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STABILITY OF RECURSIVE STOCHASTIC TRACKING ALGORITHMS*
LEI GUoOf

Abstract. First, the paper gives a stability study for the random linear equation 4 = (I — Ap)an. Itis
shown that for a quite general ciass of random matrices {Ayn} of interest, the stability of such a vector equation
can be guaranteed by that of a comesponding scalar linear equation, for which various resuits are given without
requiting stationary or mixing conditions Then, these results are applied to the main topic of the paper, ie. (o the
estimation of time varying parameters in linear stochastic systems, giving a unified stability condition for various
tracking algorithms including the standard Kalman filter. least mean squares. and least squares with forgetting factor
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1. Introduction. Animportantissue in system identification, signal processing, adaptive
control and many other fields is whether the algorithms designed possess some tracking
capabilities when the system parameters (or signals) to be estimated are changing with time.
The basic time-varying model is that of a linear regression:

(1.1) Yk = ©pbr + vy, E>0

where yy, and vy, are the scalar observation and noise, respectively, and ¢y, and 8, are, Tespec-
tively, the d-dimensional stochastic regressor and the unknown time-varying parameter. It is
usually convenient to denote the parameter variation at instant & by Ag:

(12) A28, -0, E>1

It is well known that many problems from different application areas can be cast in the form
(1.1) (see e.g, [1], [2]), and a variety of recursive algorithms have been detived for tracking
the unknown parameters @, - These algorithms are basically of the following form:

(13) bre1 = B + Ly — ©36k)

where L; is the adaptation gain that can be chosen in a number of ways (see eg. [11-[3]).
In the present time-varying case, a common feature of the gain L is that it does not tend to
zero as the time £ goes to infinity. This is very natural from an intuitive point of view. When
the system parameters are time-varying, the algorithm must be persistently alert to follow the
parameter variations Here we illustrate three choices of Lj, that correspond to three standard
algorithms.

Kalman filtering (K¥} algorithm.

Py

14 Ly = — 2t kY%
a4 T Rt olPuon

Prorpi Pr
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R+ o] Brpr ’

(1.5) Py =P —
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where Py > 0,R > 0,Q > 0and 6 are deterministic and can be arbitrarily chosen. Here R
and ( may be regarded as the a priori estimates for the variances of v and A, respectively.
Taking R and @ as constants is just for simplicity of discussion, and generalizations to time-

varying cases are straightforward.
Tt is well known that (see e.g., [4, Chap. 13] and [5, Chap. 3]) if oy, is Fy_.| measurable,

. A . . ) . . .
where Fr, = o{y;,i < k}, and if {Ag,vr} is a Gaussian white noise process, then &
generated by (1.3)~(1.5) is the minimum variance estimate for 8, and Py is the estimation
error covariance,1¢e.,

(16) b = El6x|Fim1], P = El6x671Fi]

provided that Q = EA,AL, R = Evf, 0y = Efp and Py = E[6of5), where gy, is the
estimation error

(L7 Oy = O, — O,
which is of prime interest to us.
Least mean squares (LMS) algorithm.
Pr
(1.8) Ly = por——m>
1+ llew?

where 1 € (0, 1] is called the step size or adaptation rate. Such an algorithm is also referred
to as a gradient algorithm because the increment of the atgorithm (1.3) and (1.8) is opposite
to the (stochastic) gradient of the mean square error

ex(8) = E(ys — 99"
Thus, it is a type of steepest descent algorithm that aims at minimizing e x(8) recursively.
Recursive least squares (RLS) algorithm.

Prr

1.9 k. —
( "7 o+ oL Prgs

1 ProeprPr
110 Py == | P — —CZEEE 7
(L10) Kt a[ o+ @i Pror]’

where Py > 0, and ¢ € (0, 1) is a forgetting factor. This algorithm is derived by minimizing
the following criterion over # € R%:

k
1 . _
(1.11) Ve(®) = 7 Y a7y — 079i)?
=0

(seee.g,[1], pp. 57~58). Note thatin (1.11) old measurements are exponentially discounted,
and so the estimate is expected to be representative for the current properties of the system.

All of the above-mentioned algorithms are well known and widely used in applications
The KF algorithm is attractive due to the fact that it generates the conditional expectation of
the unknown parameter given the past measurements in the ideal case (see (1.6)). The LMS
has been used in many applications, mainly because of its simplicity for implementation. The
advantage of the RLS algerithm over LMS is that it generates more accurate estimates in the
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transient phase (see e.g., [6]). In many cases, the RLS algorithm is optimal in the sense that it
minimizes the criterion (1.11), while for the KF algorithm, it is not known if it is still optimal
in some sense when the Gaussian assumption fails and the covariances of v, and Ay are not
available

There is a vast literature on the analysis of algorithms of type (1.3). In the area of
adaptive signal processing, the LMS algorithm has received a great deal of attention (see e.g.,
[71-{12]). Most of the existing analysis require that the signals {yx, 6%, 0} possess some
sort of stationarity, independence, or mixing properties. The KF algorithm has also attracted
much research attention (e g., [111, [13]-[15]). The first rigorous stability analysis for KF that
allows {x} to be a large class of stochastic regressors seems to be that in [14]. Finally, for
the RLS algorithm, we mention the preliminary works in |6}, [16], [17], among many others

In the related area of stochastic adaptive control, the Kalman filter was used by Meyn
and Caines [31] to design the adaptive control law for a first-order stochastic system. By
applying the Markov chain ergodic theory, they obtained the first concrete adaptive control
result for systems with nontrivial (random) parameter variations. For high-order systems
with randomly varying parameters, stability of an LMS-based adaptive minimum variance
controller was demonstrated in [30]. Similar results were recently established in [32] for a
KF-based model reference adaptive controlier However, the parameter tracking properties of
the estimation algorithms are not studied in these papers.

In this paper, we first present a series of stability results on the vector random linear
equation z,4; = (I — A, )z,, where {A,} is 2 sequence of random matrices of the same
dimension, which may not satisfy the usual stationary or mixing conditions The key ob-
servation is that for a variety of {A,} of interest, the stability study of the vector linear
equation may be reduced to that of a relatively simple scalar equation Then we present a
stability/excitation condition for recursive stochastic tracking algorithms and establish upper
bounds for the tracking error.

The main contributions of the paper are as follows:

(i) The new stability condition is the weakest known and a unified one for the three
standard algorithms mentioned above. This is important since establishing stability is known
1o be a crucial step for any further studies (see e.g., [18]).

(ii) For a large class of random models of interest in applications including time-varying
antoregressive models, we can verify the present condition, whereas conditions introduced
previously (see e.g., [14], [28]) cannot be verified;

(iii) For the commonly used ¢-mixing process, we can prove that our stability condition
is also a necessary one in some sense.

2. Stability of random equation x,,, = (I — A,)z,.

2.1. Preliminaries. To begin, by substituting (1.1) into (1.3) and vsing the notations
{1 2) and (1.7), we get the following error equation:

2.1) Ort1 = (I — Lopl)0k — Lgv + Dip1, k20
Clearly, this equation falls into the following general form of linear equations:
22) i = (L — Ap)zr + &rs, k>0

where {Ag} is a sequence of d x d random matrices, and {£;)} represents the disturbance.
Usually, we are primarily interested in the following problem: does {z} remain bounded in
some sense when {&;} belongs to a certain class of random processes? To rigorously study
this problem, we need to introduce some notations and definitions.
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For any matrix X, its norm is defined as its maximum singular value, ie. IXI =
P (X XT)H,

DEFINITION 2.1. A random matrix (or vector) sequence { Az, k > 0} defined on the basic
probability space (£2, 7, P) is called Ly-stable (p > 0) if sup;~ E|| AP < oo

In the sequel, we will refer to || Ax| ., defined by

@3 IAxllz, = {EllAlP}?

as the L,-norm of A
To motivate further discussions, let us consider the following propositions.
PROPOSITION 2 1. Consider the random equation (22) with 2o = 0 Suppose that
{Ar,k > O} is an independent sequence and det[E(] — AT — Ag)T] # 0. Then for
any {&x} € B, {zy} is Ly-stable if and only if there exist two constants M > Cand X €1]0,1)
such that

k
24 [T -4 <My vkzi  V¥ix0
j=id41 L

where B is a set of random processes defined by
(25} B = {€ = (&) : £ is Ly-stable and independent of { A} }

and where by definition

k se
26) 1 (I—Aj):{gf—Ak)-(I—Am), k>
j=i+i ’ =

The proofis in Appendix A. Obviously, the only nontrivial conclusion in this proposition 1s
that (2.4) is a necessary condition for L»-stability of {z1}. Related results in the deterministic
framework may be found in [19]. We remark that when the independence assumptions are
removed, similar necessity results are also true. This is the content of Proposition 2 2.

