r) =0 is true if
fe(t)} is M-dependent or is the output of a stable finite-dimensional linear system driven by
bounded white noise.

Lemma 2

Let {¢(f)] be ¢-mixing with sup; || «()||p < e for some p>2 Then the following
conditions are equivalent:
() Enmin(Az(t)) 20 ¥v1 20
(i) P{AMmn(An(t) 2c}26vi20
(i) P{Amin(Ax(t) Z2c|{ F) 26 vt 20, H=olel), i <1}
(V) Mmin(EAR(#) 26 v 20

where A, 6 and ¢ are positive constants which may differ from condition to condition

The proof is given in Appendix II. Now, combining Proposition !, Theorem 1 and Lemma
2, we immediately get the following theorem.
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Theorem 2

Let {¢(#)} be a ¢-mixing sequence with sup; E || ¢(¢)]|2* ¢ < « for some £ > 0. Then for
P = 1 there exists a constant po € (0, 1) such that sup,e @, ) Sup: || P(f) || < o« if and only if
there exist constants # > 0 and é > 0 such that

t+h

2 Ele®e’®] 281 vt20
i 1

i=t+

3. TRACKING ERROR BOUNDS
Let us assume that the parameter process {#(¢)} can be modelled by
fRy=8—D+yw(), t20, y>0 (12)

The purpose of this section is to obtain an upper bound for the tracking error ||#(¢) Il»
8(r) & 6(1) - 8(1), which is expected to be of the order O(jr ++/J/p) under some standard
assumptions. The idea in the analysis is that instead of directly analysing {| (¢} ||», we first
obtain upper bounds for || R(#)d(¢){|p, then a combined use of the Holder inequality and
Theorem ! will yield the desired result. For simplicity of discussion we introduce the following
definition.

Definition 1

A random process {x(z)} is said to belong to the class .#,, p > 1, if there exists a constant
¢p(x) depending only on p and {x{¢#)} such that
m+n

2 x(@)

i=m+1

Sep(xn'? wvnzl, vm>z20
P

As the next femma shows, .# includes a large class of random processes of interest.
Throughout the sequel x; denotes supsso || x(#) ],

Lemma 3
Let p 2 2 and x; < ©, Ex(¢)=0. Then {x(¢)] € .#, if either

(i) [x(©)} is a martingale difference sequence
(i) {x(r)} is ¢-mixing with L2, ¢ 2(}) <
(iii) {x(¥)} is stationary e-mixing with xpys < o and I /27 {a(®)]¥? % < o for
some & > 0
(iv) {x(?)) is a stationary aperiodic Markov sequence which is Markov ergodic and satisfies
Doeblin’s condition.

The proof is essentially a collection of known resuits (see Appendix III). A useful result for
processes in .# is the following lemma.

Lemma 4

Let x(1)eR? and Z{eR?9, 21, be two random processes and let
Y(t)=(1 - p) Yt = 1) + pZ(£), £ > 1. Then for S, k) 2 ik x() and p€ (0, 1) the following
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properties hold:
4

Y E (1-p)~*¥Y(R)x(k) = (1 - p)' YOS 1)
p{l =) 1Z@—k+1)S(Ut,t—k+1)

(i) < 2¢,(x)p™ "2, t 2 1, provided that {x(k)} € .#,

i
2w
2 (1-p)~ "x(k)
H
PG

< (X~ V2 YO) | + 23], ¢ 2 1, provided that

(iii) ’

{x(k)} € ttop.

Proof. Assertion (i) is easily verified by summation by parts. Taking Z(¢) = I, Y(0) =1 and
applying Minkowski's inequality to (i), we obtain

Ej) (1 — ) *x(k) scp(x)((l— w4 Z'J i ,u)*-lkm)

Hence (ii) follows 1mmed1ately by noticing that maxo<,<ilfp —p) %<1 ve>1 and
oo (1=-p) %= 1],u Similarly, (iii) follows from (i} by the Minkowski and Schwarz

inequalities. a

Theorem 3
Forg>1,r>1and lfg+ 1/r £ 1 let the following conditions be satisfied:

