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Performance Analysis of
General Tracking Algorithms

Lei Guo and Lennart Ljung, Fellow, IEEE

Abstraci— A general family of tracking algorithms for linear
regression models is studied. It includes the familiar least mean
square gradient approach, recursive least squares, and Kalman
filter based estimators. The exact expressions for the quality of
the obtained estimates are complicated. Approximate, and easy-
to-use, expressions for the covariance matrix of the parameter
tracking error are developed. These are applicable over the whole
time interval, including the transient, and the approximation
error can be explicitly calculated.

I. INTRODUCTION

TRACKING is the key factor in adaptive algorithms of
all kinds. In this contribution we shall study the special
case where the underlying model is a linear regression, ie.,
the observations are related by

Yk = ¢r0k + Uk, k>0. 0
Here yy is an observation made at time k, and @i is a d-
dimensional vector that is known at time k, vi represents
a disturbance, and the parameter vector 0 describes how
the components of ¢ relate to the observation yi. It is
the objective to estimate the vector §; from measurements
{ytv wtvt S k}

Many technical problem formulations fit structure (1) by
choosing ¢ and y appropriately. See, for example, [15] and
[22].

To come up with good algorithms for estimating Ok, it is
natural to introduce some assumptions about the time-variation
of this parameter vector. In general we may write

Or = O—1 + YWi )
where - is a scaling constant and wy is an as yet undefined
variable.

The tracking algorithms will provide us with an estimate

O = bx(y*, ", 6%) 3)
where superscript denotes the whole time history: v* = {yo,
Y, yk} etc.
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A prime question concerns the quality of such an estimate.
We shall evaluate the quality in terms of the covariance matrix
of the tracking error

O = 01 — . O
This covariance matrix will be denoted by
I} = E[§x67) (5)

where expectation will be taken over all relevant stochastic
variables. A precise definition will be given later.

An exact expression for ) will be very compli-
cated—except in some trivial cases—and it will not be
possible to derive it explicitly in closed form. The practical
importance of having good tracking algorithms and estimates
of their quality, however, still makes it vital to be able to
work with II9.

For that reason, there is a quite substantial literature on the
problem of how to approximate 9 with expressions Il that
are simple to work with. This literature is—partly—surveyed
in [1], [2], [12], and [20].

The current paper has the ambition to give a general result
that subsumes and extends most of the earlier results.

Example 1.1—A Preview Example: Consider model (1) and
(2) under the assumptions that

a) ok and 6 are scalars;

b) {@«},{vx}, and {wi} are independent sequences of
independent random variables with zero mean values
and variances R, Ry, and Qy, respectively.

¢) The fourth moment of ¢ is Ry.

Assume also that the estimate 6 is computed by the simple
least mean square (LMS) algorithm

Ors1 = Ok + por(yr — ik ©)

This case is one—essentially the only one—where a simple
exact expression for 9 can be calculated. Straightforward
calculations give

frsr = (1 — pp})Br — pokve + YWkt O]
Squaring and taking expectations gives
m0,, = (1 - 2uR, + W*R)T + *RoRy + 72Quw. (8)

This is a linear time-invariant difference equation for M9 and
can be explicitly solved. In particular, if

|l — 2uR, + u*Ra| <1
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the solution of (8) will converge to IT* with

1
mr=—————--—-II

- H—L[RRN—QQ}
T 1- uRy/(2R,) ST |

2R
&)

)

Simple manipulations then give

Ry/(2R,)
= m/(m)]“‘

Thus, II* can be well approximated by II for small y. since
o(p) — 0as p— 0. O

Now, this example was particularly easy, primarily because
of the assumed independence among {w.ve.wr} which
makes ¢, and ;. independent.

In more general cases we have to deal with dependence
among {}. and that is actually at the root of the problem.
Generally speaking, if {¢} are weakly dependent, so should
ék and oy be, provided that ék in (3) depends to a small extent
on the “latest” ., i.e., if the adaptation rate (y in the example)
is small and the error equation [(7) in the example] is stable.