PROPOSITION 22 Consider the random equation (22) with zp = 0 Assume that
(I — Ap)~" exists for any k > 0. Denote

@7 B={¢: sup ez, <13}

then the following property also implies (2.4):

28) sup sup ||zxllz, < oo
geBY k

The proof is also given in Appendix A. These two propositions indicate that (2.4} is in
some sense the necessary (and also sufficient) condition for the stability of {x} generated by
(2 2). This prompts us to introduce the following definition

DEFINITION 2 2 A sequence of d x d random matrices A = { A } is called stably exciting
of order p, (p > 1) with parameter A € [0, 1), if it belongs to the following set

k
29) S =34:) [T U-4)| <MNTYEk>4¥i20, forsome M >0
j=i+1 L,
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The investigation of products of random matrices has z long history (see e.g., [20]-[26]
and the references therein), and almost all of the existing results rely on some stationary or
mixing assumptions on the random coefficients. In particular, in [21] and [22] a time-invariant
quadratic Lyapunov function was used to analyze the stability of a random linear differential
equation under stationary and ergodic assumptions on the coefficients, while in [24] and [26)
it was shown that under some mixing conditions, the stability of a random linear differential
equation may be guaranteed by that of a corresponding “averaged” deterministic equation.

However, in general, stationary or mixing conditions cannot be directly imposed on the
random coefficients in the study of tracking algorithms. Our treatment here is based on the
observation that for a guite large class of matrix sequence {Ax} of interest in applications,
the study of its stably exciting property may be reduced to that of a certain class of scalar
sequences. For convenience of discussion, we introduce the following subclass of S; () for
scalar sequence ¢ = (ay, k > 0):

k
SN =Ja:a€[0,1,E ] (1—a;) MM ¥k >4,Vi>0, for some M > 0
j=i+l
210

where A € [0, 1) is a parameter reflecting the stability margin. Note that for A given above,
log A is related to the famniliar concept of Lyapunov exponent (cf. [25]), and its absolute value
is proportional to the exciting extent of {a;}

Clearly, for any constant ¢ € (0,1],{c} € 81 —¢), and if 0 < ay < B < 1 and
{or} € SP(N), then {8} & SO(A).

LEMMA 21 Let o = {og, Fi} and a = {ay, Fi.} be adapted processes, such that
ax € [0,1], Elag [ Frl > ok, E>0.

Then o € S%()) implies that & € S* (V).
Proof. We first assume that 0 < oy < 1. Forany n > m, k € {m,n], set

k —1
Ay = {H(l -az-)} , Amo =1

i=m
T4l = (] - ak+1)l‘k, Tm=1.
Then
n
Torr = [[(1 - ait)
Note that
EAk$k+1 = E.Ak[l - E(ak_,.] ]fk)]:l:k
< EAk(i — Otk).’L'k =FA, 2.
Hence

EAn$n+! S EA 1z, < =< EAm—lmm =1
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Conseqguently,
Tt
E H (1 —air1)=FEr,i < E\/Tny

= B Any 47 < \/B(zns1 A2 EAT' < | EAT!
" 172
< {E TTa- az.)} < VR

i=m

Hence a € S°(VA).
Next, we consider the general case o, € [0,1] By the monotonic convergence theorem,

it is known that

n

im E || (1—ea) < M-
g—1 fai

Hence there exists 0 < * < 1 suchthatforany ¢ € (¢%, 1},

EJ] (0 —eon) <2MxmmH
k=m
Hence by ¢y, € (0, 1) and the fact proved above we have

E ﬁ (1 - caper) € VZM (V"™

k=m

Thus, by noticing that £azy; < Gz, wehavea € SO(\/X)_ This completes the proof. m|
LeEMMA 22. Let {ow, Fi} be an adapted process, o, € [0,1] If for some integer
k> 0, {EloninlFe} € S(A), then {ag} € SY(X2").
Proof. Set oy = Flagrs—1|Fr] Then since

Elax+1|Fx] = E{Elak+n| Fr+1]| Fx} = E{cx+nl Fr
we know by Lemma 2.1 that ez, € §°(+v/\) or
{Elakrnt|Fel} € SUVA)

Continving this procedure h times, we finally get {a} € SO(/\z_h ). m]

LEMMA 23 Let {fogt € S%N), and ar. < a* < 1, where a* is a constant. Then for any
0<e<1,{cag} e SO

Proof We will need the following inequality ([14, p. 145])

(—a)
t
¥

2.11) f—z<(1-tx) t>1, O<tz<ac<l,

which can be proven by using standard differentiation methods.
Let M and ) € (0, 1) be such that

E J] (1-a)<mam™
k=m+1
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Then using the inequality {2.11) we have by taking =z = ea, t = 1/e,

E ﬁ (l—czay) S F [ ﬁ (1 _ak)(I—a')E:|

k=m-+1 k=m-+!

n (1—a™)
< {E H (1 C!k)} < M(l—a'}E[A(i—a*)E}n—m’
k=m+1

which implies the desired result O

We now give some examples to illustrate the class S°(A).

Example 2.1 Nonzero strictly stationary processes do not necessarily belong to S%(A)
Considet the process o, = a, with o being uniformly distributed on [0, 1]. Obviously, {az }
is a stationary process. For any n > 0, we have

1
n+1

n ) 1
EH(I-—ak)=E(1—a)n=/ (1—2z)"dz =
k=1 /0

This implies that {ax} ¢ S°(\) for any A € [0,1), since the convergence rate of
E T, (1 — ) is not exponentially fast.

Example 22 Let {ay, Fi} be any adapted process, oy, € [0,1]. I there exists some
constanta > Oand anintegerh > 0, such that Eay. 4| Fi] > o, then{ay} € 8%((1—-a)? ™).

This fact can be easily proved by using Lemma 2 2. Example 2 2 contains many standard
signals, for example, ¢-mixing processes. To be precise, let £ be a ¢-mixing process, ie.,
there exists a sequence ¢(n) —— 0, such that

n—0o0

sup  {P(A|B) - P(A)| < ¢(s}, Vi,s,
AEF® BEF}
where F7 2 o{&(u),t < u < s}. Then for any F*-measurable f;, with |f;| < 1, the
following inequality holds (cf. [10], p. 82)

(212) |Elfean|F§l — Efianl < 26(h), Vi, h.

Hence if we take f; = f{£(t)) and assume that E f, > « > 0, for all £, where f{ ) € [0,1] is
a measurabie function, then there exists an integer h > 0, such that E[f,.,| 73] = a/2 > 0,
for all £. This verifies the conditions of Example 2.2 for ¢-mixing processes

2.2, Ay nonnegative definite. We are now in a position to study the more general class
Sp(A) defined by (2.9) We first study the stably exciting properties of nonnegative matrices
Ar, k > 1, and see how the verification of { A} € S,(A) can be transferred to that of a certain
scalar sequence in SY(A).

THEOREM 2.1. Let { A;, F;} be an adapted sequence of random matrices, 0 < A; < I,
If there exists an integer h > 0, such that { i} € SY(A), where X, is defined by

1 (k+1)h

Jay .

M2 Amin S E | == Y AilF
1+hi=kh+l

then { A} € $2(A%), with a = 1/[8R(1 + R)?].
Proof. Recursively define

(2.13) On+1,m)=(I~A,)0n,m), ®mm)=I1, n>m>0
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Then it can be shown that (see Appendix B) for any m > 1,

A { E[®7 ((m + Dk + 1,mh + D®((m + D + 1,mh + 1) Fral}
(2.14) Am,

1 - 2™

- (1+h)
Now, for any n > m + h, let us define
kg = min{k :m < kh+ 1< n}, ki =max{k:m < kh+1<n}

Then it is clear that

(2.15) E|@(n,m)|? < El®(kih+ 1, koh + 1)}
and
(2.16) (k1 + Dh+1>mn, (ko — Dh+1<m.

