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In recent years, robust identification has become an area of growing interest,
mainly because of its relevance to robust control design. For various reasons, low or-
dér nominal models are preferred in controller or filter designs, yet the true
plants are usually of high or infinite order, with unmodeled dynamics or
random/deterministic disturbances.

There are basically two ways of identifying infinite dimensional linear systems in
literature: One (direct identification) is to obtain a low-order nominal model directly
from the observation data by, for example, the prediction error methods!" or
the set-membership methods!”. This way usually involves certain global optimization
problems, and the computation is difficult except for some special cases. The other
(indirect identification) is to first get a possibly high-order estimated model based
on the measurements by, for example, the methods of least-squares-based
approximation®® or frequency response-based identification!”¥, and then to get a low-
order nominal model through model reduction techniques.

The current note follows the latter way described above, and is based on some
preliminary results in Refs. [4] and [6]. The main contribution of this note is as follows.

For a large class of linear systems, the bounded deterministic disturbances are
shown to hdave no influence on L"-strong consistency of the identification algorithm.

This is a rather surprising result, as in the bounded noise case almost all of the
previous studies do not show the strong consistency of the estimates, and only end
up with the conclusion that the identification error is bounded by the magnitude of
the deterministic disturbances or by functions thereof ™ ¥,

1 Main Results

Consider the following discrete-time SISO system:
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y,=G(z)u,+w,+v,, t20, 8))]

where y, and u, are respectively the system output and input sequences, w, and v, are
respectively random and deterministic disturbances, y,=u,=w,=0v,=0, & <0, and G(2)
is the transfer function of the system

G(Z){ilg,-z", :illgil<°°, )
where z is the backward-shift operator. We assume that
(i) {w, %} is a martingale difference sequence with respect to a sequence {.#} of
non-decreasing og-algebras, and for some >0,
sup E[wy]5] <%, sup Efw|*"’ <. 3)
(i) {v,} is a bounded deterministic sequence, i.€.
v <c,, ®x, for some ¢,>0. 4)
(iii) The system input {u,, %} is an adapted ARMA process of the form
A(2)u,=B(2)e,, (5

where A(z) and B(z) are polynomials of z with A(z) #0, |z|<1; B(z) #0, |z/=1, and
{e,} is an independent and identically distributed random sequence with

Ee,=p, Var{e,}=ol>0, E{le,|4+5}<00. . (6)
for some £>0.

The sequence {w,} is referred to as “variance disturbance” because it has zero
mean but nonzero variance, while the sequence {v,} is called “bias disturbance” be-
cause it is nonzero in any averaging sense. Also, it is worth noting that condition
(iii) is a standard one in the literature of system identification!!l.

1.1 Transfer Function Approximation

Let {h,} be a non-decreasing sequence of positive integers with h, ~ and h,=0
((logn)*), (x>1). Set

9(n)=[g|"', gh,, ]t’ (7)
D (n)=[u,"*", Ui_p ], 15isn. (8)

The least-squares estimate 6(n) for 6(n) at time n is given by

“1 e

d)i (n)yi +1s (9)

i=0

b(n) =[ZO () ; () + yl]

with >0 arbitrarily chosen.




No. 20 CHINESE SCIENCE BULLETIN 1675

Write 6(n) in its component form
b =[g,(m, ", g, (10)

and denote the estimate of G(z) at time n by

f
@m=§mmi (11)

Theorem 1. Consider systems (1) and (2) and the transfer function estimate defined
by (11). If Assumptions (1)—(iii) hold, then

IG,(z) ~G(2) |l »

[Toglogn ric,balh,
0( hnén (1 C|7|a|hn)hn n ) ro(azh,,'l'r,) as., (12)

where c, is defined by (4) and

3 @ 2 _ B(l)
5n—<i=§+llgi,>’ a_l:m_] “, (13)

. B (eil) 2 5 B(ei}. ) 2 )
= min — = H
To e [ AE™) * N e | A(€%) (14)

Remark 1. If we take p=0 (i.e. the input sequence is of zero mean), then a=0
and Theorem 1 reads

“é..(-’)-G(Z)”w=0<\/ h,o, +h, /_loirllog_n> as., (15)

which tends to zero under some mild conditions on the decaying rate of §, (or g,),
for example, |g|=0n"*%), f> % . This result is rather surprising since, contrary to

the recent results in H®-identification!"¥, the bias disturbance {1} does not upset the
L”-strong consistency of the identification algorithm.

1.2 Model Reduction

Because the degree of the estimated transfer function én (z) increases with n, it
may not be desirable in some applications, and the model reduction will be
considered now.

Here we adopt an input normal realization truncation which has properties
similar to balanced realization truncation, but is easier to compute® "
realization (&,, I,, C,) for G,(z) is given by

A simple
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000

[am—

0 g1(n)
10 0 gn,(n)

Define the controllability and observability Gramians respectively by P and Q, i.e.