The extra term caused by the dependence in the equation
corresponding to (8) in the example should then have negligi-
ble influence. Indeed, it is the purpose of this contribution to
establish this for a fairly general family of tracking algorithms.
Despite the simple idea, it turns out to be surprisingly techni-
cally difficult to prove. This paper could be said to make the
end of a series of results on performance analysis, starting
with Theorem 1 in [12] and then followed by [14], [13],
and [10]. There are many related, relevant results using other
approaches. We may point to [2]-[6], [16], [18], and [20] and
to the references in these books and papers.

The bottom line of the analysis is a result of the character

IE[6x07) — Tl < o ()T

I -1 < o(uIl,  o(u) = {

(10)

where o(p) — 0 as ¢ — 0. and p is a measure of the
adaptation rate in the algorithm, II; obeys a simple linear,
deterministic, difference equation (like (8) without the term
1°Ry).

The point with a result of character (10) is, clearly, that
we arbitrarily can well approximate the actual tracking error
covariance matrix with a simple expression that can be easily
evaluated and analyzed. The essence of this paper does not
lie in the expression for II; itself—it is not difficult to
conjecture that such an approximation should be reasonable.
Our contribution is rather to establish the connection in the
explicit fashion (10) for a wide family of the most common
tracking algorithms. One important step in achieving such
results is to first establish that the underlying algorithm is
exponentially stable. This is a major problem in itself, and
a companion paper [9] is devoted to this step for the same
family of algorithms.

The paper is organized as follows. In Section II the tracking
algorithms are briefly described. Section III gives the main
result: that (10) holds under the same general conditions for
all algorithms in the family. There we also briefly discuss the
practical consequences of the result. In the following section,
a more general theorem is presented. which is the basis for the
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analysis. This theorem is more general and uses weaker but
less explicit conditions. The proof of the main result is then
given in Section V by showing that the general theorem can be
applied to our family of algorithms. Notice that this analysis is
of independent interest in that the conditions can be somewhat
weakened in different ways for each individual algorithm.

II. THE FAMILY OF TRACKING ALGORITHMS
We shall consider the general adaptation algorithm

Orer =0k + pLilye — 030),  we(0,1) (D)
where the gain Ly is chosen in some different ways.
Case 1—Least Mean Squares (LMS):
Ly = ¢x. (12)

This is a standard algorithm [21], {22], and has been used in
numerous adaptive signal processing applications.
Case 2—Recursive Least Squares (RLS):

Li = Pryx (13)
1 Peo10ppp Pe-1 }
Po=—— Py — 14
d 1‘#{ b ul—ﬂ‘*‘lﬂpzpk—l@k a9
Py >0. (15)
This gives an estimate f) that minimizes
k
D =)y - 076)°
t=1
where (1 — ) is the “forgetting factor.”
Case 3—Kalman Filter (KF) Based Algorithm:
Pr-1k
Ly=——"7"7—— (16)
* TR i Peo1on
uPr 10k 0; Pr—1
Po=P 1 - ———7"7TF— R (17)
S Py A nd
(R>0,Q>0). (18)

Here R is a positive number, and () is a positive definite
matrix. The choice of Ly corresponds to a Kalman filter state
estimation for (1) and (2) and is optimal in the a posteriori
mean square sense if vy and wj are Gaussian white noises
with covariance matrices R and @, respectively, and if p is
chosen as « in (2). .

If {©k, Yk, O1} obey (1) and (2) and 6}, is found using (11),
we can write the estimation error 6 as

Ors1 = (I — pFi)0k — pLrvk + ywisr,

Fy, = Lyl (19)
This is a purely algebraic consequence of (1), (2), and (11)
and holds for whatever sequences vy and wg.

