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FURTHER RESULTS ON LEAST SQUARES BASED ADAPTIVE MINIMUM
VARIANCE CONTROL*

LEI GUO

Abstract. Based on the recently established results on self-tuning regulators originally proposed by ,str6m
and Wittenmark, this paper presents various novel and extended results on least squares based adaptive minimum
variance control for linear stochastic systems. These results establish self-optimality, self-tuning property, and the
best possible convergence rate of the control law in a variety of situations of interest.
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1. Introduction.

1.1. System description. Consider the following SISO linear discrete-time stochastic
system:

(1.1) A(z)y, B(z)u_, + C(z)w, n >_ O,

where {y}, {un} and (wn} are the system output, input, and random disturbance se-
quences, respectively, y u w 0 for all n < O, and A(z),B(z), and C(z) are
polynomials in backward-shift operator z"

A(z) + alz +... + apzp,
B(z) b, + bez +... + bqzq-1

C(z) + c,z +... + cz,
p>_O,

q>l,

r>0,

with known upper bounds p, q, and r for true orders and unknown coefficients a, bj, and
Ck.

As usual, for the above model we adopt the following standard assumptions:
(A1) {w, f} is a martingale difference sequence, i.e., E[w+ ]f] 0, and satisfies

(1.2) sup E[ w +,l < a.s. for some/3 > 2,

(1.3) lim 2 O.2
i:1

(A2) SPR condition: maxlzl= [C(z)- < 1.
(A3) Minimum phase condition" B(z) 0, for all z’lz <_ 1.
Condition (A1) implies that the linear minimum variance predictor for + generated

by (1.1) coincides with the minimum variance predictor E[+ I.T’] if {u, br } is an adapted
sequence. Condition (A2) is the usual SPR condition
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188 LEI GUO

2which implies that i= ci < 1, and is implied by =l Icl < (cf. Huang and Guo [1,
pp. 1731, 1755]). This condition, together with the a priori knowledge about the orders p, q,
and r, can be dispensed with for recursive identification of the linear model (1.1). We will
not discuss that issue here and instead refer to Huang and Guo [1] for details. Condition
(A3) is necessary for internal stability of minimum variance control systems even if the
parameters in (1.1) are known (see, e.g., Kumar and Varaiya [2, p. 121]).

1.2. Performance. Our objective is to construct a control sequence {un} based on
the past and cuent observations, such that the following averaged square tracking error is
asymptotically minimized:

(1.4) j
a 1 )2(w

i=1

where {y[ } is a reference sequence to be tracked, which is assumed to satisfy the following
condition"

(A4) {y} is bounded almost surely and is independent of {wi}.
For convenience of discussions, we may assume without loss of generality that

a{w, y+, j i}. Then for any adapted input sequence {u,
measurable for all i, and so by Chow’s local convergence theorem for martingales (cf. [3]),
it is easy to conclude that

( Rn(1 +o(1)) on [nRn
(1.5) d 2 nw +

n O(g) on [lim (nR)<

where R denotes the following "averaged regret""

(1.6) Rn (Yi Y Wi)2.
n

i=l

Consequently, by virtue of (1.3), we know that for any adapted sequence {u,U} the
asymptotic lower bound to J is 2, and that

(1.7) j 2 a.s. Rn .. 0 a.s.

which justifies the familiar concept "globally convergent" or "self-optimizing" for an adap-
tive controller that leads to R 0 a.s.. Moreover, from (1.5) it is apparent that

is of essential importance for the convergence rate of J, since it can be regarded as a
second-order quantity (see also Wei [4, p. 1668]). It is also worth noting that once the self-

2optimality R 0 a.s. is proved, the global stability, i.e., sup (1/n)=(y + u) <
a.s., can be derived trivially by using Assumptions (A1), (A3), and (A4).

1.3. Estimation algorithms. Let us denote the unknown parameters in (1. l) by

(1.8) 0 [-a ap, b, b, c, c].
Then the model (1.1) can be succinctly written in a regression fo:

0(1.9) Yn+I 0 n + Wn+l, n O,

where is the regression vector defined by

(1.10) [y.... Wn’’"
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ADAPTIVE MINIMUM VARIANCE CONTROL 189

The standard .method for estimating 0 is the following recursive extended least squares
(ELS) algorithm"

(1.11) On+ On + anPnn(Yn+,

(1.12)

(1.13) --[Y’"Yn-p+,, Un’’’Un--qTl,n’’’n--r+l] T,

(1.14) y On-,

with arbitrary initial values 00, 0 - 0 and P0 > 0.
There is a vast literature on strong consistency of the above ELS algorithm (see,

e.g., Caines [5], Chen and Guo [6], and the references therein). In a Bayesian framework
assuming Gaussianity of both the noise {w, } and the parameter 0, it was shown by Sternby
[7] that in the white noise case (i.e., C(z) 1), the necessary and sufficient condition for
strong consistency of the least squares (LS) estimate 0, is that

(1.15) min(n) x a.s.

where Amin(n) denotes the minimum eigenvalue of Pn-, i.e.,

(1.16) ,min(7t) )min )i) -F Po-1
i=0

In the non-Bayesian framework where 0 is an unknown constant vector as the case
considered here, Lai and Wei [8] succeeded in showing that in the white noise case, strong
consistency of the LS estimate still holds if (1.15) is strengthened into

log ,max (n)
(1.17) /min(n) o, ,0 a.s.

n--- ,min ()

where/max(n) denotes the maximum eigenvalue of Pn. They also presented an example
showing that relaxing the second part of (1.17) can result in a loss of strong consistency
of the LS algorithm. The above consistency result can be easily generalized to colored
noise and multivariable cases by resorting to the standard SPR condition (A2), and by
using the standard recursions for the Lyapunov function studied earlier in (e.g., Ledwich
and Moore [9], Solo [10], and Chen [l l) together with Chow’s local convergence theorem
for martingales (see [12] and [13]).