P=) o.I.I, @) and Q=) (,) C; C,®;. (17)
i=0 i=0
Then P and @ are the unique solutions to the following Lyapunov equations:
P-o,P@,=r,I and Q~0,00,=C,C,. (13)

Substituting (16) into (18), we get P=1I,. Let the singular value decomposition of Q
be Q=T" 22T, where X is a diagonal matrix whose diagonal elements are Hankel
singular values of é,,(z) in descending order and T is an orthogonal matrix. Define
the input normal realization by

(®, T, C,=[T®,T:, Tr,, C,T"].

Then the approximant é,f () of degree k can be obtained by a direct truncation of
(®,, T, , C,] as follows!"":

— |1 - —
@, =[L. 0] 4%{0*] , Ia=lh, 0T, C=C, [f)] ,

G()ACk[z ' I-@F]7 T, (19)

Theorem 2. For the kth order estimated transfer function é,," (z) defined by (19),
the identification/approximation error is bounded by

hy .
16(2) - 642 ¥ 6/(G(E)) +[2(h,—K) +1]16,(:) ~ G(2) I, (20)

i=k+1
where 0,(G(z)) is the ith Hankel singular value of G(z), 6:(G(2))=0,,,(G(2)), &i>0,
and G,(z) is the same as that in Theorem 1.

Remark 2. If é,,(:) has the following convergence rate

1G,(2) -Gl w=0(k") a.s., Q1)
then by Theorem 2 we have
. A i
lim [GX2)-G@).<2 Y, 06,(G()) as. (22)
n— ® i=k+1

Consequently, the estimated transfer function G,'f (z) is strongly consistent in the sense
that if the McMillan degree of G(z) is k, then lim |G¥(z) — G(z)l.=0 as. This follows
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directly from (22) since in this case 0;(G(2))=0, ®i>k.

The requirement (21) is fulfilled if, for instance, in addition to the conditions of
Theorem 1, the input sequence is of zero mean and {g,} has a decaying rate

19,]=0(n"*) with ,8>% (see Remark 1).

2 Proofs of the Main Results

We first present several lemmas which can be derived based on the results in
Refs. [4— 6], the proof details are omitted here due to space limitations.

Lemma 1. Let {w;, %} satisfy condition (i), and let {x;, .7} be any adapted
random sequence satisfying

n
Y x}=0(n), sup E|x,[**’<c0 a.s.,
i=1 n

where 6>0 is a constant. Then as n— ©,

i
max max
ISt<(logn)* 1<i<n

=0(/ nloglogn ) a.s., @x>0.

. X W;
j=1

Lemma 2. Let conditions (i) and (iii) hold with u=0, where u is defined in (6).
Then

=0(/nloglogn ) a.s., Ru>0.

n—1
Z Ui Vivy
i=0

max
0<k<(log n)®

Lemma 3. Let {ug} satisfy condition (iii). Then

=0< /Egl:i> a.s., Qu>0.

Now, we are in a position to prove our main results.

1 n—1 )
- Z (i — EQui_gi; )]
L

lim
0k, t<(log n)®

Proof of Theorem 1 (Outline). Set

i
Liz)=[z,, "], G,(2)=X g7, (23)
i=1
n—1 . ©
P=), @) Pi(n)+yl, e(n) = 2 gt (24)
i=0 j=hy+1

By (13) and the triangle inequality
1G,(2) =G (&) 1 <16y (2) = Go(@) o+ 3, - (25)
Furthermore, by (7)—(11) and (23)—(24),
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1G,(2) = Go(2) o= IL(z)(O () — 0. (1)) |
<ILEE'S o,matlotILE Y 00wl
i=0

i=0

+|IL(z) B! Z @,(n) u,-+l|loo+0<—\/—:_"—> a.s. (26)

Now, by Lemmas 1— 3 and the matrix inverse formula, we have the following
estimations for the first three terms on the RHS of (26):

=0(/h9,) as., 27

e}

=0<,,n /l&fﬂ) 8)

L) B @ (mye, ()
i=0

: n—-1
L(Z)Pn_l '—Zo D,(m)w; 4,

|

and .
”L(z) ﬁ""§0¢.—(n) v
loglogn rlalch,
= + [ + s.
0<(1 hlalc,) h, " ) o @h 419 as.,
which in conjunction with (25)—(28) yields Theorem 1. H

Proof of Theorem 2. By the triangle inequality, it is known that
1G @) = G4 (@) < NG(E) = Go(D) o+ G, (2) = GHE) I o (29)

By Theorem 2 in Ref. [11] and the fact that the truncation error using an input
normal realization is no larger than that of a balanced realization!, we get

hy )
1G,(z) ~GX2) <2 Y. 0,(G,(2)). (30)
i=k+1

Also, by Ref. [12] and the fact that the Hankel-norm is not greater than the L*-
norm, we have

16/(G,(2)) ~ 0 (G| €16, (2) — G () . G1)

From (29)—(31) it is easy to see that Theorem 2 holds.
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