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A note on continuous-time ELS*
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Abstract: The parameter estimation of continuous-time finite-dimensional linear stochastic systems is a problem of long-standing
interest. The method usually used is the extended least-squares (ELS) algorithm described by a nonlinear stochastic differential equation
(SDE), with the existence of the global strong solution assumed. This paper shows that the ELS estimate does exist in [0, c0), and at the
same time presents a number of convergence results paralleling those for the discrete-time case.
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1. Introduction

Consider the following standard linear state space model:
dx, = Ax,dt + Buldt + Ddw,, dy? = Cx, dt + dw,,

where y? and u? are the scalar output and input, respectively, x, is the r-dimensional state vector, {w,, #,} is
a Wiener process on the basic probability space (Q,#, P), and 4,B,C and D are unknown matrices of
compatible dimensions. Without loss of generality, assume that y? =u? =0, x, =0, V¢ < 0. Then the
input—output relationship can be written as (cf. [3, pp. 403-404])

A(S)y? = SB(S)u? + C(S)w,,
where A(S), B(S) and C(S) are polynomials in integral operator S (i.e. Sw, £ j; w,dz):
AS)=1+a; S+ +a,S% p=>1,
B(S)=b; +b,S+ - +bS7", g=1,
CS)Y=14+c¢;S+ - -+¢S8", r>0,

with unknown real coefficients a;,b; and c, and with known upper bounds p,q and r for orders.

As noted by Moore [12, p. 197], it is usual to introduce a prefilter D(S)=1+d,S + - - + d,S", which is
exponentially stable, giving rise to prefiltered variables y, and u, defined from y, £ D™!(S)y?, and
u, 2 D™'(S)u?. Thus we obtain the following relationship between y, and u,:

A(S)y, = SB(S)u, + C(S)v,, t =0, (1.1

D(S)v, = w,. (1.2)
Let us denote the unknown parameter by

6=[—a; ... —a, by ...byc;...c]" (1.3)
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and set
02 =y Sye> - - SP 'y Uy STy vy, ST T (1.4)
D(S)=[D(S)~11/S,  C(S)=[C(S) —11/s. (1.5)
Then (1.1) and (1.2) can be rewritten as
dy, = 0T dt + do,, (1.6)
dv, = dw, — [D(S)v,]dt. (1.7)

The commonly used extended least-squares (ELS) estimate 6, for 8 is defined by the following stochastic
differential equation (SDE) (cf. [1, 5]):

db, = P,o,[dy, — 6] @,dt + (D(S)8,)dt], (1.8)

ds, = dy, — 07 ¢, dt, (1.9)

O =[SV .. SP 'y, .. STy, 6y, STTEH, T (1.10)
t -1

P':<J <ps<p;rds+al> , a>0, (1.11)
4]

where 90 is deterministic and arbitrarily chosen, and ¢, = 0.

Clearly, (1.8)—(1.11) is a nonlinear SDE for (6,,8,). This SDE may be regarded as the continuous-time
analogue of the discrete-time extended least-squares (ELS) algorithm (e.g. [1-5, 12]).

The above ELS algorithm has attracted much research interest over the past decade. However, to the best
of the author’s knowledge, the basic existence and uniqueness problem for ELS still remains open in the
literature. Indeed, almost all of the existing results build on the assumption that the ELS estimate , exists in
[0, «0) (see, e.g. [ 1, p. 131; 2, p. 515; 5, p. 267; 12, p. 199]). In this paper, we will first study this long-standing
problem, proving that under very mild conditions on the input process and the noise model, the ELS estimate
6, does exist in [0, o0) and is the unique strong solution of the SDE (1.8)—(1.11), and then we will discuss the
convergence rate of ELS together with the related excitation problem.