(i) there exists a constant uo € (0, 1) such that X, 2 SUDy e (0.0] SUP: || P(#) |l <
(i) {e@e@®)} e
(iii) (w()— Ew(t)} € Ao, and || Z¥-r+1 Ew(i)|| < 8(n—k) for all n > k > 0 and for some
5>0.
Then for p& (1fg+1/r)~! and for all u€ (0, mo], £ 1,
18O > < Kol (A=) | Ro || [| T} ||7 + 2cr(, €)™
+yp™ e W) (| Ro [l + 037 + 80~ (| Ro | + €3]

where the constants ¢-{i, e) and c2(w) are given by conditions (ii) and (iii) (see Definition 1).
Moreover, if {e(r), %)} and {w(#), #} are martingale difference sequences with % 2 ¢{e(s),
w(s), p(s+ 1), s < t}, then there exists a constant ¢, depending only on r such that for all

p€ O, ml, 21,
16() llp < Kol (1 = p)* || Ro || || §C0) [ir + ' 2edreods + v~ *wir(|| Ro || + i)}

Proof. We need only to prove the first assertion, since from this the second one follows
easily. As we noted earlier, the Holder inequality gives

18 [l < T PO o | ROED |- < Ko | ROEED) |ir (13)
so we need only to consider || R(#)d(¢) |l-. By (1) and (12), from (3) we get the error equation
J(ty = [1 ~ pP@O) )" Ot = 1) + pP()e(t)e(t) — yw(2) (14)
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From this and (7} it follows that

RO = (1 —p)R(t— DIE ~ 1) + po(t)e(®) — yRIOW() (15)
or
I3
R@0A(ty=(1-p)'RO0)(0) + kzl (= w)Y *pek)ek) — yRK)w(k)] (16)

By Lemma 4 (ii) and condition (ii)

<20, 0™, 121 (17

r

# ;;1 (1 - ) *e(k)e(k)

By Lemma 4 (iii) and condition (iii)

< yer (W VLI RO || + 0371, 121 (18)

r

v| & a-wrr e s

By Lemma 4 (i) and condition (iii) again
i
< 5’7{(1 - IRO |+ e 3 w01 u)"*lk}

o | RO+ o3, 21 (19

Finally, combining (16)—(19), we get the desired estimate for || R(OE® |i- and hence the proof
is complete.

IZ]} (1= p) “RDYEW(K)

¥

r

4. APPROXIMATION OF THE MEAN TRACKING ERRORS
Throughout this section we assume the following condition:
(H)  Ele(t)| Fo11=0 and E[w(?)| Fi1] = Ele@®w(t) | Fiog] =0 as. (20)
E[&*(t)| #i-1] =R.(t) and E[ww'()| F1]l =Ru(t) as. (21)
where {w(#)] is defined by (12), & = o[ w{s), €(s), o(s+ 1), s <] and R.(¢) and R,.(z) are

deterministic sequences.

Remark. It may be remarked that (21) is more general than assuming e and w to be
independent sequences. Take e.g. e(t)=e()sign{e(— 1)}, where f{e(®)} is iid with
P{e(t)=2)=1%and P(e(t)= —1) =2 This makes [e(z)} a dependent sequence but it is still a
martingale difference with deterministic conditional variance.

Set
I =E6O @), S =Ele(t)e ()] (22)
Following Ljung and Prioutet,* we define T1(¢) recursively by I1(0) = I1(0),
1) = AONE - DA @) + 2 POSOPORAD) + v Rul?) (23)
where A (¢) = I - pP(1)S(), B(t)= [R(t)] ! and
Rt)y=(1-wR( - 1) +pEle(®) e’ ()], R(0)=R(0) (24)

We will prove that II(z) can be well approximated by II(¢) for small p.
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Theorem 4
Let, in addition to condition (H), the following conditions hold:

(i) there exists some po € (0, 1) such that sup,e (o, .} sup: || P(f)||s < o
(ii) (¢2p+ wp + €5) < o for p=16
(i) (e () —Ele)e (1)} € tla
Then there exists a constant ¢ > 0 such that for all p€ (0, u0] and all £ = 1
N0 - T@ || < e[ —pP O IF+ 0+ 77"
where I1(¢#) is defined by (23).

Remark. Note that condition (i) is implied by more explicit conditions in Theorems I and
2. Recall also the definition of .#4 in Definition 1.