If we introduce stochastic assumptions about {v.} and
{wg}, we can use (19) to express the covariance matrix
E[fr4107 ). That will be quite complex, however, primarily
due to the dependence between {Ly, @k, 6;}. The basic ap-
proximating expression will instead be based on the following
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expression

Mesr = (I — pG)Ie(I = pGi)™ + p?Ru(k) My
+ 'YZQw(k + 1)

where Gy, = EFy, M = EL, L}, R,(k) = Ev} and Q.,(k)
= Ewgw}. As follows from Example 1.1, this would be the
correct expression for the covariance matrix of ék+1, if vk and
w;, were white noises and Lo} was independent of 6y, and
if a term of size p*II; was neglected.

Indeed, we shall prove that (20) provides a good approx-
imation of the true covariance matrix in the sense that (10)
holds. Note that ITj, obeys a simple linear difference equation
and can easily be calculated and examined.

(20)

III. THE MAIN RESULT

A. The Assumptions

We shall now consider algorithm (11) with either of the three
choices of the gain Ly, discussed in the previous section. For
the analysis we shall impose some conditions on the involved
variables. These are of the following character:

C1) The regressors {i} span the regressor space (to
ensure that the whole parameter vector § can be
estimated).

C2) The dependence between the regressors ¢k and
(i, vi—1,w;) decays to zero as the time distance
(k — 1) tends to infinity.

C3) The measured error vy and the parameter drift wy are
of white noise character.

In more exact terms, the three assumptions take the follow-

ing form.

Pl: Let S; = E[p:p]], assume that there exist constants
h>0 and 6 >0 such that

k+h
Z S, >6I, Vk.
t=k+1

P2: Let G, = o{ps}, Fr = o{wsvim1, w6 < k}.
Assume that {¢} is weakly dependent (¢-mixing) in the sense
that there is a function ¢(m) with ¢(m) — 0, as m — o0,
such that
|P(A|B) — P(A)| < ¢(m)

sup Vk,Vm. (21)

A€EGk 4 m,BEFK

Also, assume that there is a constant c,, > 0 such that ||p|| <
¢, a.s.,Vk.
P3: Let Fy be the o-algebra defined in P2, and assume that

E[velFi] =0,  Efwis1]Fx] = Elwit1vxl F] = 0
E[}|Fx] = Ru(k), Elwewi] = Qu(k)

sup{E{joe"|Fe] + Elwell"} < M,

for some r>2.M>0.
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B. The Result

Now, let IT;, be defined by the following linear, deterministic
difference equation

Miy1 = (I = pReS)k (I — pRiSk)"

+ (2R, (k) Rk SkRe + 7 Que(k +1)  (22)
where Si = Elprp}], and Ry is defined as follows.
LMS Case:
Ry =1. (23)
RLS Case:
Ry = Ri—1 — tRr—1SkRik—1 + pRik—1, (Ro = Po).
(24)
KF Case:
Ry = Re—1 — uRi—1SkRi—1 + nQ/R, (Ro = Po/R).
(25)

We then have the following main result.

Theorem 3.1: Consider any of the three basic algorithms
in Section II. Assume that P1, P2, and P3 hold. Let II; be
defined as above. Then Yy € (0,p*),VEk > 1

M@%%HNSwm@+%+u—wﬂ 26)

where o(p) — 0 (as p — 0), which is defined by

o(n) & min{y/fim + ¢(m)} @7

and ¢(m) was defined in P2, and « € (0, 1),p* €(0,1),c>0
are constants which may be computed using properties of
{©ks vk, Wi}

The proof is given in Section V. Let us now discuss the
conditions used in the above theorem.