2. Existence of ELS

For convenience of analysis, we first derive the error equation associated with (1.8) and (1.9). Set

0,=0-06, & =uv—70,. (2.1)
Then substituting (1.6) and (1.7) into (1.8) we have
df, = — dd, = —P,,[0T(¢? — @,)dt — D(S)7,dt + 67, dt + dw,]
= —P,0,[(C(S) — D($)),dt + 6 o,dt + dw,] (2.2)

Next, by (1.6) and (1.9),
ds, = dv, — dé, = 6T @, dt — 070 dt
= —[07 .+ 07(p? — @) 1dt = — 6 ¢, dt — [C(S)5,] dr. (2.3)
Consequently, C(S)(d5,/dt) = — 67 ,. By this we may rewrite (2.2) as
df, = —P.o.[(C(S) — D(S))(—SC'(5)6 @) dt + O, dt + dw,]
— Po,[(D(S)C™'(8)6] @) dt + dw,] (2.4)

Il
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We now write (2.3) and (2.4) in the following compact form:

dx, = a(t,x)dt + b(t,x)dw,,  xo = [00,0,...,0]7, (2.5)
where
X = (xt)tzoa Xy = [é;T’ 5n Sﬁ,,. .. Sr—lﬁt]T (26)
_Pl(plf; _ (P
—g.— C(8)7, 0‘ ‘
a(t,x) = i , b(t,x) = ) 2.7
: 0
ST24,
g=080, f,i=[DE)C (9] (2.8)
and
@, = [y“- .. Sp_lyn 27 Sq_lun (Ut - 5!)" .- Sr_l(vt - 5t)]T (29)

and where P, is defined by (1.11), and the initial value 0, is deterministic and arbitrarily chosen.

Clearly, the existence of a global solution of the SDE (1.8)—(1.11) implies that of the SDE (2.5)-(2.9) and
vice versa. So we need only study the SDE (2.5)—-(2.9).

The main result of this section is as follows:

Theorem 2.1. For System (1.1) and (1.2), assume that the input process {u,} is continuous and adapted to { #,},
and that the transfer function D(S)C ~1(S) — 1/2 is strictly positive real. Then the SDE (2.5)—(2.9) has a unique
strong solution {x,, #,} on [0, o).

An immediate consequence of Theorem 2.1 is that the ELS estimate 6, exists on [0, co) and is the unique
strong solution of the SDE (1.8)—(1.11). It should be noted that the continuity of the input process is assumed
only for simplicity of discussions; it can be further weakened, as can easily be seen from the proof. Also, the
positive real condition on the noise model is a standard one in the literature of recursive system identification.

To prove Theorem 2.1, it is necessary to introduce some notations. Denote by C[0, T], the space of
A“-valued continuous functions on the interval [0, T], T > 0, and by (C?[0, T], #1) the measurable space
of continuous functions x = (x,,0 <t < T) with the ¢-algebra #r=0{x:x,,0<t<T}. Also, set
B, =0 {x:x5,s <t},Vt < T. As usual, 4,;,(X) and 4 ,,,(X) denote the minimum and maximum eigenvalues
of a real matrix X, respectively, and the norm of X is defined as | X || = {4 mae(X X7)}/2. When x = (x,),< 7 is
a C[0, T] process, we set || x [ljo. 77 = max, < || X, l.

We first present some preliminary results on the following general vector SDE:

dx, = a(t,x)dt + b(t,x}dw,, xo=1n (2.10)

where n is an %,-measurable random vector, {w,, %} is a standard Wiener process, a(t,x) and b(t, x),
t < T,xe C[0, T], are &, x #,-measurable vector functionals of dimension d( > 1).

Lemma 2.1. Assume that for each n > 1 there exists a continuous process {L\”, #}, . 1, such that for t < T,
x,yeC0,T] and n > 1,

Cla(t,x) — a(t, y)I* + 1b6(t,x) — bt, NI* T I(1xllo, 1) < |y llgo, 71 < 1)

t
SL}”’{||x,—y,||2+f ||xs—ys||2ds}, as. Vn>1, (2.11)
0
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and

t
Clate,x)01% + 16 x) 1T x llo, 7y < 1) < L‘,"’{l + %12 +j IxsllzdS} as., (2.12)
4]

where I(A) is the indicator function of a set A. Then there exists an F-Markov time o1 > 0 such that the SDE
(2.10) has a unique strong solution x = (x,) on [t < o¢], and

sup || x| = as., on[or<T]

<o,

This lemma is a minor extension of the existing results on local solutions (see, e.g. [8, Theorem 3.1]), for
a proof, see Appendix A. The Markov time o7 is usually called the explosion time of the SDE (2.10). If in (2.12)
the process {L™} does not depend on n,i.e. L = L,, then it can be shown that P(¢; = T') = 1, which means
that the solution of the SDE (2.10) is a global one on [0, T']. Related results under certain nonlinear growth
conditions may also be found in the literature (e.g. [7, 9]). However, direct applications of these results to the
SDE (1.8)—(1.11) are found to be difficult. The main reason is that we do not know how to verify the growth
conditions in, e.g. [7, Theorem 1]. Therefore, we present another lemma on the existence of the global
solution by using a different growth condition, which can be directly applied to the SDE (1.8)—(1.11), giving
a simple and straightforward existence proof of ELS.