Despite the celebrated convergence properties of the ELS algorithm, the basic stability
issue of adaptive minimum variance control constructed by using the ELS algorithm has
been a long-standing problem over the past two decades. The main difficulty is that we do
not know if the condition (1.17) really holds for the closed-loop systems. In fact, over the
past decade, most of the results in stochastic adaptive control theory have been established
for adaptive control laws that are not based on ELS algorithm but based on a stochastic
gradient (SG) algorithm (or its variant). This algorithm is formed by simply replacing the
matrix gain {anP} in (1.11) by a scalar gain {#/r} with # > 0, where

A + I1  11 :.
i=0
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190 LEI GUO

Goodwin, Ramadge, and Caines 14] obtained the first stability and optimality result
on SG-based adaptive tracking algorithms, which stimulated considerable research efforts
afterwards. However, as is observed in simulations, the SG algorithm exhibits much slow
convergence rate as compared with the ELS algorithm. Chen and Guo [15], [16], [6] have
given a comprehensive theoretical study for the convergence of SG algorithm and justified
the convergence phenomena known by simulations. To be precise, for strong consistency
of SG, the following condition was introduced by Chen and Guo [15]"

(1.19) r c, O({log v}) a.s., c > 0.
,mi. (//,)

then 0 0,They showed that for the SG algorithm, if (1.19) holds with c _( ,
a.s. (see [I, Thm. I], [16, Thm. :2], and [6, Thm. 4.5]). They also presented an
example showing that in (I. 19) the constant oz is not allowed to be greater than for strong
consistency of SG (see [6, pp. 124-129]).

Hence for strong consistency, the SG algorithm requires much more excitation than the
LS algorithm does (note that (1.19) is much stronger that (1.17)). Moreover, in the white

the guaranteed convergence rate for thenoise case under the condition (I. 19) with ,
SG algorithm is only of the order O(I/log ), i.e.,

a.s. for some’>0
logx rn

(cf. [15, p. 141] or [6, p. 132]), while under the same conditions, the convergence rate for

the LS algorithm is much faster: ]]0n -0 2 O(log r/v) a.s. (see, e.g., [6, p. 96] or
[8, p. 1551).

1.4. Background. The standard adaptive minimum variance tracking control is con-
structed by simply identifying the adaptive predictor with the target value, i.e.,

(1 21) n >0 /n+l

where {0) is generated by the ELS algorithm (1.11)-(1.14).
str6m and Wittenmark 17] were, apparently, the first to attempt an analysis of adaptive

minimum variance control constructed by using LS-type estimates. They showed that if
the LS parameter estimates should converge to some limit with no common factor, then the
adaptive controller must necessarily be optimal. However, a difficult problem is whether
these estimates are indeed convergent. To overcome this difficulty, Kumar 18] considered
the case where the additive noise in (1.1) is i.i.d, and Gaussian. By using the technique
of "Bayesian embedding," he succeeded in showing that, outside an exceptional set of true

parameter vectors of Lebesgue measure zero, the LS based self-tuning minimum variance
control enjoys various important convergence properties.

Recently, Guo and Chert [19] solved the basic stability and optimality problem of ELS-
based adaptive minimum variance control for the general system (1.1) under the standard
conditions (A1)-(A3). The following was shown in [19]"

(i) If the "high frequency" gain bl is known, then the standard ELS-based self-tuning
tracker is globally stable and self-optimizing, with a rate of convergence for the regret:
R O(dn/nl-e) a.s. for all e > 0, where {d} is a positive sequence satisfying
d <_ d+,sup>o(d+/d < x, and

(1.22) IIwll O(d) a.s.

D
ow

nl
oa

de
d 

07
/0

5/
21

 to
 1

24
.1

6.
14

8.
19

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



ADAPTIVE MINIMUM VARIANCE CONTROL 191

(ii) If 61 is unknown, instead of using a fixed a priori estimate for/)1 in designing the
control law as in str6m and Wittenmark 17], a natural approach is to update this estimate
with the current and past data. This was done in [19] by setting the on-line estimate (say
,(n)) to be

(1.23)
bl(n), ()
b, (n) + sgn (b, (n))

v/log

if Ib,(n)l >_

otherwise,

v/log r_

where sgn(.) is the sign function, r, is defined by (1.18) and hI(n) is the (p+ 1)th component
of 0 generated by the ELS algorithm (1.11)-(1.14). Then the resulting ELS-based adaptive
control law is again shown to be stable and self-optimizing, with an implicitly established
convergence rate R O(1 / log r) a.s..

The purpose of this paper is to give further results on ELS-based adaptive minimum
variance control, with emphases placed on the convergence rate of Rn. We will improve
the convergence rate obtained in 19] and show that in some cases the limit of (r/log r)R
actually exists and is finite. We will also study the standard control law (1.21) (with no
modifications on b (n)) and address the consistency issue of parameter estimates.

2. Preliminaries. To begin with, consider the regulation problem where y[ -0. Let
/min(X) denote the minimum eigenvalue of a square matrix X. Then, from (1.9) it follows
that

(2.1)

and so by (1.6),

which implies that the "self-optimality" and "persistency of excitation" cannot hold simul-
taneously in general for the closed-loop system resulting from regulation (see also [20,
pp. 372-373] for a related discussion). Moreover, from (2.2) it is clear that the better the
convergence rate of the regret R, the poorer the excitation of the regressor will have.
This explains the familiar dilemma between estimation and control. From the following
theorem, we will see which kind of excitation results we may have and how the degree of
excitation of {p} depends on {/[ } in a general asymptotically optimal tracking system.

For future reference, we list the following identifiability conditions.
(A5) The polynomials B(z) and A(z)- C(z) are coprime, and either OB(z) q-

or O(A(z)- C(z)) max(p, r), where and hereafter OX(z) denotes the degree for a given
polynomial X(z) in dummy variable z.

(A6) The polynomials A(z) and B(z) are coprime with lapl + Ibql O.
The following theorem extends some related results in [22].
THEOREM 2.1. Consider the linear model (1.1). Let the regret 1 be defined by

(1.6), and the Assumptions (A1) and (A4) be satisfied. Suppose that {7-r} is a strictly
increasing sequence of random integers such that trn+ 0 holds on a set D of
positive probability; then the following two conclusions hold:
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192 LEI GUO

(i)

a.s. on D,

provided that (A5) holds, where

(2.4) 2 [y y_p.+, u_ U_q+l] -, p, x max(p, r).

(ii)

(2.5) lim inf > 0 a.s. on D,-
provided that (A6) holds, and that

i log log -(2.6) R-,+I + o a.s. on D,
Tn Tn

where o is defined by (1.10), and

(2.7) "nin(rt) "min Y/*Y/* Y* [Yi i-I Yi-p-q+l
i--I

We remark that Theorem 2.1 holds irrespective of the control law structure and the
minimum phase condition (A3). Following some proof ideas used in Chen and Guo [22],
we preface the proof of the theorem by four simple facts, which are stated as lemmas since
they will be frequently referenced in the sequel.