C. The Degree of Approximation

First of all, it is clear that the quantity o(x) plays an impor-
tant role. The faster it tends to zero, the better approximation is
obtained. The rate by which it tends to zero is according to (27)
a reflection of how fast ¢(m) (that is, the dependence among
the regressors) tends to Zero as m increases. For example, if the
regressors are m-dependent, so that ¢y and ¢, are independent
for |k —£] > m, then ¢(n) = 0 for n > m and o(p) will behave
like /. Also, if the dependence is exponentially decaying
(¢(m) ~ Ce=>™), then we can find that

o(p) < Cu®o°

for arbitrarily small, positive 8. This gives a good picture of
typical decay rates of o.
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D. Persistence of Excitation: Condition Pl

Condition P1 is quite natural and weak, just requiring the
regressor covariance matrix to add up to full rank over a
given time span of arbitrary length. It has been known to be
a necessary condition (in a certain sense) for boundedness
of E‘l|67k||2 generated by LMS (cf., [8]); it is also known to
be the minimum excitation condition needed for the stability
analysis of RLS (cf., [10]).

E. Boundedness and $-Mixing of the Regressors: Condition P2

Condition P2 requires boundedness and ¢-mixing of the
regressors. Although such conditions are standard ones in the
literature (e.g., [11]), they can still be considered as restrictive.
As seen in several of the results in Section V, both ¢-mixing
and boundedness can be weakened considerably when we deal
with specific algorithms.

It may also be remarked that when {®k} is unbounded, we
can modify the algorithm and make Theorem 3.1 hold true:
Introduce the normalized signal

1

m(th:c,vk)-

Tk @r- T) =

Then we have from (1)

Thus, {fx} may be estimated based on this normalized linear
regression. In this case, Theorem 3.1 can be applied to this
case if only S and R,(k) in (22)~25) are replaced by
Efprey/1+ lloell?] and E[1/1+ [l¢k||?] Ro(k), respectively.

F. The Parameter Drift Model: Condition P3

There are two things to mention around Condition P3.
First, we note that the martingale difference property of wy
essentially means that the true parameters, according to model
(2), are assumed to be a random walk. Although this model
is quite standard, it has also been criticized as being too
restrictive. We believe that a random walk model, in the
context of slow adaptation (small u), captures the tracking
behavior of the algorithm very well. This is, in a sense, a
worst case analysis, since the future behavior of the model is
unpredictable.

We may also note that time-varying covariances Q,,(k) and
R.(k) are allowed. Several of the special model drift cases
described in [12] are therefore covered by P3. Other drift
models, where the driving noise is colored, can be put into
a similar Kalman filter framework. To cover also that case
with our techniques, however, requires more work.

Condition P3 also introduces assumptions about higher
moments than P2. We remark that if we only assume that {v;}
and {w;} are bounded in e.g., mean square sense, then upper
bounds for the mean square tracking errors can be established
(cf., [7] and [8]). The strengthened assumption in P3 allows us
to obtain performance values much more accurate than upper
bounds.
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G. The Practical Use of the Theorem

The practical consequences of Theorem 3.1 is that a very
simple algorithm, the linear, deterministic difference equation
(22), will describe the tracking behavior. This equation is
quite easy to analyze. In fact, there is an extensive literature
on such analysis, in particular for the special case of LMS.
Among many references, we may refer to [12] for a survey of
such results. In essence, all these results capture the dilemma
between tracking error (II is large because p is small) and the
noise sensitivity (II is large because y is large) and may point
to the best compromises between these requirements.

For example, under weak stationarity of the regressors

SkES

we find that Ry will converge to R as k — oo, where R =1
in the LMS case, R = S~! in the RLS case and for the KF
case we have to solve

RSR=Q/R
for R. Inserted into (22) this gives the following stationary

values I for the tracking error covariance matrix (neglecting
the term p2II)

2
LMS: ST +1IS = uR,S + %Qw
1 -1 ’72
RLS: T =-|uRoS~1+1Qu
2 7
2
KF: RST+TI(RS)” = uR,Q/R+ %Qw.

Note that if we have Q = @, and R = R,, then the latter
equation can be solved as

2 A~
H:E(u+7—>R.
2 ©

From these expressions the trade-offs between tracking ability
and noise sensitivity are clearly visible.