Lemma 2.2. Let a(t, x) and b(t, x), t > 0, and x € C*[0, o) (the space of d-dimensional continuous functions on
[0, 00)), satisfy (2.11) and (2.12) for any T > O, where (L™, F,);» o is a continuous nonnegative process for each
n = 1. Suppose there exists a symmetric matrix functional Q, (x):[0, ) x C*[0, o) x Q — Z%*¢ with Q (x) and
dQ,(x)/dt measurable F, x #,, and with inf, . 2.,:,[0,(x)] > 0 a.s., such that for any t > 0,x € C*[0, o),

jl ZL(x)ds < F, + G, Jl xsi[2ds — 8Jr BT (s, x) Os(x) x4 || ds (2.13)
0 0 0

where ¢ > 0 is a constant, {F,, F, }1» 0 and {G,, F,}, o are continuous nonnegative adapted processes, and £,(x)
is defined by

L) = T [d%‘t(") ] %2 + 270, alt, x) + bT(t, x) Q) bz, %) 2.14)

Then the SDE (2.10) has a unique strong solution on [0, o).

The proof is given in Appendix B.
We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. In order to apply Lemma 2.2, we only need to verify (2.11) and (2.13), since a(t, 0) and
b(t,0) are continuous random processes. To emphasize the dependence of ¢,, P, f;,. . . on x defined by (2.6),
we will write them as @,(x), P(x), f;(x),. ... Forany T>0, x,ze C*[0, ), d=p + q + 2r), [ x|jo.71 < 1,
lzlkio. 71 < n, 1= 1, by (2.6)—(2.9) we can derive that

b, x) — b(t, 2) | = | P (x)pi(x) — Pi(2) pu(2) || < L { I xe — z|l +J x5 — zll ds } Vi<T, (215
0

where L™ is #,-measurable and continuous because {y,,4,} is continuous. We now proceed to consider
a(t,x). By 29), vVt < T,
19:4x) = 6.1 = ll@(X)T 6,(x) — @2 ()| < NI | x, — 7, (2.16)

holds for some continuous N depending on t,n and {y,, u,s < t}.
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Set b, = C~*(S)x,,x € C*[0, ©), H, = [hy,...,S" 'h]" and

—C; ... —Coy —C

1 0
Then we have H, = F.SH, + [x,,0...0]", and so
t
H, = FCJ exp{F.(t — $)} [x5,0 . .. 0]7ds + [x,,0 . . . O]".
0

Hence by the fact that all eigenvalues of F, are negative, we get
IDSYC™ (S)x, || = Il + D1Sh, + - - - + D,5h,|
< O(IH, |l + IISH{) = O H, || + | F.'(H, — [x,0...0]D)|)
t

0

SO(IH, |l + lIx.1) < 0(] [ xs1l ds + ||x,||)- 217

Replacing x, by g,(x) — g.(z) and noting (2.8) and (2.16) we have
I fi(x) = £i@)1l = 1 DS)C™(S)[g:(x) — g:(2)]

t
=K,‘")<f lxs -z ds + |Ixx-zzll> (2.18)
0

where K™ is a continuous process adapted to { &, }.

Combining (2.15), (2.16) and (2.18) it is easy to see from definition (2.7) that a(t, x) and b(¢, x) satisfy the local
Lipschitz condition (2.11).

We now proceed to verify (2.13).