For any polynomial F(z), denote its Lz-norm IIF(z)ll2 by

IF(e)lZdA.

In the sequel, we shall sometimes suppress the argument (z) for simplicity.
LEMMA 2.1. Let F(z) and G(z) be two coprime polynomials, and Sd be a set of

polynomials M(z), N z ), defined by

Sd {(M(z),N(z)) IIM(z)II22 + IIN(z)ll ;OM + ON < d;

and either OM < OG or ON < OF}.

Then for any integer d >_ O, inf(M,N)Sa IIFM + GNII2 > 0.

Proof Suppose that the converse assertion were true; then it would necessarily imply
that

(2.8) FM + GN 0
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ADAPTIVE MINIMUM VARIANCE CONTROL 193

for some polynomial (M, N) in Sd and some integer d _> 0. By the coprimeness of F and
G, there exist polynomials L and H such that FL + GH 1. If OM < OG, then G

_
0,

and we have by (2.8)

M M(FL + GH) L(-GN) + MGH G(MH LN).

From this it is easy to conclude that M 0. By (2.8), we then have N 0 since G is a
nonzero polynomial, and so I]M 12 nt- ]]N]]2 0. Similarly, if ON < OF, again we have
]]M]]2 + ]INI]2 -0. This contradicts with (M, N)

LEMMA 2.2. Let F and G be two coprime polynomials. For any integers m >_ O, n >_ O,
and any sequence {zk }, define for any k >_ O,

Zk IF(z), zF(z) z’CF(z), G(z), zG(z) z’G(z)] zk.

If either m < OG or n < OF, then with c inf(M,N)ES,+, IIFM + GNI] > O,

Vk>l,

where Sm+n is defined as in Lemma 2.1, and

s max{m + OF, n + OG}.

Proof We first note that c > 0 is guaranteed by Lemma 2.1. For any x E ]n+m+2, ilxl
1, with x [ao a,, /30 /3,] -, set M(z) ao +... + a,z and N(z) o +"" +
/3,zn. We have for all k >_ 1,

/min ZiZ inf -(xZ)2
i-0 I111= i-0

k

inf Z[(M(z)F(z) + N(z)G(z))zi] 2

i=0

2/min Z Z{
(M,N)ESm+,

i=0

LEMMA 2.3. Let xk .d, (d > 0), k _> 0, be a vector sequence, xk 0, for all
k < O, and F(z) be a polynomial with IIF(z)ll2 0. Set -2 F(z)xk. Then we have for
all n > O,

/min XkXTk (OF + 1)[IF(z)ll. Ami" wkW;
k=O k=O
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194 LEI GUO

Proof Let the coefficients of F(z) be fi,i 0,... ,OF. Then by the Schwarz in-
equality,

,min k inf (x-k)2
k--0 II-- k--0

inf Z[F(z)xzk]- inf
IIll=k=0 IIll= LC=0

We also need a simple corollary of the laws of the iterated logarithm for martingales
established in Jain, Jogdeo, and Stout [21].

LEMMA 2.4. Let (w,) satis condition (A1), and (f,) be an adapted sequence
satising

#
i=1

a.s., for some 5 [0, 1).

Then as cx,

Z fiw+,- O(v/n log log n) aoS.

Proof We first consider the case ]fi -> a.s., for all i. By the martingale convergence
theorem in [3] and the Kronecker lemma it follows that

So by (1.3)

Z(E[w2i+llJ2i] 2

i=1

a.So

Z E[w2+ I’T’i] (1 + o(1))cr2n a.s.
i=1

Consequently, by noting Ifi] > a.s.,

lim inf - fE[wi+, 19ci] > (r
e > 0 a.s.

oo TL
i--1

Hence by applying Theorem 3.1 in [21] it is easy to see that the lemma is true.
In the general case, noting that f/= [f + sgn (f)]- sgn(f/), and applying the just

proved result to i=l [fi + sgn(fi)]wi+, and ’-i=1 sgn(fi)wi+l, respectively, we see that
the desired result is also true. [3

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Following Chen and Guo [22] or [16], set i Yi Y’ w,
z + y. Then by the assumption we have

r+l

(2.9) { ,0 on D.
Tn i=0
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ADAPTIVE MINIMUM VARIANCE CONTROL 195

Note that

(2.10) y w +y + w + z,

and then by (1.1),

(2.11) B(z)u [A(z)y+, C(z)w+,] [A(z) C(z)]w+, + A(z)z+,.

Part (i). By Lemma 2.3 we need only to consider

(2.12)

where, by (2.3), (2.9), and (2.10),

b’ [B(z), zB(z),. zp*-’ B(z), A(z) C(z),. zq-2[A(z) C(z)]]rwi,
ff) [t(z), Z.(Z), Z

p*-I B(Z), A(z),... zq-2A(z)] rzi.

By Lemma 2.2 we know that there exists c > 0 such that

/mi. -ci?/?w "ci?/wr >__ Cmi. [Wi’’" Wi--s]r [Wi’’" Wi--
i=0 i=0

holds for all n > 0, where s p* + q 2. Consequently, by (A1),

(2.13) lim inf 1Amin
_

’-]-/’’ >0 a.s.
T/,

\ i=0

Let b* and bf be defined in the same way as b[ (i.e., in the definition of b[ replace
zi by y[ and {i, respectively). Then by the Schwarz inequality and (2.9), it is clear that

ri -i 0
Tn i=0

on D.

Also, by Assumptions (A1) and (A4),

0 aoSo

Hence we have

(2.14) a.s. on D

Therefore, by (2.12)-(2.14) it is easy to see that

lim inf,min - >0
n--,oc 7-n i=0

a.s. on D.

From this and Lemma 2.3, the assertion (i) follows immediately.
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196 LEI GUO

Part (ii). Similarly, we consider the transformation B(z). By (2.10) and
(2.11), can be decomposed as ’ 4- o:, where

o {zB(z) zPB(z),A(z) C(z) zq-’[A(z) C(z)],zB(z) zB(z)]wi+,,
[zB(z), zVB(z), A(z), z-’ A(z), O, O] Zi+ 1.