IV. A GENERAL THEOREM

In this section, we shall present a general theorem on
performance of tracking algorithm (11) when the gain Ly is
not specified, from which our main resuit Theorem 3.1 will
follow. The general theorem has weaker, but less explicit,
assumptions. From now on the treatment and discussion will
be more technical. The main line of thought in the proofs,
however, follows the outline given after Example 1.1 in
Section L

A. Notations

The following notations will be used in the remainder of
the paper. These notations are the same as in the companion
paper [9].

a) The minimum and maximum eigenvalues of a matrix X

are denoted by Amin(X) and Ayax(X), respectively, and

1X1 2 Pmax(XX7)}P2
X1, £ {ENIXIP)}V?,

>

p2>1

© bt A ——— o £
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b) Let z = {xx(p),k > 1} be a random sequence
parameterized by p € (0,1). Denote

Loty = {z: swp supllec()lp<oo}.  @®)
p€(0,p*] k21
¢) Let F = {Fi(p)} be any (square) matrix random

process parameterized by u € (0,1). For any p 2>
1,p* € (0,1), define

k
Sput) =4 F: || [[ 0 - uF()|| <M1= pa)*™,

j=i+1
J Y4

Y e (0,p],Vk > 1 >0,

for some M >0 and a € (0,1)
similarly

k
s ={ Fi| T] U-nBIFwD| < M1-pa)*™,
j=i+1

Yy € (0,p%],Vk > i >0,
for some M >0,and o € (0,1)

In what follows, it will be convenient to introduce the
sets

52 U sw), s U sw)

p*€(0,1) u*€(0,1)

(29)

We may call these stability sets. They are related to
the stability of random equation (19) and deterministic
equation (20), respectively. For simplicity, we shall
sometimes suppress the parameter (x) in Fi(s), when
there is no risk of confusion.

d) For scalar random sequences a = (ak.k = 0), we set

n
$%0) ={aar € 0,1, E J] (1—a;) < MX,
j=itl
vk > i > 0,for some M >0
Also

s°2 | s, (30)

X€(0,1)
e) Letp>1landletz £ {z;} be any random process. Set

m+n

5

i=m+1

M, =4 SCpnl/z,VnZI,mZO,

P

for some C, depending only on p and z .

As is known, for example from [10], martingale differ-
ence sequence, o- and a-mixing sequences, and linear
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processes (a process generated from a white noise source
via a linear filter with absolutely summable impulse
response) are all in the set M.

In particular, when {z;} is a martingale difference
sequence, by the Burkholder inequality we have (p>1)

m+4n

> =

i=m+1

< (Bpmza)"l/zﬂ

P

vn>1,m>0 (31)

where z;, 2 supy, ||z, and B, is a constant depending
on p only (cf., [11]). (This fact will be frequently used
in the sequel without explanations.)

f) Let {A} be a matrix sequence, by > 0,Vk > 0. Then
by Ax = O(bx) we mean that there exists a constant
M < oo such that

Akl £ Mbg, vk > 0.

The constant M may be called the ordo-constant.
Throughout the sequel, the ordo-constant does not
depend on 4, even if {Ax} or {bx} does.

B. Assumptions

We will first show, given the exponential stability of the
homogenous part of (19) and a certain weak dependence
property of the adaptation gains, how the tracking performance
can be analyzed, and then we present more detailed discussions
on such properties.

In the sequel, unless otherwise stated, Fi denotes the o-
algebra generated by {pi,wi, vi—1,i < k}, and {Fi} is
defined in (19).

To establish the general theorem, we need the following
assumptions:

Al) (Exponential stability) There are u* € (0,1), and

p > 2 such that

{Fe} € Sp(u™) ) Su).
A2) (Weak dependence) There is a real number ¢ > 3
together with a bounded function é(m, p) > 0, with
A, g(m.10) =0
(taking first m to infinity and then p to zero) such that
Vm, Vk,Yu € (0,p7]
| E[Fi| Fi-m] = ElFlllq < ¢(m, ).
A3) L; € F;,Vi > 1, and there is p* € (0,1) such that
(Li} € Lo(w"),  {F} € Lag(n?)

with 7 = (1/2 — 1/p — 3/2¢)"", and with p and ¢
defined as in Al) and A2).
A4) For all £ > 1 we have

Efox|Fe] =0, Elwis1|Fx] = Elwes1veFi] = 0
E[Uﬁlfk] = R, (k), E[wk+1w£+1] =Qu(k+1)

Elvel"|Fil + Ellwrall] € M< €,

vk > 1
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for deterministic quantities R, (k), Qw(k + 1) and M,
where 7 is defined as in A3).