Proof. Recursively define
(1) = [I— pP@OSHIB(E — 1) + pP(D) p(De(t) — yw(2), 8(0)=6(0) (25)
It is immediately verified that TI(f) = E[8(z)8! (t)]and
R@®B() = (1 - p[R (- 1)B(t = 1] + po(t)e(t) — yR(E)W() (26)
Note that
TG -1 || = | E(I6@) - 8018 1) + 8 [§(0) - 8()] "}

<@ -0 LN I+ 180 ]
< 6@ - PORDID |, + | PORGEE) 8@ |1 L8 [+ 18 II2]
27

We proceed to estimate the right-hand side of (27) term-by-term. However, first of ail we prove
that for g€ (0,1)

I1P@|| <e, IR - R®) fl« < e 8

where and hereafter ¢ denotes a generic constant independent of g and ¢. By Proposition 1
condition (i) implies (6), so taking expectations on both sides of (9) and using a similar (but
simpler) argument to that in the proof of Theorem 1(i), we conclude the first assertion in (28).
By (7) and (24)

RO -Rt)=p ’Z]I 1-u)"le@e’ ()~ Ep()p' (1)]

Hence by condition (iii) and Lemma 4 (ii) the second assertion in (28) is also true. We now
turn to consider the terms in (27). Note that
8@ <HP®O I R®OEWD |,

Noting also the similarity between equations (26) and (15), we can use a similar method to that
for Theorem 3 to get upper bounds for || R(#)8(¢)||; and then, by noting (28),

18 |2 < b —w) || 6O ||ls + Ji + v/} 29
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By (28) again

8@ - POROIW . < PO || [REY— REIED) ||,
Sc|RO— RO NI la S cdell 8D s (30)

By (15), (26) and Lemma 4 (ii}
| PORMI® -8 [ < | PO || | ROEE®) — R@OED) |2

t p—
<] 3 a-wriro-Rowo |
< cyu? sup | RO-R@ s <oy 31

Substituting (29)—(31) into (27) and applying Theorem 3, we finally get the desired results,
O

Next we show that if S(f), Re(f) and R,(?) are time-invariant, then II(#) can be simplified
s0 that II(¢) can be approximated by a simple function of u.

Theorem 5

If, in addition to the conditions of Theorem 4, ${¢) =S, R.(t)=R. and Rw(¥)=R. ¥t 20,
then there exists a constant ¢ > 0 such that for all £ > 1 and all g€ (0, po]

ITI() — 3 (uS™ 'R+ 17 2R} || € {1 =) | FO) [IF+ [(1 — )" + ) (a+v*™")

Proof. First of all, condition (i) of Theorem 4 implies {6} by Proposition 1, which in turn
implies that inf; Amin(EAn(#)) >0 or infi Amin(S) >0 and hence §> 0. Note that
T-uP)S@) = —p)[R(®)] “'R(t - 1), so setting I1;(¥) = R(OII(#)R(r), we see from (23)
that

() = (1 = p)* T (¢ — 1) + p2SR. + y?R(YRWR (1) (32)
By (24) it is easy to see that
|R@&) -S| < 1—p)'|| R~ 5| (33)
and so by (28)
PO -5 < el - ) (34)

Hence (32) can be rewritten as
I () = (1 — )Tt — 1) + p*SRe + ¥*SRWS + O(y* (1 = p)')
Consequently,
i) =p~' (2~ p) " (u?SR. + y’SRuS)
+ O =P @3+ p+ v D+ O - W)Y (39)
Note that
2712 — 1) " UW2SR, + y2SRWS) =1 (uSRe + v 'SRWS) + O(u? + v?) (36)
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Substituting this into (35) and using (33) and (34) again, we have

() =R 3 (pS™'Re + o7 'V RIR(®) + O + 7%)
+O((1 - 6@ 13 + O — ) (e + ¥~ 1))
Hence by the boundedness of || P(¢) |
” ﬁ(t) —% (#S_iRe + #_IYZRW) “
SHPO P hE) ~ 3 REO@ST'R + 1 Y2 RWR (D) ||
SO - 10O 3 + O ~ ) u + ¥ N + 06 +¥%)
Hence Theorem 5 follows from this and Theorem 4 immediately. -

5. CONCLUSIONS

The main result of this contribution is Theorem 4 (in conjunction with Theorem 1 for
condition (i)}.

The fact that the approximating expression IT(f) obeys a simple equation gives us a good
handle on the true error covariance matrix II(f). A special feature of the result is that it is
generally valid over unlimited time intervals, including the transient. Also, it is valid for all
v and for ali u in an interval and the constant ¢ can be computed from the properties of e,

¢ and w.