Letcy and be defined in the same way as for. Forx w,z,y* andS, let
be the vector composed of the first (p + q) elements of o. Then by (A1), (A4), and

Lemma 2.4 it is easy to see that

(2.15) Z i-Y*’ O(v/7, log log 7nl a.s.
i=0

Let x E ,p+q-l-r be any (random) vector, Ilxlt 1. Put x (c, 3), c .P+q, 3 f
Then by the Schwarz inequality, (2.15) and the fact that i + i

(2.16)

i--0 i--0

Tt

+
i=0

w 2 2 O(v/’r, log logxTi, )2 4- O Wi i 4- Tn)
i=0 i=0

+
i--0

>_ Z(x’) + O(T v/R-,+, + O(T log log
i=0

i=0

Tn

(XT)2 + (Cl]l 2 + O(1))Ain(Tn) a.s. on D
i=O

where for the last inequality we have used the assumption. (2.6) and Lemma 2.2, and where
the quantities c > 0 and "o(1)" are independent of the vector x.

Now, suppose that the converse assertion of (2.5) were true; then by Lemma 2.3 we
know that there would be a set D C D with P(D) > 0 such that

lim inf 0 on DI.
n-o /min (Tn)

From this and (2.16) it is not difficult to. find vectors xn ]p+q+r, llx[[ 1,x,
(c,/3), , p+q, and a subsequence of {3-,}, which is also denoted by {7-,}, such
that

(2.17) II, 0 a.s. on D,
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ADAPTIVE MINIMUM VARIANCE CONTROL 197

and that

(Xngi)2 }2+&B(z)[ _+,]"
Tn i=0

r
"=

n-+oc

(2.8)
From (2.17) and (2.18), it is obvious that

,0 a.s. on DI.

Tn

Z{B(z)[w .w_+, ...,o
Tn i=0

a.s. on D1.

Consequently, from this and (A1), it follows that

which obviously implies that g, ,0 a.s. on D,, and so by (2.17), Ilxll ,0 a.s.

on DI. This contradicts with IIzll 1, and hence assertion (ii) is also true. [3

Before concluding this section, we list some basic properties of the ELS algorithm
here, which will be used frequently in later sections.

LEMMA 2.5. For the system (1.1) and the ELS algorithm (1.11)-(1.14), if Conditions
(A1) and (A2) hold and u is .T’n-measurable for n >_ 1, then

(i) 0r+ lPn+1-1 On+ O(1og I"n) a.s.,

(ii)
n+l

IIb- wl] 2 O(log r,)
i--l

i10-11(iii)
)) O(log r) a.s.,

i=1

where n ZX
0- On, and rn is defined by (1.18).

Except (i), this lemma is the same as Lemma in 19], but (i) is actually also established
in the proof of that lemma.

COROLLARY 2.1. Under the same conditions and notations as in Lemma 2.5, the fol-
lowing property holds:

(2.19) I[On+ I[ 2 + IIn+, Wn-t-I
2 + [lOn[12 O(log rn) a.s.-,-p+ p ng)n

Proof We need only to note that by (1.12) and the choice of the initial condition,
--1P,+ > Po-- > 0, for all n > 0. [3
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198 LEI GUO

3. Adaptive minimum variance control (with bl fixed). Throughout this section we
assume that the "high-frequency" gain b in the model (1.1) is known. The main consid-
eration behind this is that results obtained in this case are relatively complete, which can
indicate the greatest expected achievement in the general case.

Similar to (1.8)-(1.10), we rewrite (1.1) in the regression form

(3.1) Yn+ -blun 0 + wn+, n >_ O,

but here 0 and 0 should be defined as

(3.2) O--[-al...-ap b2...bq c,...c]-,

(3.3)

The standard ELS algorithm for estimating 0 is as follows:

(3.4)

(3.6) n [Yn Yn-p+l, Un-l Un-q+l, Zbn zbn-r+l] r,

(3.7)

with arbitrary initial values 00, 0, and P0 > 0.
We note that Lemma 2.5 and Corollary 2.1 also hold for the present algorithm, and in

what follows we shall use them directly without explanations.
The "certainty equivalent" minimum variance adaptive control is defined by

We first treat the white noise case.
THEOREM 3.1. Consider the system (1.1) with r 0 and E[w2+l I,Y’,] o-2 > 0, a.s.

for alln > O. Suppose that (A1) and (A3)-(A5) hold. If the control law (3.4)-(3.8) is

applied, then the closed-loop system has the following properties:

(3.9) n-lim ( n ) R (p +
n

a.s.,

and

(3.10) 110 Ol]:z O(lg lg n ) a.s., as n--

where t is defined by (1.6), and 0 is given by (3.2) with r -O.
Proof By Theorem of Guo and Chen [19] we know that 0 a.s., and that

(3.11) Ilwll a.s.
i---O
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ADAPTIVE MINIMUM VARIANCE CONTROL 199

Hence by Theorem 2.1 (i), we have the following persistency of excitation property:

Also, by combining Lemma 2, (2.9), and Theorem of Guo and Chen [19] we know that

(2)(3.13) I1  112 0(), a.s. V6 (e ,
where , is defined in (1.2). Hence, by (3.12) and (3.13),

(3.14) Pn+tPn >0 a.s.

By (3.11), (3.12), and (3.14) we know that Theorem 3 of Wei [4] is applicable (there is a
slight difference between the LS estimates defined there and here due to initial conditions,
but that is not essential since (3.12) has been established), and hence we have

(3.15) Z(07-i 0[)2 cr2 log det i- a.s.
i=0 \ i=0

But by (3.11) and (3.12) it is easy to verify that log det (-]i=ll ii (p + q 1) logrt.
Hence, by combining (1.6), (3.1), (3.8), and (3.15) we see that (3.9) holds.

As for the second assertion of the theorem, by (3.4) and (3.5) we can express the
estimation error as

(3.16)

By (3.11), (3.13), and Lemma 2.4, we know that

(3.17)
n-I

i=0

-O(v/r log log r) a.s.

Finally, combining (3.12), (3.16), and (3.17) it is easy to see that (3.10) holds.
Remark 3.1. The property (3.9) asserts, among other things, that O(log r/n) is the

best convergence rate for the regret Rn generated by LS-based adaptive control. The con-
vergence rate O(log log r/r) in (3.10) is also obviously the best possible for the estimation
error, since it is the same rate as that in the laws of the iterated logarithm. In a Bayesian
framework, assuming that {wi} is i.i.d, with a Gaussian distribution N(0, o-2) and that
0 has a certain truncated Gaussian prior distribution 7r, Lai [23] showed that under some
stability conditions on the system and some regularity conditions on the input sequence
{un}, the order (p+ q- 1)cr2(1 4-o(1)) log r/r is a lower bound to the expected regret
E,[Rn] in the regulation problem. According to Lai’s definition in [23, p. 37], the control
law of Theorem 3.1 is "asymptotically efficient". It is also interesting to note that when
the system orders p and q are increasing with the time (or data size) r, similar results as
(3.15) are also obtainable (see, Huang and Guo [1]).