The key conditions are Al) and A2). In general, Al) can
be guaranteed by a certain type of stochastic persistence of
excitation condition, which is studied in the companion paper
[9], while A2) can be guaranteed by imposing a certain weak
dependence condition on the regressor {¢;}. More detailed
discussions will be given later. At the moment, we just remark
that if A1) and A2) hold for all p > 1 and all ¢ > 1, then in
A3) and A4), the number r needs only to satisfy > 2.

C. The General Theorem
Now, recursively define a matrix sequence { I1;} as follows
Tlis1 = (I — pE[FRDIL(I = nE[F)”

+ p?Ry(K)E[LKL{) + 7’ Qu(k + 1) (32)
where Tly = E[f05], and R, (k) and Q,,(k + 1) are defined
in Assumption A4). Note that this definition is very close to
the definition of IIj in (22). We now have a result that is the
“mother-theorem” of Theorem 3.1.

Theorem 4.1:_ Let Assumptions Al)-A4) hold. Let tpe

tracking error 6 be defined by (11) for (19)], and let Il
be defined by (32). Then Vu € (0,p*],Vk > 1

- ~ N 2
1 B(fasfi] - el < co() [u + 1 (1 - o

where ¢ >0 and a € (0,1) are constants and o(4) is a function
that tends to zero as u tends to zero. It is defined by

o(u) £ min{y/Em + g(m, u)}.

The proof is given in Appendix A.

Next, we show that under more conditions, the expression
for T, in (11) can be further simplified.

Corollary 4.1: Under the conditions of Theorem 4.1, if
Fy = Peorel, with [|gk|l2e = O(1), || Felle = O(1), for some
¢> 1, and if there are some function §(.), tending to zero as
tends to zero, and some deterministic sequence { Ry} such that

1Pe— Rills = O(5()) WhVpe Ou7 5= (-t
then we have (Vu € (0,p*],Vk > 1)
| Efrk+107 1) — el
2
< clo(u) + (0] [u s -t 6

for some constants ¢>0 and a € (0,1), where Il is
recursively defined by
Mee1 =T — pReSe) (I - pRESE)T
+ 2Ry (k)Ri Sk R}, + 7*Qu(k + 1)

with Sy = E[pxel] and Tlp = I
Proof: By Theorem 4.1, we need only to show that

i~ Tpal = 0800 [+ - ant]).

This can be derived by straightforward calculations based on
the equations for II, and II;. and hence Corollary 4.1 is true.

(34)
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Remark: If in Condition A2)
o(m, 1) = O(6(m) +8(x)).  8() = min[y/Fm + $(m)]

then o(y) defined in Theorem 4.1 satisfies a(p) = O(6(p))-
This will be the case for RLS and KF algorithms in Theorem
3.1, as can be seen from Section V.

The following result also follows directly from Theorem 4.1.

Corollary 4.2: If, in addition to the conditions of Theorem
4.1, Ry(k) = Ry, Qu(k) = Qu, and there are F,G, and a
function &(1), tending to zero as p tends to zero, such that
v € (0,47]

|EFx — Fll + |E(LL}) - G| < 8(w), VK

then for some o € (0,1) and for all € (0,*),k > 1

Blfx i) =T+ 0([000 + 8] [" ! %D

+0((1 — ap)®) (35
where II satisfies the following Lyapunov equation
42
FII+UF" = pR,G + TL_Q“" (36)

Now denote
o0 oo
5 - —~F7 Vol -F —~F7
R,,zva e FtGe Y, sz/ e FtQue t
0 0

the solution to Lyapunov equation (36) can be expressed as

2
Il =pR, + le
I

in which there is a reminiscence of the results obtained in the
simple example discussed in Section I [see (9)].