It is of course irue that the interest of the result relates to small values of p (but not
necessarily of v, since the relative error decays as Ju).

The result thus parallels and extends those of Reference 4. For non-gradient methods
Reference 4 has an assumption that {|§||, be bounded by C}|§{,. In this paper we have
removed that annoying assumption for the RLS algorithm. It would be highly desirable to be
able to do the same for general adaptation schemes.

APPENDIX I: PROOF OF LEMMA 1

Take a constant A4 > Aféc to define a function f(x) as f(g) = (1 — ) ""P[1 — § + 6(1 + pAc) 7). 1t is easy _
to verify that f(0)=1 and f'(0)=p(h—84c) < 0 and hence there exists a constant p; € (0, po} small
enough such that f(u) € (0,1) ¥ € (0, u1]. Now set Zz+1 = (1 + pnwe+1) ~?. Then on the set v, = A} we
have

Zne1 € (1 + pAWy) 2 € (1 + pAc) PH(wpsy 2 )+ H{wpy1 <€)
LS (1+pA) P+ 1=+ pA) 21 (Wrar <€)
Hence by the assumption we have
E{zni1| FH]) € 1-8+8(1+pAc)y ? on [vx2A) (37
Consequently, we have
E[vhs1| ] = E[vh+1| &) [ H(vn 2 A) + K < A)}
< S vhI(on 2 A) + (1 — ) "0 I(vs < A)
<@k + [(1—p) ™ — f)] v8I(0n < A) 38
Taking expectations, we see that
E@h+1) S SGWEWE) +Apl(1 = 1) ™% — f()]
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and consequently, since f(u) <1, g€ (0,11,

. ‘ - (1 —p) 7" — fw)
E@D) € [fGIPE(J R ™)+ 4 — ==
< i Ro] —

The last term is bounded for p€ (0, 1], since by L'Hospital's rule

(- p) " =) _Bp-f'0Q)

lim

_ pmo I=f®) O
Hence we have proved that
sup  sup ||vnflp < (39
g€ m] r-
20

Next we consider the case where p € (u1, po]. Note that

v, Un
£ T <Y+ ————- Hwps12¢
Un+l-...(1__ 5 {(Wni1 <€) A=) + acon) (Wns1 2 €)
from which it follows that
(1-8)? 1
v g —i— ||| p + —————
oms o < Nonl + i

Hence it is obvious that
sup  sup v, <o
pE{up)] 120
This in conjunction with (39} completes the proof of Lemma 1. O

APPENDIX II: PROOF OF LEMMA 2

(i) = (). Denote A= Dmin(4x(#)) = {2} Then (ii) follows by observing that

0 € Ermin(An(0)) < 82 + E [Amin (An(ENT(A)]
< 82+ 1| An®) o2 [P(A] ™27 (by the Holder inequality)

(ii) = (iii). The proof is similar to the proof of Lemma 2.3 in Reference 8.

(iii} = (iv). The proof is trivial, since (jif) = (i) = (i) = (iv) is obvious.

To complete the proof, we have to show that (iv) = (i). By the Holder-type inequality for a ¢-mixing
sequence {c.g. Reference 10, p. 278) it is easy to show ({via a direct calculation) that sup:»o
| AmCEY = EAm(f) iz = 0(m) as m — oo, However, by (iv) it is easy to convince oneself that infs3o
Amin(EAm(#)) 2 cm for all m > k and some ¢ > 0. Consequently, for suitably large m we have

inf Fhmin(Am(t) 2 inf Amin(EAn()) — || Am () — EAm() 2} > 0
t=0

=0

Hence (i) holds and the proof is complete

APPENDIX III: PROOF OF LEMMA 3

(i) By first applying Burkhoider’s mequahty (e.g. Reference 10, p. 23) and then the C-inequality, we
know that {x(i}] € M with cp(x)= cpxp for some constant ¢, depending only on p. (ii) By the Holder-
type inequality (e.g. Reference 10, p. 278) it is directly verified that {x(7)} € .# With c2(x) = c;x; for some
constant ¢; > 0. Hence from Lemma 3.2 of Reference 11 the assertion (i} follows. (iii) According to
Yoko Yama,? this holds with e,(x) = c_.,x;'ﬂ;‘. Finally, (iv) can be found in Reference 13, p. 225
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