Next, we consider the general colored noise case r > 0. Let us write 0n defined by
(3.4)-(3.7) in its component form:

(3.18) On [-aln, -apn, b2n, bqn, cln, ern]7",
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200 LEI GUO

and set

(3.19) 0 [Cln aln, Cp*n ap*n, b2n, bqn] -, p* max(p, r),

where by definition cin ajn 0, for > r, j > p.
Similarly, denote (ci aj 0, for all > r, j > p),

(3.20) O* [el al, %. ap. b2,.", bq] -.
It is easy to see that (cf. [2, p. 122]) for the regulation problem y" 0 with bl known,
to construct the nonadaptive (asymptotically) optimal control law, it is sufficient to know
only 0", and hence 0* may be regarded as the "true parameter."

THEOREM 3.2. Let (A1)-(A4) hold, and let the adaptive control law (3.4)-(3.8) be
applied to the system (1.1).

(i) For the regulation problem y O, if (A5) holds, then

(3.21) IlO 0"112 + Rn 0
nl. a.s.W >0,

where d is defined as in (1.22), and O and O* are respectively.defined by (3.19) and
(3.20).

(ii) For the general tracking problem, if (A6) holds and {y } satisfies
1+6

(3.22) n O(,min(n)) a.s. for some (5 > O,

where d and )nin(n) are defined in (1.22) and (2.7), respectively, then as

I!o, oil o
/nin (7)

where On and 0 are respectively given by (3.4) and (3.2).
Proof (i) By Theorem in [19] we know that Rn O(dn/n-), a.s., for all e > 0.

So-for (3.21) we need only to consider the convergence rate of the estimation error. By
Lemma 2.5 (i) we know that

~- - 0n+ O(log r,) O(log n) a.s.(3.24) On+Pn+
where 0n+ 0n+ -0. By (3.19) and (3.20) and the fact that Pn i=o PiP + Po-,
we can rewrite (3.24) as

iO
~, -Ti On+l + (cjn+l Cj)(Vi-j+! --Yi-j+l + O,+P n+. O(log n), a.s.,

"= j=l

where 0,~* + 0n*+ -0", and i and p* are defined by (2.4). By Lemma 2.5(ii), Corollary
2.1 and the fact that

i=0

it is easy to see that

i=O j=l

a.s., Ve > 0,

O(nedn) a.s. V > O.
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ADAPTIVE MINIMUM VARIANCE CONTROL 201

Therefore, we have

-,-~, )_ O(ndn)
i=0

a.s., V > O.

From this and Theorem 2.1 (i), we obtain I1-*0/112 O(d/-), a.s. This proves
assertion (i).

(ii). Again, by [19], Rn O.(d,---), a.s., Ve > 0. Hence, by (3.22) we know that
Theorem 2.1 (ii) is applicable, and so we have

lim inf i=0 > 0 a.s.
n---cx ,nin (2)

Consequently, by Lemma 2.5.(ii) and the fact that

we have

/min i-
i=0(3.25) lim inf > 0 a.s.,

min (T)

which in conjunction with (3.24) yields the second assertion in (3.23). By (3.22), (3.25)
and Lemma 2 in [19] it is not difficult to see that P,, 0. Therefore, by Lemma

2.5(iii), --’i0 II)TII O(log n), and hence the first assertion in (3.23) is also true.

Remark 3.2. For the regulation problem, the one degree of freedom identifiability
problem as shown in Becker, Kumar, and Wei [24] does not occur in Theorem 3.2, since b
is not estimated. For the general tracking problem, it.is clear that in Theorem 3.2, {y’ } is
not necessarily required to be "sufficiently rich" or "persistently exciting." Condition (3.22)
is considerably weaker than the corresponding nonpersistence of excitation condition used
in [22] and 16] for the SG-based algorithm. It would be of interest to establish similar
results for a lower-dimensional ELS-based adaptive controller when {y’ } is generated by
a homogeneous finite-order linear difference equation H(z)y O, as was done by Kumar
and Praly [25] for the SG-based algorithm.

4. Adaptive minimum variance control (the general case). In the general case where
b is not available, the analysis becomes much more complicated. Throughout this section,
we assume that {0n} is generated by the ELS algorithm (1.11)-(1.14).

First, the minimum variance adaptive control law defined from (1.21) can be explicitly
written as

(4.1) u b(n)
{y+, + (b,(n)Un O,n)},

provided that b (n) - 0 a.s., where b (n) is the ELS estimate for b given by 0R.
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202 LEI GUO

When (4.1) is applied, the first problem is that the set {bl (n) 0} may have a positive
probability, which is known as the zero divisor problem in stochastic adaptive control (cf.
Meyn and Caines [26]). There are at least three ways to deal with this problem.

(a) Guarantee P{b (n) 0} 0 by assuming that all finite-dimensional distributions
of {w} are absolutely continuous with respect to Lebesgue measure (see, [26] or [5, pp.
778-782]). The absolute continuity assumption can be weakened to continuity only if {w,}
is an independent sequence (cf. [16]).

(b) Guarantee P{bl(n) 0} 0 by adding an independent random sequence with
continuous distributions to the input signal. Such a sequence is preferably decaying with
the time so that it does not upset the control performance (cf. [22]).

(c) Replace b(n) appearing in the denominator of (4.1) by a quantity (say Dl(n)),
which is close to b (n) but does not equal to zero (see, e.g., (1.23) or [19]).

In the sequel, whenever the control law (4.1) is concerned we always assume that
P{b,(n) 0} 0. The following lemma plays a key role in this section.