Hence for {4;} € S2(A%), it suffices to find a constant ¢ which is free of k; and kg such that,
for all k; 2 k‘o,

2.17) Eli®{ki1h + 1, koh + 1)||? < cxlehEi-kotl),
To prove this, we consider the following equation:
(2.18) zr = ®(kh+ 1, (k— 1)h+ Dag_y, kzky+1

where 7y, 18 deterministic and ||zg,|| = 1. It is easily seen that z € Fp. and zz, =
@{k1h+1, koh+ 1)z, Therefore, for (2.17), we need only to prove that for any deterministic
T, With fizg, | = 1,

(2.19) Ellzx, |I? < cA2erti—i)

where ¢ is independent of kg, k) and z,.
Letussetforany k > &y + 1,

|l@(kh+1,(k - Dh+ Dagall .
1- y i lzk—1 || # 0
(220 ap = et if lzz—1 ]| #

i otherwise.

T

Since 0 < A; < 1,4 > 0, implies ||®(n,m)|| £ L, foralln > m, m > 0, it is clear that
ar € [0, 1], o € Fir, and by (2 18) and (2 .20),

lleel < (1 — ar)llze—il

and

k|
(221 Izl TT (1—-o)

k=ky+1

We now show that

A
(222) Elogti|Frn) = 2(Tj:"h—)
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Set Q = {w : |jzx|| = 0}. Then € Fip, and by (2.20)
lo, Elaesa| Firn] = Ello, k41| Fien] = Ia, .

Hence by noting A; < I we see that (2.22) is true on the set ..
To prove that (2.21) is also true or the set 05, we first note that by (2.14), we have

E[|®((k + Dh+ 1,kh + Dagll| Fial
< AE[®((k + DR+ 1, kb + Dyl Frr]}
< {zLE[@"((k+ DR+ 1,kh + D)®((k + 1)k + 1, kh + 1)) Fonlzx }/?

<fer(i-22) a,-k}”z < (1- 5525 ) sl

Consequently, by (2.20) we have

Ak

Ige Eloi 1] Frn] = Inc (1 - (1 - —))
(2.23) " N . 2(1+h)

= A0+ h)

Hence (2 22) is also true on €25
Since {Ae} € S%X) and Ay £ A/(1 + h), then by Lemma 23 we know that

{A:/[2(1 ++ R)]} € S°(X**). From this, (2 22) and Lemma 2 1 (together with its proof), we
know that

ky
H (1 _ ak) < CAZhOA(kI—kO)’
k=ky+1

for some constant ¢ independent of ky, ko, and 2, Consequently, by (2.21) we see that (2.19)
is true. Hence the proof of Theorem 2 1 is complete. .}

COROLLARY 2.1. Under the same conditions and notations as in Theorem 2.1, the fol-
lowing property holds:

Sp(A%), 1<p<2
(224) {Ak} S { SF(AZQ/;’)’ P> 2

Proof. For 1 < p < 2, we use the monotonicity of the norm }f - ||, while for p > 2 we
apply the simple inequality || — A;|| < 1, and then detive

ﬁ (I—A;) < “ H;'c=i+l(I“Aj) ”Lz’ 1<p<2;
j=itl ’ Ly - H H;c=i+1 I- A.’r) ”i/z'P’ P> 2.

Consequently (2.24) follows from this and Theorem 2.1 C
THEOREM 2 2. Let {A;, F;} be an adapted sequence of random matrices, 0 < A; < I
IF{A:;} € S1(A) for some X € [0, 1), then there exists an integer h > O such that

(m+1)h
infAmnq Y. EA;p>0

i=mh+1
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Proof By the assumption we know that there exists a suitably large integer ~ > 0 such
that

{(m+1)h 1
(2.25) E .H (I —A) gM).h<§, vm.
i=mh-+1
{m+Dh

Let pr, be the smallest eigenvalue of the mattix E[y ;727" A;], and 2., be its corresponding
unit eigenvector. Then we have

{(m+1)h

pm=F Z z AiTm

i=mh4+i

Hence for any integers i; € [mh 4+ 1,(m + 1)h|, 7 =1,.. & k< h,

BT Ay Ayt < Bzl APNA A, - APIAY 2l
< Ellel, AP 1A 2] < {Elen A1 EuA‘/"’xmn 32
'_"{E(-T"mAﬂ-rm) (x7, Aucxm)}vz max (E;Aixm)spm

mh4-1<i<(m+1)h

Consequently, by (2.25) we have

1 (m+1)kR {m+1h
3> Bl I -4 zEz;_ Il ¢-4)en
i=mh+1 i=mh-+1

h

=1— Z Z E(xT Ay - Ay Tm)

k=1 mh+1<i < <ix<{m+i)h

h k A
>1- Z szl_Z(k)Pm:

k=1 mh+1<i < <ig2{m+ijh k=1

which implies that
1
R (kY
2Ek=l (k)

Pm =

Hence Theorem 2.2 is true. -

We remark that the converse assertion of Theorem 2 2 is not true in general. This fact can
be seen from Example 2.1. However, it will be true if we impose additional assumptions on
{ A}, for example, the ¢-mixing properties. The following theorem provides necessary and
sufficient conditions for such a matrix process to be in Sy (A).

THEOREM 2.3. If { Ak, k = O} is a ¢-mixing matrix sequence with dimension d x d, and
0 < Ay < I, then the following three properties are equivalent:

(i) {Ax} € S1()) for some A € [0,1);
(ii) There is an integer hy > 0 such that

N {m+1)ha
6 = inf Amin Z EA; b >0

i=mhg+1
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(iii) There exist some h > 0, A € (0, 1), such that {\i} € 8%(X) where Ay, is defined as
in Theorem 2.1 with F, 2 o{A; i <k}
Proof. By Theorems 2.1 and 2 2 we need only to prove that (i) implies (iii).
Let the mixing rate of {Ay, k > 0} be ¢(k) Then applying the inequality (2 12), we are
easily convinced of the following property:

(226) [E[Atri) Fe] — EArr )] < 2dé(k), Yt k.
Since ¢(n) —— 0, we can find a constant (integer) M such that
(2.27) o(k) < s Yk> M

: = 42hy + I)d’ =7

where 4 is defined in (i1).
Seth = M +2hg+ 1 Then by (ii) and the assumption 4; > 0, it is easy to convince
oneself that

{(m+1)h
(228) Amin{ Y. EAg 26 Ym0
k=mh+1+M

Finally, combining (2 26)—(2.28) we conclude that for any m > 0,

{(m+1)}k
(1+RAm =Amn ¢ B | Y Al Fmn

k=mh+1

(m+1)h
2dmnd Ef D Al Fn
k

=mh+1+M

(m+1)h {m+1)k (m+1)h
Z)\min E Z Ak: - IE Z Ak[-?.m,h, - E Z Ak

k=mh+1+M k=mh+1+M k=mh+ 147
245 5 6
S (h=M) =28 _s_S_°%_,
2= =M =272

Hence for the £ defined above, we have proved that {A;} € S°{1 — 6/[2(1 + h)]}, ie, (iii)
holds. This completes the proof O

2.3. Ay nonsymmetric. We now turn to the case where Ay, is possibly nonsymmetrical
and see how to transfer the study of {A;} € S,(A) to that of a scalar random sequence in
S°(A)

Before pursuing this further, it is worth mentioning that in the continuous-time case, if
{A(t)} is a stationary ergodic matrix process and satisfies

EXnax{A(0)" + PA(O)P™'} < 0

for some positive definite matrix P, then the results of [21] and [22] state that the random
differential equation #(t) = A{t)x(¢) is almost surely asymptotically stable. This result may
be generalized to the discrete-time case However, this kind of results have the following
limitations: (i) ergodicity is required; (ii} exponential stability can not be guaranteed, and (iii)
applications to stochastic tracking algorithms are difficult
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Here, we will present a result that does not have the above-mentioned limitations. For
this, we introduce the following recursive random Lyapunov equation:

(229 Popr=(I = APl — Ag)" +Qx,  Fo>0, k20,

where {Qy} is a sequence of nonnegative random matrices.