Since D(S)C~*(S) — 4 is strictly positive real, by (2.8) there are constants £ > 0 and K, > 0 such that

t
J [L—<%+s>gsj|gsds+K020, V>0, xe C4[0, ). (2.19)
4]
Define
Pt 0
Q,(x)—< 0 sI,>’ (2.20)

It is easy to see that Q,(x) is symmetric, uniformly positive definite, %, x #,-measurable, and such that
167 (6,%) Q:(x)x. 12 = ll 0T 6,11 = g2. (221)
By (2.14), (2.21) and the definitions for a(t, x), b(t, x) and Q,(x) we have
—C(S)3,

U

Zi(x) = gt2 - 251T(Ptft — 2eig, + 2e(@,. . . ,Sr_lﬁt) + ¢IP1(Pt

Sr—lﬁt

<g? —2g.f +eg? + &l D)% + eK x> + of P,
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IA

1 -
—2[ﬁ - <§+8>gz:|g: —eg? +e(l + K)Ix? + o )?a™?

IA

1
—2[ft - <§+ 8)9;]9: —&||b7(t,x) Q,(x) x, ||?
+2a" @l 1* + [e(1 + Ky) + 2a™ ' Tix, |17

where K, is some constant. Hence by (2.19) we have

1 1 I t
ffs(x)dsszxwza*f nq)?ust—af ||bT(s,x)Qs(x)xs||2ds+Kzf x, ]2 ds,
0 0 (4]

0

where K, is a constant. Threfore, (2.13) is verified and the proof of Theorem 2.1 is complete. L[]

3. Convergence and Excitation

Having established the existence and uniqueness of the ELS estimate, we discuss some of its asymptotic
properties in this section. The following results are a continuous-time analogue of those for discrete-time
systems (see [4, 10]).

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied. Then as t — oo the estimation error 0, — 6
produced by the ELS estimate (1.8)—(1.11) has the following convergence rate:

- logr?
—8)? = Se 1
6. “ 0<imin(fé<ﬂ?¢des+01) @3 G1)

provided that

logr?
-
Aﬂ'min (j(; (pso (psOTds + aI)

where @ is defined by (1.4) and r) = e + | | ¢ ||* ds.

0 as.

Proof. First, note that (cf. [2, Lemma 2])
Jt 16 @, ds = 0(logr,) ass. (3.2)
0
Set V7, = [dé,/dt, . . ., 5" 2#,]". Then by (2.3) we have ¥, = F.SV, + [ -6, ¢,,0 ... 017, and so
v, = chtexp{Fc(t — [ —6]0,,0...0]"ds + [—6¢,,0...0]%,

0

where F, is defined in the proof of Theorem 2.1. By the stability of F, and (3.2) it is obvious that
§ 17|12 ds = O(logr,), and so

f ISP 12ds = j VFo1 [P, — @T,0 . .. 0)T][2ds = O(logr,). (3.3)
0 0
Hence

j CIB 17 + - + 1S 15,021 ds = 0(logr).
0
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By this and the definitions for ¢, and ¢ we have

t
j loy — 902 ds = O(logr,) as.
0

and consequently it follows that
r,=0(r?) as. (3.4)

On the other hand, for any x € Z°%9*", || x| = 1, we have

0

t t
immq ¢?¢?Tds+al>s2j [lof — @sl* + [ xTosl?1ds + a
o]

t
<2xT (f o,0Fds + aI)x + O(logr,).

0o

From this, (3.4) and the assumption it is easy to get

t t '
imin<f (pf(ps‘”ds+a1> =0|:imin<J Qsptds + a1>:|.
0 0

Finally, the desired conclusion follows from this, (3.4) and [2, Remark 1. O

Theorem 3.1 shows that the strong consistency of the ELS is closely related to the growth rate of
Amin (J, @5 ;T ds). We now give an explicit connection between A, (|, @2 97T ds) and the ‘input’ process {u,, v, }.

Lemma 3.1. For the system (1.1), assume that the polynomials A(S), B(S) and C(S) have no common factor, and
layl + |bg| + |c,| > 0. Then there exists a constant ¢ > O such that

t t
A min ( J ZZT dt) < €A min ( J (p,ogo,OTdt> as, YT >0, (3.9
0 0
where Z, is defined by (k = p + max{q,r}), and
_ 1
Z! = [le" .. 5Sk ! le]Ta 2 = m [ut, vt]T (3'6)

with E(S) being any monic stable polynomial of S and deg{E(S)} = p.