LEMMA 4.1. For the system (1.1) assume that (A1)-(A4) are satisfied. At each time
instant , let the control law Un be defined from the following equation:

(4.2) V+ -0, +

where {0 } is given by the ELS algorithm (1.11)-(1.14), and ADt .T is such that either

A O, Vn or A, 0 a.s. Thenfor any strictly increasing random sequence {7-n }
satisfying

(4.3) inf Ibl (7-n + 1) hi] > 0 a.s. on D,

with P(D) > O, and with bl(Z) being the component of On estimating b, the following
properties hold as n --
(4.4) sup IIkll 2 O(TdT-,) a.s. on D, Ve > O,

and

(4.5) r,, 0(-) a.s. on D,

where r and dr, are defined by (1.18) and (1.22), respectively.
Proof Before starting the proof, we remark that the case ADI 0 corresponds to the

control law (4.1), while the case Ab, :/: 0 corresponds to a (slight) modification of b (n).
We first prove (4.4). By (1.9) and (4.2) we have with

Yk+l 07-9k + 07-(90k gk) + Wk+l(4.6) 0k + Yk+l* /’ln//’k -- 0"r (0k ,)k) @ Wk+l

Following Guo and Chen [19], denoting 6k tr(P- P+),ctk II)kll2/(1 +
Pkk), and using Corollary 2.1 and the fact that Pk+g)k <_ l, we have by (4.6)

(4.7)

2
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ADAPTIVE MINIMUM VARIANCE CONTROL 203

By the stability of B(z) and (1.1) there exists a constant A E (0, 1) such that

A LU

k =0 k=0

Consequently,

[11112 u]-o "- )2 - 2+O (_ +O A w
"= =0(4.9)

where for the last relationship we have used Lemma 2.5 (ii).
Note that P+ i=o + Pf, and we have by Lemma 2.5 (i),

(4.10) 110+112- O(tog ) a,s.

=0

and consequently,

(4.11) max I1+,112 O(log r) a.s.

For simplicity of statements, we shall omit the phrase "a.s. on D" in the remainder of the
proof, and unless otherwise stated all relationships hold on D with a possible exception set of
probability zero. Denote (r+ 1) b-b_(r+ 1), we have by (4.3), inf I (7+ 1)1 > 0.
Consequently, by (4.11) and the fact that II0+ 2 0(log r) a.s., we have for all k 5
and all 1,

(,( + ))
{’( + )}

(r, + 1)u] 2

(I(T+ 1)) 2
{[ rr+lk

2(4.12) < {]r 2

((= + 1))2 ,+lm -0( + 1)mll 2 + [[+ll[ }

o((og ,,) -) + O(og2 + d og
i=0

where for the last relationship we have used (4.9), and where and hereafter the "O" constant
depends neither on k nor on n.

Combining (4.9) and (4.12) we get for all k r,

(4.13) }}k 2 O([1og rr,] k--iV + O(1og 2rr + dr, log rrn).
i=0

Substituting (4.8) and (4.13) into (4.7) and noticing l ,0, it is easy to see

that for all k r, and all large n,

2 0 kklog fr k-i +0 k-i +O(log 3f +dr log 2).
i=0 i=0

(4.14)
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Now, following [19] we set Lk k Ak-i 2
i=o Yi. Then by (4.14) there are constants

0 and e > 0 such that (1 + 6)A < and that

y < A[(I + 6)cakSk(lOg r.) + 6]Lk + O(log 3r-, + d-, log 2r-,)+!

holds for all suitably large n and all k <_ 7n. Consequently, by denoting "7 (1 + di)A < 1,
we obtain for large n and for all k <_ -,,

2 < (1 + c06 log )Lk + O(log 3r-, + d- log 2r-,).Lk+l ALa + ya+ "7 r.
Hence, iterating this inequality k times we get for all large n and for all k < -n,

(4.15)

k

Lt:+ <_ "Tk+ H + cai5i log r Lo
i=0

+O "7-i H (1 + ejij log r)[log3 r. + d.. log2 r.]
i=0 j=i+l

By Lemma 2.5 (iii) and the convergency of the series -i= 6i, we know that for any
small e > O, there exists > 0 large enough such that

2 OZj <__ log ra, e 6j < .
j--i+l j--i+l

Hence we have for all <_ k _< -,
k k k

H (l+coj3jlogr.,, <_ H (l+e2aj) H (l+ce-26jlogr.)
1,,4"-. o)"

j =i+ j=i+ j=i+

{ }< exp if2 aj + CE--2j log r,, < re

j=+ j=i+

Substituting this into (4.15), it is easy to conclude that for large n,

(4.17) La+ O(rd), Vk <_ 7-n, V > O.

Substituting this into (4.13) we know that sup<_., 1[90zcll 2 =,O(r,d,) for all > 0, and
hence (4.4) will be true if (4.5) is proved.

We now prove (4.5). By (4.17) and the assumption A, ,..0, it follows from

(4.6) that

From this, Lemma 2.5, and (4.8), it is easy to see that

(4.18) r O(r,,d, log r.) / o(r.) + 0(-), Ve > 0
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ADAPTIVE MINIMUM VARIANCE CONTROL 205

(4.22)

But as noted in ([19, p. 804]), dk can be taken as dk k6 for all 6 E (, 1). Hence, from
(4.18) it is easy to conclude (4.5), and hence the proof is complete.

Let D be a set defined by

(4.19) DI {w" liminflbl(rt)l,___, :/: 0},
where b (n) denotes the component of 0 estimating b.

For any constant a (0, [b ), define a sequence {r} recursively by

(4.20) inf{k > _’lb(k + 1)l < a}, 0 0, n 1.

Note that (A3) implies bi 0, and so the interval (0, Ib [) is not empty.
On the complement set of D, D, it is obvious that < for all n I. Hence, if

we set

, wDI,
(4.21) a r, w D,
then a < a.s. for all n, and a a.s..

THEOREM 4.1. For the system (1.1) assume that (A1)-(A4) are satisfied, and that the
control law defined by (4.1) is applied. Then the following hold:

(i) For the sequence {a} defined by (4.19)-(4.21), as

r, O() a.s. and R+, O ( d’ )a, a.s., e > O,

where Rn r and d are defined by (1.6), (1.18), and (1.22), respectively.
(ii)

)-6 a.s. on D V ,1

where is defined in (1.2) and D D D2 with D defined by (4.19) and D2 defined by

D w D’sup+ <

here {} is defined by (4.20).
Proo (i). On the set D, by a completely similar argument as that used for Theorem

2 in [191, it is known that R O(d/n-) a.s. on D, for all e > 0. So we need only
to consider the complement set D. By the definition of r we have

inflb( + 1) b, Ib,! a > 0 on D.
Therefore, by Lemma 4.1 we know that r. O(r) and sup I111 = ,O(d) a.s.

on D. Hence, by (4.6) (with 0) and Lemma 2.5, we have

r+l i=0

0 2 0 2

n =o =o

on D, Ve > O.
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Hence the conclusion (i) holds.
(ii) As is just mentioned above (ii) holds on D, since dn can be taken as ne for all

6 E (2//3, 1). Hence we need only to consider the set De. By the definition of {rn}, we
know that on D2,’rn x, supn(rn+l/rn) < x:, and by (4.22), R- O(1/r-) a.s. on

D2 for all E (2//3, 1). Consequently,

sup[n’-eR] sup sup

_< sup-r+, [’r;R,-+,] < oc a.s. on 02.