THEOREM 2.4. Let { A1} be a sequence of dx d random matrices, and {Q} be a sequence
of positive definite random matrices. Then for { Py} recursively defined by (229} we have,
foralln > m,

2

n—1

I -40

k=m

-l 1
30 < l—- —or—— il Pl
(230) <11 ( TR [2all - 1P

k=m

Hence if { Py} satisfies the following two conditions,

(1) {—m—-L } e 8%N\), forsomei€[0,1);

1+ Q% ' Petall
(it) sup HUPN 1B Dz, < oo, forsomep 2 1,

then {Ax} € Sp(AV?P).
Proof Let us consider the following equation for n > m,

Tt = (I — Ag) Tk, k€ [m,n—1]

where ., is taken to be deterministic and [z, | = 1. Then
n—1
(231 Zn = [T - A
i=m

Next we consider the following Lyapunov function Vj = Py 12,. Then by denoting
By = I — Ay, we have

(2.32) Vit1 = Th 1 Py Tkt = 2L BL P} Bizi.
But, by (2.29) and the matrix inversion formula (see e g , (27, p. 824]) we have

B P} By, = BL[BcP:B] + Qx| ™' Bk
= P!~ [Pe + PuBLQ; ' BeFi] ™
= B - U+ BBy BeP YR

1

1
<{1-{t+ ||Q_;BkPkBT”]_l}P“‘1 <t ———— | P!
* * ¥ I+ [|Qy 'Ppsal) k

which in conjunction with (2.32) yields

]
Vig1 €| 1= ——————— | V&
" ( 1+ Q5 ‘Pk+1n)
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and so

n—1
1
V. < | - | Vin.
H( 1+||lePk+1”) "

k=m
Hence by this, (2.31) and the dependence of V; on z,,, we have

2

= max lool? = max Jlop BrVRY2

< max IlwiP;’/zlizflPTi/zlE2=Hmfﬁil(VnIIPnfl)

n-—1

[Ta-ay

k=m

fm |j=1
T~ I
* {kg; (I e “Q;lpk-i-lu) } {” Bl i rﬂ?—(— Y }
n—1 1 .
= {kgn (1 - mm) } {iPail - 1P i}

Hence (2 30) holds. The second assertion {4z} € S,(A1/?7) follows directly from (2 30) and
the Hélder inequality.

This theorem does not require that A’s are nonnegative definite matrices and means that
the verification of {A4;} € Sp(A!/??) can be reduced to two relatively simple tasks: (i) to
verify that a certain scalar sequence is in SO(\), and (ii) to prove that a certain process is
“Ly,-stable ” We remark that suitably choosing the sequence {Qx} is crucial in simplifying
the tasks (i) and (#). In §4, we will see that for the analysis of KF or RLS algorithms, the
sequence { P, } may simply be taken as that defined by (1.5) or (1.10). O

3. Stability/excitation condition. For the basic time-varying model (1.1), we will need
the following excitation condition for estimating {6 }.

CONDITION 3.1 (Excitation condition). The regressor {py, Fi} is an adapted sequence
of random vectors (i.e., py is Fy-measurable, for all k, where {F%} is a sequence of non-
decreasing cr-algebras) and there exists an integer h > 0 such that {\,} € S° (A} for some
A € (0, 1), where )y, is defined by

{k+1)h

A
3.1 A zAmin
G- k , 1+h > 1+!
i=kh+1

Frn

In the next section, we will show that this condition guarantees the L o-Stability of all
three standard algorithms described in §1 The main purpose of this section is to illustrate this
condition by several propositions and examples of interest in application.

PROPOSITION 3.1. Let {ir} be a ¢-mixing process; then the necessary and sufficient
condition for Condition 3.1 to be satisfied is that there exists an integer h > O such that

(k+1)h o
G2 {56 Ao 2*§+1E[1+nw dIE

This fact directly follows from the equivalence of the assertions (ii) and (iii) in Theorem
2 3, since {7 /(1+||¢:[*)} is also a ¢-mixing process. The ¢-mixing process is commonly
used in the literature (e.g , [8], [9], [17], [18]). It includes a large class of i Important processes,
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for instance, deterministic processes, M-dependent processes and processes generated from
bounded white noise filtered through a stable finite-dimensional linear filter, However, as is
well known, ¢-mixing is not perfect as a model in many applications, so next we show that
Condition 3.1 is still satisfied by another important class of regressors that does not verify the
¢-mixing condition.

In the sequel, for convenience of discussion we set G = Fip where b is defined in
Condition 3.1. Note that )y, is Gy-measurable forany k > 1.

PROFOSITION 3 2. Iffor some b > 0, { i} defined by (3 1) has the following fime-varying
lower bound:

i
A 2 —, Vkz 1,
ag

where {ay, Gy} is an adapted sequence, ax > 1, Eag < o0, and
(3.3) Elox|Gr-1] € cax—1 + 0, 0<a<l,0< 8 <00 vk>1.

Then { A} € S°()) for some A € (0, 1), i.e., Condition 3.1 holds.

Proof By Lemma 4 in [14], we know that there exists a constant A € {0, 1) such that
{1/ax} € S°()\). Hence Condition 3.1 follows immediately. U

Remark 3 1. Intuitively speaking, in order to guarantee {Ax} € 8%()), the lower bound
{1/a} should not “diminish” or equivalently, {a} should not “grow unboundedly” Condi-
tion (3.3) effectively is a growth constraint on the random process {ax}. Hin (3.3) we take
a = 0 and a = 3, then we get the excitation condition used in [14] Moreover, if we assume
that {ay} satisfies ax € Gy, ar = 1and

3.4  ap Lok + 7% ael0,1), Bl |Ge1] € M, VE21

for some constants § > 0, and M < oo, then we get the excitation condition proposed in
[28], which obviously satisfies (3.3). Therefore, the condition of Proposition 3.2 (and hence
Condition 3.1) is weaker than those proposed in [14] and [28]. Consequently, all examples
presented in [14] and [28] satisfy the condition of Proposition 3.2. In particular, we have
Example 3.1

Example 3.1. Let the regressor {¢r } be generated by the following state space model:

zp = Azp_1 + Bé, E|E$oi|4 < oo
wr = Cag + (ks k=0,

where A € R™*" B € R"*9and € € R**" are deterministic matrices, Aisstable, {4, B, C)
is output controllable and {£x, (&} is an independent process with zero mean, and

B&& >el >0,  E[l&l* +1Gi1 s M, YE20,

where ¢ and M are constants. Then the condition of Proposition 3.2 is satisfied.

The proof of this example is essentially the same as that for Example 2 in [28], but here
the moment condition imposed on the driving signal {£x, (¢} is weaker. It is also worth noting
that to verify the condition in [14] we have to assume that {&, {x} is uniformly bounded in
the sample path (see (14, p. 142})

We now turn to the main task of this section, i.e., to study the case where {¢y | is generated
by a time-varying AR(p) model. This model not only is a natural extension of the standard
time-invariant AR(p) models extensively studied in a variety of areas, but also is closely
related to the closed-loop systems resulting from adaptive control (cf. [30]) We remark



STOCHASTIC TRACKING ALGORITHMS 1209

that in this case, the existing excitation conditions (e g , in [14] and [28]) do not seem to be
satisfied. The basic reason is that the “contraction” factor « in (3.4) is a random process rather

than a constant.
Let the time-varying AR(p) model be described by

v = a1(B)yp—1+ -+ ap(k)ykp -+ Uk

35
G Aoty k30

where &; and ), are p-dimensional vectors defined in a standard way, and where {'uk} is an
independent sequence that is independent of g and satisfies

(3 6) Eu, =0, Evl > o2 >0, sup Elvg)® < oo
k

Obviously, the regressor satisfies the following state space equation:

(€v)] Pr+1 = Apor + bug

where
ai(k) . ap(k)
1 . S 0

(3.8) Ap=| | , . b=[1,0-.0"
0 | 0

Example 3.2. Consider the AR(p) model (3 5)—(3.6). Let {A,} defined by (3.8) be an
independent sequence that is independent of {wvy }. If

(E+1)p-1
(3.9) sup {| Axl|z, < oo, IT 4 <6 vEk=o,
k i=kp
Ly

where ¢ = max{4,2(p — 1}} and § € (0, 1), then the condition of Proposition 3 2 is satisfied.