Proof. Set @2 = [A(S)/E(S)] ¢2. Then by (1.1) and (1.4) we have

~

f SB(S)u, + C(S)v, ( SB(S) C(S)
SPB(S)u, + SP~1C(S)v, SPB(S) SP1C(8)
A(S)u, A(S) 0

1 . .
b3y _m 9 } =< : > zy

ST A(S)u, ST71A(S) 0
A(S)v, 0 A(S)

| ST A(S)v, L0 S71A(S)

é H(S)zt,
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where H(S) is a (p + g + r) x 2 polynomial matrix defined in an obvious way.

For any xe #°*9%", || x| = 1, let us define h;,g;, 0 <i <k — 1, via xTH(S) = Yy [hi,g:1S". Since
A(S), B(S) and C(S) have no common factor, by a similar argument to that used in [3, pp. 209-211] it is easy
to show that inf ,, _, Y *7 ! (h + g7) > 0. Hence we have for some ¢, > 0,

T T[ k-1
imin(J oh cp.Tdt>= inf J. [Z (hiagi)Sizt:l dt
0 xl=14J0 i=0

k—1 T T
> inf ¥ (ﬁ2+g,~2)/1min<J A dt>>c0 '"(J z,z,Tm). (3.7)
1]

Ixi =1i=0

Next, applying Lemma 1 in [2], we have for some ¢, > 0,

T ) T A(S) 2
A min o2 p2Tdr | = inf J (———xT 0) dt
<Jo oo > de1 Jo \E® T

T T
<c¢; inf J (xTpd)?dt = climin(f <p,°(p,°Tdt>. (3.8)
()]

Ixi=140
Finally, the desired result follows from (3.7) and (3.8). O
Theorem 3.2. Assume that the input process of system (1.1} is a Gaussian (asymptotically) stationary process
with rational spectrum density, which has the form u, = [ P(S)/Q(S)]B,, uo = 0, where {B,} is a Brownian
motion independent of {w,}, and P(S) and Q(S) are monic stable polynomials with deg P(S) + 1 < degQ(S). If

D(S)C~1(S) — L is strictly positive real, A(S) # 0, YRe{S} > 0, A(S), B(S) and C(S) have no common factor and
lay| + |b,l + |c,| > O, then the ELS estimate has the following convergence rate:

. 1
16, — 6] =o<%t> as. ast— oo.

Proof. Since {u,} and {v,} are asymptotically stationary processes and A(S) has no zeros in the open
right-half plane, it is easy to convince oneself that

logr? = O(log?) as., (3.9)

where r? is defined in Theorem 3.1.
Take E(S) = P(S)E°(S), with E°(S) monic, stable and satisfying

deg E°(S) = p + max(q,r) — deg P(S).

The last requirement guarantees that both the degrees of E°(S)Q(S) and E(S)D(S) are not less than

p + max(q,r).
Let us set z/Y = E"Y(S)u,, z/¥ = E~'(S)v,. Then we have

1 1
2 = ) _

TEme® T T EPe) "™
Hence, by setting
Z© = [ZWT, ZOT]T, Ww? = (B, w]",
ZW = [V, .. SOk, = deg[E®(S)Q(S)],
Z@P =z, .., S 17Tk, = deg[E(S)D(S)],
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we know that there is a controllable pair (F, G) with F stable such that dZ? = FZ?dt + GdW?. Since W is
also a Wiener process, we have (cf. [2, Lemma 3])

1 T
lim = | Z2Z°Tdt=R >0 as.,
T— o (4]
which, in conjunction with Lemma 3.1 and the fact that min{k,,k,} > p + max{q,r}, implies
1 T
liminf = A, <‘[ ol 0T dt) >0 as.
T—ox T 0

Hence the desired result follows from this, (3.9) and Theorem 3.1. O

Appendix A
Proof of Lemma 2.1

First of all, we note that if in (2.11) and (2.12) the process { L} does not depend on n, then by the standard
truncation methods and the familiar results on the SDE (2.10) (e.g. [11, Theorem 4.6]), it can easily be shown
that the SDE (2.10) has a unique strong solution x, on [0, T'].