Hence assertion (ii) is also true.
Remark 4.1. From Guo and Chen 19], we know that under conditions of Theorem 4.1,

if lira inf,_,o ]b (n)l -/= 0 a.s., then R 0 a.s. Theorem 4.1 asserts, among other things,
that if lim_ Ib (n)l 0 a.s. does hold, then since (D2) and again we have R --0 a.s.. This result is rather interesting since b (n) appears as the divisor in the control law
(4.1), and small b (n) seems to yield large input signal u (but actually does not). The key
idea behind the proof of Theorem 4.1 (or Lemma 4.1) is as follows: if lim_o ]b (n) 0,
then ], (n + 1)1 >_ ]b, I/2 > 0 for all suitably large n. Thus, for each fixed large n, and for
all _< n, u will have a significant contribution to 0n+ if it is not small. But by (4 11)

2 will bewe know that ]]t)+lll 2 O(log rn) a.s. for all _< n. Hence, for all
dominated by a "linear combination" of {92 2 2 2 2 2

Yi-p+l 2Li--1 i--q+l Wi Wi--r+l }’
and thus we can successfully sidestep the difficult "small divisor" problem in the analysis.
Certainly, in this approach, it would be of considerable interest to preclude the case where
the sequence {b (n)} visits the interval (-a, a) with 0 < a < {bl in a very scattering way
(i.e., P(D) > 0).

We now consider the case where the set D defined in Theorem 4.1 does have probability
one.

THEOREM 4.2. Consider the system (1.1), the ELS algorithm (1.11)-(1.14), and the
control law (4.1). If (A1)-(A4) and (A6) hold, and in addition, the reference signal {y[}
satisfies

(4.23) n 2 - O(/nin(TZ)) a.s., for some > O,

where dn and ,nin(n) are defined in (1.22) and (2.7), respectively, then as

(4.24) Rn O(lgn) ( logn )a.s., II0 0ll 2 O a.s.,

where Rn is the regret defined by (1.6). Furthermore, if (4.23) is replaced by n

O()nin(n)) a.s., and E[w2+ 1,] r2 a.s., then for the white noise case (r 0), (4.24)
can be strengthened into

(n)R (P+q)c2 a.s. II0 0,12 O(lglgn)lim log n n

Proof By Theorem 4.1 (i) and (4.23) we know that Theorem 2.1 (ii) is applicable to
the sequence {cry}, and hence we have

min (gii00T)
lira inf > 0 a.s.
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ADAPTIVE MINIMUM VARIANCE CONTROL 207

Consequently, similar to the proof of (3.25), it is easy to see that

(4.25) lim inf > 0 a.s.

By this and Lemma 2.5 (i) it is easy to see that

(4.26)
/nin()

a.s.

By Theorem 4.1 (i), we know that log r, O(log cr,) a.s., and so by (4.23) and (4.26)
we conclude that 0,+l -- 0 a.s., and in particular,

(4.27) bl (cr + 1) bl a.s.

We now prove that P(Dl) where D1 is defined by (4.19). Otherwise, we would
have P(D) > 0, and on D by the definition of o- we know that cr < oc for all r, and
that

(4.28) Ib,(cr + 1)l < ct Vr >_ on D,

which clearly contradicts with (4.27) since a < [bll. Hence P(DI) and we have
lim inf__, ]bl (r)l # 0 a.s. Therefore, by a similar means as in the proof of Theorem 2 in
Guo and Chen [19], we obtain R O(d/r’-C) a.s. and I1112 O(rCd) a.s. for all
> 0. Using this and a similar argument as for (4.25) and (4.26), we know that (4.25) and

(4.26) also hold with {c} replaced by {r}. Hence we have proved the second assertion
in (4.24). since (4.25) holds with {cry} replaced by {r} and I1112 o(/2) a.s.,
for all 6 E (2//3, 1), we know that ’P ,0 a.s. By this and Lemma 2.5 it follows

from (4.6) (with Al 0) that the first assertion in (4.24) is also true. Finally, the last
two assertions of the theorem can be proved in exactly the same way as in Theorem 3.1,
and the details are not repeated.

Remark 4.2. (i) Again, the best possible convergence rate O(log r/r) is established
for the regret R. It is worth noting that this result is established without introducing
any modifications to the standard minimum variance control law (4.1). This fact makes
Theorem 4.2 differ essentially from the existing results including those in the recent work
[191.

(ii) The (nonpersistent) excitation condition (4.23) on the reference signal {,} can
be easily verified for a large class of deterministic and/or stochastic signals. In principle,
we can always make this condition satisfied by use of the "continually disturbed demand
method" of Caines and Lafortune [27] or the "diminishing excitation technique" in Chen and
Guo [16]. To be precise, for any desired trajectory {g} that is bounded and independent
of {w}, we may take the reference signal in (4.1) to be

(4.29) Y Yd / v,

where {v } is a zero mean independent bounded random sequence which is independent of
{w, Yd}. Then with some suitable moment conditions on {v} it is easy to see that (4.23)
holds. In order that the "dither" does not influence the self-optimality the variance of {v}
must be chosen to satisfy Ev2 >0. This is possible since the excitation requirement
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(4.23) is not necessarily persistent. The disadvantage of adding the "dither,’.’ .{Vn} in such
a way is that it may influence the convergence rate of tracking.

Next, we consider the case where (4.23) fails. As a typical example, we shall onlY
consider the regulation problem (y 0). Similar to (1.23), we set for n >_ 1,

(4.30)
bl()

(n) + sgn(b, (n))
v/n log(n + 1)

+
otherwise.

Instead of (4.1), we define the control un by

(4.31) ttn {b(rt)u 0}, n >_ 1,
b(n)

which obviously has the form of (4.2):

(4.32)

where A x (n) b (r). By (4.30) it is clear that

(4.33) ib (n)l 2 > I.A/9 12 < ..., O.
nlog(n+l)

THEOREM 4.3. Consider the model (1.1) with white additive noise (i.e., r 0). Assume
that (A1), (A3), and (A5) are satisfied, and that in (1.22), dn O(n) for all e > O. If
the control law defined by (4.30) and (4.31) is applied, then as n ---, ,
(4.34) Z(/i- wi)2 O(ne) a.s., Ve > O,

i=1

Proof Let D and {’r,} be defined by (4.19) and (4.20), respectively. As explained
earlier, (4.34) holds on DI, and so we need only to consider D. In the remainder of the
proof all relationships are established on D with a possible exception set of probability
zero, and we shall omit the phrase "a.s. on D" for simplicity.