The proof is given in Appendix C

When the coefficient sequence { A } is (strongly) dependent, the analysis becomes more
complicated. We now consider a standard situation.

PROPOSITION 3 3. Consider the AR(p) model (3.5)-(3 6). Let {Ag, 7} be an adapted
sequence that can be decomposed as

(310) A=A+ A
where A is a stable matrix and {fik, F} is dominated by a nonnegative linear process:

(311) ”Ak“ S ﬁk? 6k =ﬁﬁk—f +ek7 0 S 45 < I:

where e; > 0, ex € F; and ery is independent of 7. Assume that F/_ 2 of{U; Fi} is
independent of {vk} and that for some constants € > Oand b > 0

(3.12) log{Elexp(ber)]} < ¢, vk >0

Then Condition 3 1 is satisfied provided that £ and b are suitably small and large respectively.
The proof of this proposition is given in Appendix C.
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Example 3.3. Let the parameter 6y, in (3.5) be the superposition of a “pominal” parameter
9 and a “fluctuation” By, ie, 0 = 6 + 6. Moreove, let the time-invariant AR(p) model
obtained by replacing 65 by € in (3.5) be stable  If either |8k} is small or §j is generated by
a stable ARMA model:

9_;; -+ F]gk__1 +- -+ Fqék_q =wr +Girwe_1+ -+ Gowg—r

where {wy} is a Gaussian white noise sequence which is independent of {vg } with small
variance Then conditions (3.10)—(3.12) of Proposition 3.3 hold.

The proof of this example is straightforward and the details are omitted.

Remark 32, Conditions in Example 3 2, Proposition 3.3, and Example 3.3 are stronger
than necessary as can be easily seen from the proof; they are used for simplicity of discussion.
Certainly, various generalizations are possible, for example, a more general state space model
(37) may be considered without requiring that Ay and b have the canonical form (3.8);
in Example 3.2, the independence assumption of {Ax} can be replaced by some weakly
dependent conditions; and in Example 3.3, the Gaussian assumption on {wy } can be weakened
by assuming that the distribution of {wy} has exponentially decaying tail (a condition similar
to (3.12)).

The following result plays an essential role in the proof of Proposition 3 3 and will also
be used in the next section.

LEMMA 3 1. Let {zx, Fi} be an adapted process, T > 1, and

(3.13) Trtt < Q1T + Skt k>0, Ezj < 0

where {ay, Fi} and {&x, Fi} are adapted nonnegative processes with properties:

H E[a?c-i—l | i

k=m

(3.14) op >0 >0, Yk, < MAT™ Yn>m, Ym

Ly

and

(3 15) ElE2 |Fl S N<oo, Yk
where go, M, N, and v € (0, 1) are constants. Then

k3

I] o

k=m

< My —m) Yn>m, Vm;
Ly
(ii) sup Eflzsi] < o0;
2

(i)

(i) {1/zx} € S%)) forsome A€ (0,1).

-1
Proof. Denote 8 = Eloj_ | Fi), and set zx41 = (Him ﬁi) T, ot Thenwe
have zpy) = zkﬁk’la‘}cﬂ, and so
Ezk+1 = E{E[zk,;_lifk]} = Ezk = = E2m+; - I, Yk 2 .

Consequently, for all n > m,

B1] ok = By

i=m

I15

= v Ezn+l




STOCHASTIC TRACKING ALGORITHMS 1211

so (i) holds, while (ii) follows immediately from (i), (3.15), and (3.13). We now proceed to

prove the last assertion (iii).
We first consider the case where N defined by (3.15) is less than one. In this case, by

(3 15) we have Eléx 1|7 < 1.
For any n > m, set for k € [m, n]

1
(316) Yr = (I - —) Yke1, Ym—1 = L.
Tk

Then yi € Fi. and by (3.13) we have
ZTeYr = (T — Dyr—1 < (Tiy + & — Dyr_;

so with v & E{c.+1|F] by noticing that E[£x] Fi._,] < 1 we get

(317 Elzeye Feo1] € vem1(Ti~19x-1), k>m.
-1
Denote z;, = (Hfz_r}z—l 'yz-) ZrYk, k = m — 1. Then by (3.17) we have for k > m,
k-2 -1
Elzg|Fey] < ( H ’Yi) Tk 1Ykl = Zk—1
i=m—1

Consequently,
(3.18) Ez < Ezp 1 <-- <Ezp. = FEz,_,.

Hence by (ii) we have for some constant My < co, SUP, >0 SUPys.,, E2p < My, Thus by the
Schwarz inequality and (3.14) we have

EH (]—‘i)=Eyn_<_E\/$nyn=E zn.H ﬁi

k=m

n—1i
E H ,BiS\/MEMI/S’YI/S(n_m-’_l)

i=m—1

where for the last inequality (3.14) has been used. Hence (iii) holds
Next, we consider the general case where IV in (3.15) is an arbitrary constant. By (3.15)
we may take a constant ¢ large enough such that

. ¢
E[§k+;I(fk+1 > C)i}rk} < 1, and ¢ é (1 +E()) T+e¢ > 1.
Then we have by (3.13),
(3.19) Lh+1 € Qp1Ze + ¢+ Eep1 L (&1 > €), k>0

Without loss of generality, we may assume that the equality in (3.19) holds for all . Hence
by setting T, = 2 /{1 + ¢) we get

(3.20) Brp1 = Qpat &g + Yo
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whete fpy1 = [€ + Eer1d (Ex1 > €)]/(1 + ). Itis clear that Eni+1Fx] € 1. Then by the
fact we have just proved we know that {1/Z} € S°(y!/%), where v is given in (3.14).
Note that by (3.14) and (3 20)

¢ ¢ ¢
T > > 1 1 k>1
$k+1—ak+l<l+c)+1+c_l+c( +&0) > 1, =

Hence applying Lemma 2 3 with ¢ = 1/(1 + ¢) we know that {1/z} € S°(}), for some
A € (0, 1). This completes the proof of Lemma 3.1. il

‘We remark that the condition zz > 1 in Lemma 3.1 is by no means a resirictive condition
in applications since if x > O satisfies (3.13), then the shifted process x, 2 i + 1 satisfies

both 2, > 1 and 7}, | < akn12) + &y Where &y = Er + 1
COROLLARY 3.1. Ler {2} satisfy conditions in Lemma3.1. If {yn, Fr} is a nonnegative
adapted process and satisfies:

(3.21) Ye+1 < BYr + Tk, 0<8<], vk

where E[nﬁqi.ﬂ_.l] < M, < oo, M| is a positive constant and q > log €0/ log 8 is a positive
integer and £q is defined in (3.14), then {1/(zx + yx)} € SN for some X € (0,1},

Proof. Take ¢ so small such that (1 + £)37 < &, and define Ty, = (1/@)yi + (1/s),
where s = {1 — 1/q)~!. Note that for any £ > 0 and ¢ > 0 there is a constant A > 0
depending on ¢ and g such that

(3.22) (z+ )9 < (1 +e)z?+ MyT, Ya >0, Yy=0

Then we have

1 1
Ti < =[Bye—1 +m]? + 5

—

< {0t + Byt + M)+

£

1 1 M 1 M |
< ~yi S+l - < Ty + —mf + =
-Eﬂl:qyk_;+s:| an'i's_ odg—1 + an_"s

Hence

M 1
zr +Th < cpzr—1 + &k +e0Tp-1 + -q—n;i + o

M I
< ap(Zr-1 + Thot) + &+ ?ni +-
Applying Lemma 3.1 we know that {1/(z¢ + Tx)} € S9(\), for some A € (0,1} Finally
note that 9, < Tg; we conclude that {1/(zx +yx)} € S°()). O