Next, let us define n > 1, ¢ e 29 and x e C*[0, T],

gal&) = Emin (1""T”> Gn(0) = [g(x) D>

ay(t,x) = a(t, gn(x)),  balt, x) = b(t, ga(x)).
Then it is obvious that
(i) ga{x) e C[0, T] whenever x € C?[0, T],
(i) |gn(x) 0,71 < n, Yxe C[0,T],
(ii)) |ga(&) — gl <l & —z|,VEze R
Hence we know that for each fixed n > 1, the SDE
dx, = a,(t,x)dt + b,(t,x)dw,, x¢ =1, (A.1)
has a unique strong solution x® = (x), .. Set

inf {t < T: sup,., [ x| = n},
" T, if sup,cr | x™| < n.

Then by a standard treatment (cf. [11, p. 143]) it is not difficult to show that 6, < 6,4+, a.s.,and x"*!) = x™
as., on [t < 6,],Vn. Let us define o7 £ lim, , 0,, and x, 2 x™ on [t < g,]. Then it is easy to see that
X = (X,);<,, is the unique local strong solution of the SDE (2.10). Moreover, since x is continuous in ¢, we
have sup,<, | x| = n, on [0, < T]. Consequently, on the set [67 < T], Sups<q, Il X, | = sups<,, | x| —

00, as n — oo, which completes the proof.
Appendix B

Proof of Lemma 2.2

Let us keep the notations introduced in the proof of Lemma 2.1. For the desired result, it suffices to prove
that P(c = o0) = 1, where ¢ = limy. . 07r.
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Since for any 7> 0 and n > 1, x* = (x), . r satisfies the SDE
dx!™ = a,(t, x™)dt + b,(t, x™)dw,, x{ =n,

by Ito’s formula we have (t A ¢, £ min{t,0,}),

tAnon t Ay
X{nan Ot now (X)X N0, = 0T Qo(x ")y + J ZI(x")ds + 2f ba (s, x™) Qy(x ™) x{" dw,
0 0
where
d xm
gt(n)(x(n)) — xt(n)T I: Qt(gt ) xt(n) + 2x,(n)TQt (x‘"’)a,,(t,x‘"’)

+ bX(t, x™)Q,(x"™)b,(t, x).
Note that on the set [s < g,], we have || x| < n and
an(s,x™) = a(s, gu(x™)) = a(s, x™),
ba(s, x™) = b(s, ga(x™)) = b(s, x™).
Also note that x§’ = 1, Qo(x™) € #,, which are actually independent on n. Hence, by assumption (2.13)

we get

tAGH
T
xtn/\a,. Qt/\a,. (x("))xif\)an < }’,TQO(X("))?] + Fr/\a,. + GtAa,.J ”xin) “2 ds
0

tAGH tAGh
—o I 0 x ) s 2| 5,x ) Q)i i,
0 4]
t/\an
< F*+ GX j Hxs(") 121(s < o,)ds + H(n), (B.1)
0

where

F¥ = max F, + n"Qq(x™)n, G* = max G,

0<s<t 0<s<t

H(n) = —SJ 16 (s, x™) Qu(x ™) X" 2 I (s < 0,)ds
0

t
+ ZJ bT (s, x™)Qs(x™)x™I(s < a,)dw.
0

By the assumption there is a random variable « > O such that inf, , 4.;,(Q,(x") > &« > 0 a.s. Hence by (B.1)
we know that

1
(n) nT
i xl'/l\a,. ”2 < ;xtnwn Q: naw (X("))x,/\a"

1 t
< LFX*+ Him) + Gz*j 172,11 ds]. (B2)
0

Note that by the well-known exponential inequality for stochastic integrals (see, e.g. [ 6, Chap. 4]) we know
that

P| sup Hi(n)>n | <exp -—En .
0<s<t 2
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Consequently, apply the Gronwall inequality to (B.2), we see that
P(|x%, |2 =n?) >0 asn- oo for any fixed t.
Therefore, for any fixed t < 7,

Plor<t)<P(o, <t)=Plo, <t,||x| =n)

= P(o, < 4, X%, =2 1) < P(Ix%, | 2n) =0, asn— .

Hence P(6r < T) =0 or P(6+ = T) =1, and consequently P(¢ = o) = 1. This completes the proof.
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