By (4.20) we know that on D, "r, < o, for all n _> l,lim_’r, ocz, and

infn Ib (’r + 1) bl[ _> ]bl[- a > 0. Hence, by Lemma 4.1 we know that

(4.35) r-, O(’r,) and sup IIll2 O(d).

Consequently, by (4.6) and (4.33),

i--1

(4.36)
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ADAPTIVE MINIMUM VARIANCE CONTROL 209

Hence Theorem 2.1 (i) is applicable, and we then have

(4.37) [ > o,
cx: Tn i=

where {bi} is defined by (2.4) with p* p.
Let ai(n), bj(n) be the estimates for a, bj, <_ <_ p, < j <_ q, given by 0,. Set

(4.38) O I-a, (n),.-.,-ap(n), b2(n),..., bq(n)].
Then by (4.31) we have

(4.39) u,
b^ (,)

Now, we prove that

(4.40) II 2,,+ o()91(7- t_ 1)
Ve>0.

By (4.36) we know that ir 110112 o(-), which in conjunction with (4.10) and
(4.35) gives

From this by noting that 0 _-r
-,+li Or,+bi + bi (r, + 1)ui, we have for all e > O,

2E(Or,+l//)i)2 _< 2E(Or,+199i)2 q 2b2(r + l)Z ui
i:1 i:1 i:i

Tn
2< O(r) + 4{[b, (r, + 1)] 2 + [/xD (r + 1)] 2 }

i=1

Multiplying 1/[9 (7-n + 1)]2 from both sides of this inequality, and noticing (4.33) and (4.35)
we get

[)l(7.n -1
I- 1)12 "=

(O.rnq_lffdi) 2 0
[bl(Tn -i- 1)] 2

+0 ui w,(-1, log(Tn+l)+7"n).

From this and (4.37) we see that for all suitably large n,

Or+! _< 0
Dl(rn + 1) -n

)(Or. i)2 O(ren 1og(7- + 1)+ 1)Tn[b (7.n ._ 1)]2 +1
i=1

Ve>0.

Hence (4.40) holds.
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Next, we prove that

(4.41) [[tl o([]d) w > 0.

Note that by (4.20), we know that on D,

(4.42) Ib,(k + 1)1 > a > 0, Vk E [7-n + 1,7-n+1- 1], Vn >_ 1.

Hence from (4.39), (4.40), (4.42), and the fact that IIk+l 2 O(logrk), it follows that on

D?
e 2

(4.43) 2u+,- O((log )ll+t 112), E [7- + 1, -,+- 1].

Similar to (4.9) it is easy to see by (A3) that

a yi +O(d)
i=0

Vk>l.

From this and (4.43) we have, for all k [v- + 2, %+],

(4.44) o Iog 1 a-v + o(4 og /.
i=0

Substituting this together with (4.8) into (4.7) and noting that

k [rn + 2, rn+], and all suitably large n,

>0, we get for all

(4.45) 2 A- 2y+, 0 c6(log r) Z Ak-iY + o Yi + O(d log 2r).
i=0 i=0

k /k-i 2Set L i=0 yi. Similar to the proof of (4.15), from (4.45) we have for some
(0, 1),Vk [r + 2,%+], and all large n,

(4.46)

k

Lk+l <_ --’- H (1 + ccti6i log ri)L-,+2
i=r+2

)+ O ,,/k-i H (1 + COZj(j log rj)di log2 ri
i---Tn +2 j=i+

where c > 0 is a constant. Similar to the proof of (4.16) we know that for all small e > 0
and all k > i, with suitably large, I-[=+(1 + ccj6j log rj) <_ r. Substituting this into
(4.46) yields for large n,

(4.47) L+I O(rL+2) + O(rd), Vk E [% + 2,-r,+], Ve > O.

By (4.35), (1.1), and (A3), it is easy to see that

(4.48) LTn+I -}-II@%q-I o(-<), v > o,
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ADAPTIVE MINIMUM VARIANCE CONTROL 211

Consequently by (4.43), + O(7-ed.), for all s > 0. From this, (1.1), and (4.35)
again, we obtain L-,+2 O(7"end-,) for all s > 0. This in conjunction with (4.47) and
(4.48) yields

(4.49) Lk+, O([krk]ed), Vk E [’r,,-n+,], Ya > 0.

From this it is easy to convince oneself that

I1112 O([]d),

holds for all suitably large n. This implies (4.41), since -, c.

By (4.41) and a similar proof as for (4.18) we get r, O([rw]Zd log r,) + o(rn) +
O(n) for all > 0. Hence it follows that r, O(n). Then, by (4.41) and the assumption
that d, O(n) for all > 0, we obtain [l,ll 2 O(r) for all s > 0. Therefore, similar
to the proof of (4.36), we get=(/+ w+)2 O(n) for all s > 0 a.s. on D. This
completes the proof.

Remark 4.3. The advantage of the modification (4.30) over (1.23) as used in [19] is
clear. When (1.23) is used, the cumulated square errors resulting from the modification of
b (n) is of the order O(n/log n), i.e.,

)2Z(Ab -O
log r log r

=1 i=1

Hence in Theorem 2 of Guo and Chen [19], the guaranteed convergence rate for the
averaged regret R, is only of the order O(1/log n), which is clearly much slower than
the rate Rn O(1/n-) a.s. for all > 0, obtained in Theorem 4.3. Of course, it would
be of interest to generalize Theorem 4.3 to the colored noise case and to show that the
left-hand side of (4.34) is of the order O(log n).

5. Concluding remarks. The convergence rate of least-squares-based adaptive algo-
rithm has been observed in practice to be superior to any other type of implementable on-line
recursive algorithms including the extensively studied stochastic gradient algorithm. In this
paper, we have obtained various new results on the standard ELS-based adaptive minimum
variance control for SISO ARMAX systems, and improved on the recent work 19] in many
aspects. In particular, we have obtained the best possible convergence rate O(log n/n) for
the averaged regret of tracking in several situations of interest. This rate is not believed
to be achievable, for example, for the stochastic gradient based adaptive algorithm. For
further study, it is desirable to generalize the result R O(log n/n) to general tracking
problems with arbitrarily bounded reference signal {y }, using (preferably) the control law
(4.1).
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