4, Tracking error bounds. In this section we establish tracking etror bounds for the
standard algorithms introduced in §1. We first present a lemma.
LEMMA 4.1 Let {cnx,n = k = 0}, {dnk,n 2 k 2 0}, and {&,k > O} be three
nonnegative random processes satisfying:
() eni € [0, 1], Ecar < MA™F foralln >k > 0, for some M > 0and A € [0,1);
(ii) There exist some constants € > 0and o > 0 such that

sup E[exp(sd:l/,f)] < oc;
n2 k>0
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(iii) op 2 supy, ||&x log?(e + &elllz, < oo, for somep > 1,8> 0.
Then

@10 Z lenkdnréillz, < copfloy '), Vn >0,
fo=0

where c is a constant independent of o, and
log! {8/ (¢ 4 o t), ifB>2max(1,a);

42 flo7') =< logf(e+ a, ), if {enr } is deterministic and 3 = o;
log(e +o,1), if {dni} is deterministic and 3 > 1

The proof is given in Appendix D.
We now proceed to analyze the Kalman filter algorithm. To apply Theorem 2 4 we need

to prove some boundedness properties of { Py } first
LEMMA 42 For {Py} generated by (1.5), if Condition 3.1 holds, then there exists a

constant £* > O such that for any € € [0,¢*),

sup Eexp(e|| Prl]) < co.
k>0

Proof. Denote

mh

4.3) Tm= >, tr{Pe), Ty=0

k={m—1)h+1

ThenT,, € G, 2 mh. and similar to Lemma 3 in [28] we have

(44) Tm+l S {l - am+l)Tm + b
where
{(m+1)k @ QDT
tr | (Pmat1 + hQY Z A 3
ki LT ]

b=§Mh+UWQ

Amt] = s
T R(ER S D1 + Aqax(Prat1 + PQ)Jtr (P + hQ)
Similar to (39) and (40) in [28] we have a,,41 € [0,1/(1 + R)] and

(1 + )| Am
(am1lGm] 2 TRV + AN

where A, is defined by (3.1). By using Condition 3.1 and applying Lemmas 2.1 and 2.3,
it is easy to see that {az4+1} € S°(A) for some A € [0,1). Hence, the rest of the proof is
completely the same as that for Lemma 4 in [28], because the key property (43} in [28] is still
true. o

LEMMA 4 3. Let { Py, } be generated by (1.5). Then under Condition 3.1, forany y € (0, 1]
there is a constant A € (0, 1) such that {p/(1 + [|Q | - | Pl } € S%(N).

Proof Denote x; = p~'(h + ||Q7'||T}), where T}, is defined by (4.3). Then it follows
from (4.4) that

(4.6 Trpt < (1 — ap)ax +p~ (R + AlR~h.
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Itis easy to see from (4 .5), Condition 3 1, and Lemma 2.3 that Lemima 3 1 1s applicable to (4 6);
hence, we have {1/z} € S%(v), for some v € (0,1). Note that z = Zfi(k_l)hH pt
[14 [Q Mt (Psy1)]: hence, it is easy to conclude that {u/[1 + ||Q ™ |itr(P:)]} € S°(X) for
some A € (0, 1) (see the proof of Lerama 5 in [14]), which ensures the desired result. 0

THEQREM 4.1, Consider the time-varying model (1.1) and the Kalman filter algorithm
(1 3)=(1.3). Suppose that Condition 3.1 is satisfied and that for some p > Y and 3 > 2,

@7 op 2 sup e log®(e + &)L, < oo
and
48 18ol| 2, < o0

where & = lug| + | Apsill, 00 = 6 — 6o, and vk and Ny are given by (1.1) and (12),
respectively Then the tracking error {f), — 6y, k > 0} is Ly-stable and

(4 9y lim sup ||8y — §k||1.p < clop logl"'ﬁ/z(e + crzji)],

k—oo

where ¢ is « finite constant depending on {¢}, R, Q and p only; its precise value may be
found from the proof.
Proof By (1 4) we may rewrite (1 3) as

Peyi = (I = L) Pe(I — Liwy)” + Qs

where Qr = RL. L] + Q. Ttis easy to see that QJr > @ and Py > Q. Hence by applying
Theorem 2 4 we have forall n > m,

2 1/2 (/2
S (e N

k=m

(4.10) H (I - Lie})

k=m

Note also that || L] < I|Pk||1/2/{2\/}_2), so by (2.1) we get

18e+1,, +HIRY

{4 11)

07 )0

| HIL:@-H (l 3T IiQ“] ) L (o )

Note that by the Schwarz inequality and Lemma 4.2,

Sup Eexple| Powi 21 P)7?) < sup[Eexp(EHPkH IN1'2[B explel| BIDIT? < oo,
So by noting Lemimna 4.3 and applying Lemma 4.1 to the second term on the right-hand side
of (4.11), we get the desired result O

Next, we consider the EMS algorithm.

THEOREM 4.2. Consider the time-varying model (1.1) and the LMS algorithm (1 3) and
(1.8). Suppose that Condition 3.1 holds and that forsomep > land 5 > 1,(4.7) and (4.8)
hold. Then {6y — Ok, k = 0} is L,-stable, and

412) limsup |0 — Gllz, < cloplogle+ ;)]

k—o0
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where oy, is defined by (4 1) and ¢ is a constant.

Proof. Letcy; = ” Hfm L1 (I - F‘Tﬁg‘ﬁf) || Then by Condition 3.1, Lemma 2.3, and
Theorem 2 1 we know that {cg; } satisfies conditions in Lemma 4.1. Note that || Lx|| < g, so
by (2.1) we have

_ ) k
10k+1llz, < lek—1bollz, + > llewi&llz,
i=0
and the desired result (4.12) follows by applying Lemma 4.1. O

Remark4.1. Combining Propositions 2.1 and 2.2 with Theorem 2.3, we see that Condition
3.1 is also a necessary one for the stability of the LMS algorithm in some sense.

Finally, we study the recursive least squares algorithm.

LEMMA 44. Let {P,} be generated by (1.10) with forgetting factor o € (0,1} If
Condition 3.1 holds, then for any p > 1

sup E|| P|” < oo,
E>0

provided that « satisfies A19P4CR=1UPI"" < o < 1, where A and h are given by Condition 3.1,

and d is the dimension of {¢r}-
Proof. The proof ideas are similar to those for Lemmas ! and 2 in [14] for the Kalman

filter algorithm. For any m > 0 by (1.10) we have

h—1
1 1
PkSaPk—lﬁ""S (E) P+t Eelmh+1,(m+1)h]

Then by the matrix inverse formula from (1 10} again we have for k£ € [mh + 1, (m + 1}A],
Pryi =[P + or0f] ! < [ae® Bl + orh]

FS
! P, P
(4.13) = (_> [thH _ hh+l‘:5"rk‘9k h+1:|
& " + @f Pmpt 19k

< (l)h [P ot — Popt1018s Pt }
=N/ U™ [ob + dad( P+ ox

Denote
Or CrPr
tr | P2 — Tk
mh it k=§+l 1+ ffee]?
4.1 T, = tr{Pryr)s a = .
k:(m§)h+l P ™ ToP + Anax(Prn1 1027 (Prang1)

Then summing up both sides of (4.13) we get
(4.15) Trs1 S @ "1 = ami1]htr(Prpst)
But by the inequality Pr; < o' P it follows that

mh
htr {(Prpgr) = Z tr{Pmht1)
k=(m—1)h+i
mh
< Z "™y (Pryy) = o T
k=(m—1)A+]
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Hence by (4.15)

l-zh[

(4.16) Ts1 S @ 1- am-&-]ITm-

For any p = 1, denote

B = alI=20P [1 _ “_”;_M} It (Pmng1) 2 1)

Then by (4.15) and (4.16),

(4.17) Tfi-{»—] = T?f’a+l {I(tT‘(th+l) = 1) + I(tT‘(th-i-l < 1))]
‘ < b1 Th, + (ha™ )P,
By the definition of a4 in (4 14) and the fact that ir(PZ) > ™' (tr.P:)%,

(h+ DAntr (Plys)
h(l + tT(th+1))tT(th+])

Elam1|Fma] 2

h+ DA,
z (Wc%“_? on {tT(th-o-i) = 1}‘
Hence by the definition of b, 1,
h+ 1 An

(4.18) El[brmst| Frmn] < all=20P (1 — (—%) Itr{Prn+1) 2 1)
Denote

bmals ift7(Prnss) 2 1;
4 1% Q] = (1—20yp { 1 _ (14 Ay .

o 1 ahd )’ otherwise
Then we have by (4.17)
(4 20) TP ) < tm1 T8 + (ha ™).

By Condition 3.1, A, € S%()\) for some A € (0,1). Since A, < 2/(1 + k), by Lemma
2.3 we know that {[(1 + h)/(4hd)]Am} € S°(A#F9 7). Hence by (4.18) and (4.19) and the
assumption that A16A(22=DPI™" < o it is easy to see that Lemma 3 1 is applicable to (4 20)
and thus we get sup,, ET? < oc. So Lemma 4 4 holds. 0
THEOREM 4.3. Consider the time-varying model (1.1) together with the forgetting factor

algorithm (1.3), (1.9}, and (1.10). Suppose that the following conditions are satisfied:

(i) Conditions 3.1 holds,i.e , Ay € S°(X) for some X € (0, 1) and some integer h > 0,

where A, is defined by (3.1); '
(ii) For somep > 1

S:p(ll'vkllz,;,, + 1 AkllLy,) < o3p

(i) supy, {lexllze < oo
(iv) The forgetting factor o satisfies Ma8rd(2h—0pI™" o < |, where d is the dimension

of {¢x}.



STOCHASTIC TRACKING AL GORITHMS 1217

Then there exists a constant ¢ such that

timsup || — 8illz, < cosp.
ko

Proof. We may complete the proof by using Theorem 2 4 just as it has been used for
Theorem 4 1 However, in the present case the following analysis appears to be more straight-
forward

By the matrix inverse formula, it follows from (1 .10) that

(4.21) Pl = aP !+ orpl.

Multiplying P! from both sides of (1.10) and using (1.9) we get [] — Lyo]] = aPen P,
and so

k
(4.22) I[ - Lse}) = Py PGy
j=i+1

On the other hand, multiplying ;. from both sides of (1.10) we have Fp_ _,flLk =, Hence
by (2.1) and (4.22),

18501 = BrsrllL, < &®||Pesi Py 60llr,
k
+ Zak_i(ﬂf’k+1%’ﬂi”£-p + |1 Pes1 Py Actllz, )
=0

By the Holder inequality, Assumptions (i}—(iv}, and Lemnma 4 4 we know that the proof will
be complete if we can show that sup, | P2 | L3, < co. But, this can be easily seen from (4.21)
and Assumption (iii), since

1Pciles, S @llP MLy, + leklz,,, YE=20. O

Remark 4.2. Under additional statistical assumptions on the processes {pg, vk, Ar}, a
refined upper bound for the tracking error of the forgetting factor RLS can be derived (see
[33])

Conclusions. In this paper, stability and tracking error bounds are established for several
standard estimation algorithms under a very general excitation condition. The various stability
results presented in the paper are believed to be necessary preliminaries for further study of
tracking properties, e.g., approximate expressions of the variance of the tracking errors (see
e g.[18]) Also, applications of the results to adaptive control systems as studied ine g., [30]
are possible. These issues will be discussed in detail elsewhere.

Appendix A.
Proof of Proposition 2.1. The solution of (2 2) may be expressed by
(A1) Tntl = Z H (I—A4;5)| &+
i=0 | j=i+t1

From this and the independence of { Az} and {£x} we know that the sufficiency of (2.4) is
obvious.
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To prove the necessity, we take {£x} to be an independently and identically distributed

(iid) sequence with zero mean and unit variance. Then by denoting By, = I — Ay, we have
forsome ¢ > Oand foranyn > k > 0,

i}
T n k13
02E|I$n+:||2=tTZE{H B; {H B;

i=0 jzib1 j=i+1
(A2) ;
n ¥ b3
SY2ERIENIE
i=k =i+l j=i+l1
Denote

a(n, i) =t7-{E [ ﬁ B; ﬁ Bj]

j=i+l G=itl

It is easy to verify that a(n, %) > 0, for all n. > . Then by the independency of {A;} we have
foranyn >4 >k,

a(n,k) =trE[B, - BpnBi,, -Bj]
=trE{B, - Bin\E[B; Ben1Biy, - Bi|Bl, - B}
<trE[B, BBl - BItrE[B; - BiyiBis, - B
= a(n,i)al(i, k)

Hence by (A.2) we have
n
¢ > a(n, k) Z a” (i, k)
i=k
or
(A3) > a7k} <ca” (n k), Yn=k>0
i=k

From this we have

n n—1
Y amlG k) = a7 (n k) + Y a7 (i, k)
i=k i=k
n—1
> (1+é) ;a_l(:i,k) >

1 n—k 1 n—k
> (1 + —) a” 'k, k) = (1 + —) d.
C C

Therefore, by (A 3)

1 n—k
ca”(n, k) > (l + E) d
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or

n—k
a(n,k)gé(]ic) . Yn>k Yk20

So(24)holds with A = [e/(1 +¢))? <1. O
Proof of Proposition2.2. Denote ¥(i, k) = H;=k +1(I—A;), and setfor any fixed k > 0,

(A4) L1 = V(BB k)Y, k) 2y,

where {71} isad-dimensionali i d. sequence independentof {4;} with En; 1 = 0, Ennf =
{1/d)1. 1t is easy to see that

Ell&in1|* = tr{E€11€0,)
= = trB{ (s KB, )G R 0, )T = 1

Hence for any & > 0,§ € B°. Substituting (A 4) into (A.1) and calculating the covariance,
we get

Bt =GB $(n, K)EY( K6 K (B, V>0,
=0

and so

k)

(B (n, k) (n )2 D [ED(E, kY (s, k)7 [Eg(n, k) $(n, B)]'/?

=0
<wrE { > w{n, k) BW(, k) (i, k) win, k)T } I
i=0
=dE||gnmPT<cl, Yn>k, VEk,
where for the last inequality we have used the assumption (2.8) and where ¢ is a finite constant
This inequality implies that

i3

> B, k)Y )T < cEv(n, kY p(n, k)]

i=0

Hence by denoting a~ (i, k) 2 Amin{[E0 (3, k}™(i, k)] =17}, we obtain

T ™
D> a7k <Y a6 k) Sea” k),  Ynzk>0
i=k =0
This inequality is exactly the same as (A .3). Hence by the same arguments as those in the
proef of Proposition 2.1, we get

5
1+e¢

n—=k
a(n,k)gc—‘;( ) , Ynxk  YE>0

Finally, observing that a(n, k) = A {E[Y(n, k)"¥(n, k)|}, we get the desired result
24 O
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Appendix B.

Proof of (2.14). For simplicity of notations, set & = mh -+ 1. Following the ideas in
the proofs of Theorem 4.5 and Lemma 10.7 in [5], we denote z;—; as the unit eigenvector
corresponding to the largest eigenvalue py,_; of the mattix E{®7(k+ h, k}®(k+ h, k)| Fi 1],
and recursively define z; by

(Bl) Z4 = (I - Aj)zj_l, ] ?_ k.
It follows from (2.13) that zgy ) = ®(k + h, k)2~ . Hence we have

E(izesn1[*|Fr—1) = 2f_ Bl®7(k + h, k)®{k + b, k)| Fi-1]2k—1

B2
(B.2) = piillzma 2 = Pt

By (B.1) we have

7
25 = Zp—1 — ZAz'zi—la vielkk+h—1].

i=k
|7:k 1:|

(ZI A lnz)_ZuAWn 7 _l]

i=k
i—1
> zj—'_lAizi_l]?-'k_l} . jelkk+h]

i=k

Hence by the Schwarz inequality

ZAzz 1

i=k

Elllzj—1 — ze—t|*|Frma] = {

(B.3)

< hE

By the definition of A, and the Minkowski inequality we have

VT+h)AL?
(m-+1)k 172 k+h—1 1/2
< Q%B | DL Al 2 ={E[Z nA:’sz_lFm_,”
i=k

i=mh+t1
kth—1 1/2 |'k:+h—} 1/2
< {E > nA;”z@-_;nmﬁl}} + {E L > llzi —zk_luzm_IH .
i=kK
From this and (B.3) it follows that

i=k

k+h—1 1/2
VOUFRAL2 < (1+R) { [Z 1AM 21 |2 Fre [”

i=k

or

k+h—1 2 A
! . 21 - LI
(B4) E{Z A2z m_l] > 2
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By (B 1) and the fact that 0 < A4, < T itis easily derived that

T T T
252 S zi_y25 1 — 2l Az,
from which we have
kth—]
2
lziernall® < Moot = 3 27 Aimic,
i=k
k-+h—1
=1- Z ZT_IAZ'ZZ'_L
i=k

Combining this with (B.2) and (B 4) we get

Pr—t = Elllzxen [} Fie-i]
Kth1 3
<l-FE [ ; z;.»]Aiz'i—I;Fk—l] <I- =7

which is tantamount to (2 14). a

Appendix C. We first prove Proposition 33 The proof is divided into two steps.
Step 1. We first prove that

i
“Z PG+ Tor

where Ay, is defined by (3.1) with A = pand 7, = a{F],v;,1 < k — 1} and where P{r)isa
polynomial of z with nonnegative coefficients.
By (37) we have

k k k
(C2  ppyr = HAJ)%+Z HAj)bw, VE>s, Y520
j=s

i=s \ j=i+l

Yk =1

C1 A

By (3 1) with A = p and the Schwarz inequality it is easy to show that (cf [14] or [28], p.

168)
A > —_ A { [_‘P(an%mp 7 J}
(C3) T opHl T+ llo@wengli? | 77F

I {Xmin (E{‘P(kﬂ)pw&ﬂ}pl'f;'epD}z
= U El(llegerng 1 + oo P Frp]

We first analyze the numerator. Denote the controllability Gramian by I, Eptl!

T

A (B+Dp—1 [ {(k+Dp—1 {k+1)p—1
(o)) Hipy1 = Z H Az 1oy H A;
i=kp j=it] j=i+1

Then by (C.2), (3.6), and the independence assumptions we have

(C.5) Bl et 1)p9 5 1p| Fiep] = 02 E[Hyper1| Fip)
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By (3.8) and (C 4) it is easy to verify that det[Hp+1] = 1, and hence by (C.5)

f\min{E[w(k+1)p‘Pz‘k+])p|f}cp}} zZ 0'12,E[/\min(Hkp+l)iF;’cp]
det(Hepy1) :
—1 '?k}”
{/\max(Hk:o-l-l )}p
o

2 B Hpt 7 Fen)

Concerning the denominator in (C.3), we first note that

> 2
(C6) > gL E

) 1 1 .
(CT) Elleinsl¥lFep] < 5 + EE[|E90(k+1)pl|41fkp}
and that by (C 2)
(k+1)p—1
Efflogsnsl*iFee) <8E ||| TT  Asl| | Fow| lowall®
i=kp
(k+1)p—1 (k+1)p—1
+87°|[b*sup Evf > E II 4 l.f-kp
k i=kp jemi]

Then, substituting this, (C 6), and (C.7) into (C.3) and using (3.10)—(3.11) together with
the Markovian properties of 8y, it is not difficult to conclude (C 1). |
Step 2. We prove that

1
(C.8) { } € 8%)), forsome € {0,1).
P(Brp-1)[1 + llogpll?] ( R
Since A is a stable matrix, there is a nomm || - ||s on B? such that its induced norm on

RP*P (also denoted by || ||s) satisfies ||Alls 2 § < 1. Clearly, there is a constant ¢ > 1 such
that, for all z € B?, |lz]} < ¢|jz|ls In order to apply Corollary 3.1 we denote

ze = llonplls + ﬂ;f'p—l +1

3
c ‘ ,
ykﬁgpz(ﬁkp—i), G = o{Fj,vs,i < kp—1}
where L is a suitably large number defined later on. Then both{z.G:} and {yx,Gx} are
adapted processes. Clearly, P(Brp—1)[1 + [@xpl*] < zx + ys. Hence, (C 8) will be proved
if conditions in Corollary 3.1 can be verified.
By (3.11) and the convexity of the function P*(z),z > 0, we have

& (k+1)p—1
yk-{-iSEPz B8P Brp—1 + Z €

i=kp
3 (k+1)p—1
€ _4 i
SEP ﬁﬁkp—z-{'*(l—ﬁ)}—_g Z e
i=kp
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Hence {y, } satisfies the required properties.
Now, it only remains to prove that {z; } satisfies conditions in Lemma 3.1, By (3.10)-

{3.11) we have

Il Axlis <&+ || Alls < 6+ esbk,

where ¢s > 0 is a constant. This motivates us to set ., = Hgi*,;;”’ “E+ csf;). Clearly,
ax € Gy, and by a completely similar argoment as that used in [29) we know that under
condition (3.12) (with small £ and large b) there are constants M > 0,v € (0, 1) such that

T

H E[ai+1|gk]

k=m

SMYy™™ Ya>m, Ym>0

Let « be a positive number such that (1 + a)*y < 1, where ~ is defined above It is easy
to see from (C.2) and the definition of Qi+ that there is a constant M, > 0 such that for any

g0 >0,

{(k+1)p—1 [(k+1p—1

€9 Jopsngli < 1+ Qarslpmlli + M, || 3 I 46
t=kp Fmitl 5
£
< (1 + ojowrillog 1§ + S5,
(C.10) (k+1)p—1 L (k+1)p—1 9
+ o Z e+1] +e Z |vs) -+ 1
i=kp i=kp

for some constants L, ¢;, and ¢, where for the last inequality we have used the fact that
[l 4;1ls < & + cs8; together with the Markovian property of {5;}.
Without loss of generality we may assume that £ in (C.10) is so large that

(C11) 40P < (1+a)6% 2 ¢,

By (C11)and (3.11) it is easy to see that there is a constant ¢3 > 0 such that

kp—1 L

=]
(€.12) Bt S Fhhpa e | Y o
i={k—1)p

Combining (C 11) and (C.12), using the definition of zy and the fact that (1 + o)eagy > &,
we get for some constant ¢, > 0,

{k+Dp—1 L (k+1)p—1 9
Ten S+ @onpize+er 1+ Y e+1] + Z [v;] + 1
t=kp i=kp

Hence both {24} and {ys} satisfy conditions of Corollary 3.1, and so {1/(zr+yx)} € SO0
for some A € (0,1). This proves (C.8). Finally, combining (C.1) and (C.8) we know that
Proposition 3.3 is true. 0
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Proof of Example 32. Set Fy, = 0{A;,v;,i < k — 1} Since {A;} is an independent
sequence, similar to the proof of (C.1) we have for some constant cs > i,

1
(C13) Ag Z o W= es(t+lerol®), k20

So we need only to prove that {a} verifies (3.3). Let o > 0 be such that (1 + a)é* < 1
where & is given by (3.9). By (C 2), (3.9) and the independence assumptions we know that

Ellleganpl* 1 Fro) £ (14 )8 [lupl* + s
for some constant ¢g > 0 Consequently, we have
Elapy1]Fip) < (1 + )%y +cs(1 + cs)

Hence (3.3) is true. O

Appendix D.
Proof of Lemma 4.1. We first consider the case where 8 > 2max(l,«) Leté, > 0be
such that

swp | (dnrér) og®* (e + dnri)lL, <
n>k>

Then exactly the same argument as that used for Lemma 8 in [28] yields

n

(D.1) > llenrdnréillz, < cbplogle+ )

k=0

So we need only to find a relationship between § and o. By inequality (52) in [28] we know
that

(D.2) zy < cexplez’/®) + aiylog®{e + o) + log® (e + )}

holds for all ¢ > 0, > 0, and o > 0, where ¢; is a constant depending only on ¢ and «.
Applying (D 2) with x = d~ 100”3/2(6 + dni )y = &4 logP? (e + £),0 = of,a =p3/2
we have

EdP €8 10gP% (e + dur&s) < PP Exy
(D3) < 2PP2E{ofexp(ex™/PP)) + eryllogP? (e + o7 7) + logP%2 (e + )]}

< coPlogh®/*(e + o;"), for some constant .

Hence we may take 6, = co, log®/* (e + o, ') Substituting this into (D.1) we know that the
first case in (4 2) is true, while the second case can be proved in a similar way. Finally, the
last case can be derived from (D.1) by noting &, < c o, for some ¢; > 0 (]
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