D. Discussion on the Assumptions

Now, let us discuss the key assumptions Al) and A2).

First, Assumption A1) has been studied in the companion
paper [9], and here we only give some results concerning
{F} € S, which will be used shortly in the next section.

Proposition 4.1: Let {G} be a random matrix process,
possibly dependent on i, with the property

E||Gi|l € 8(p), forall small gandall & (37)

where §(p) — 0 as g — 0.
Then {Fk} eSe& {Fk + Gk} €S.
Proof: (Sufficiency) Recursively define (Vz: Izl = 1)
Tht1 = (I - uE[Fk + Gk])zk, Vk>m,zm =T.
Then
Tr41 = (I = BE(Fy))zk — pE(GE)2k

= [ - hE(F)lom

1=m

=S I 1~ wEFEE(G)z:.
i=m =i+l
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Consequently, similar to the proof of Theorem 3.1 in [9}, by
the Gronwall inequality we have

[ na]l €2M(1 = par) "+

x {1+ 5" I (1 +kEIG;|I) - wEIIG:|

i=m j=itl
From this and condition (37), it is not difficult to convince
oneself that {F + G} € S.

(Necessity) By using the fact proved above and noting that
Fy = (Fx+G)~Gy, we know that {Fy.} € S. This completes

the proof. #
The following useful result follows from Proposition 4.1
immediately.

Proposition 4.2: Let Fy, = PrHj, and the following condi-
tions be satisfied:
i) {H’C} E_ﬁf(ﬂ’*)ﬂu’* € (Ol)st > 1
ii) ||Px — Pxlls < 8(u),Vu € (0,p*], where 6(p) — 0 as
p— 0,s=(1-t"1)"" and {Py} is a deterministic
process.
Then {Fk} eSS & {p_ka} eS.
Proof: The result follows directly from Proposition 4.1,
if we note that

F, = PyHy + (Py — Pi)Hy.
#

We now turn to discuss the weak dependence condition A2).
Example 4.1: Let {g;} satisfy (21), and L(:): R¢ — R**¢
be a real matrix function with ||L(¢(k))|lq = O(1), for some
1 < g < oc. Then we have the following inequality (cf., [191)
| E[L(9%)| Fr—m] = EL(¢k)lq
= O([p(m)*= VD) Vk,m.
Hence, if Fy = L(yy), then Condition A2) holds.

Note that when {(} satisfies Condition P2 in Section III,
we have by taking ¢ = oo in (38)

| Elor i From] — Evr@illo = O(¢(m)).

This fact will be used in the next section in the proof of
Theorem 3.1. #
Example 4.2: Let {¢r} be generated by

z = Azp—1 + Bk, (A stable)
ok =Czp + &k

where {¢;,j > k+1} and {v;_1,w;,j < k} are independent,
and {¢;} is an independent sequence. Assume that

(38)

(39

sup E||&]|®*V7 < oc, for some b>0,g2>1.
k

Then for any function L(:): R — R**¢, with
IL(z) = L(z")]| < M(ll]| + l'l| + 1)°l}z = 2]},

there is a constant A € (0,1) such that (cf., [14]) Ym >
0VkE >0

IE[L(¢r+m)1F] = EL(r4m)llg = ON™).

Hence, if Fx = L(yx), then again, Condition A2) holds.  #
The following simple result will be useful in the sequel.

vz, z'
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Proposition 4.3: Let Fi, = Py L(pyx), and the following two
conditions hold:

i) There is a bounded deterministic matrix sequence {P}
and a function §(p) tending to zero as y tends to zero,
such that

1Pe = Prlls < 6(n), Vi€ (0,17], for some s> 1.

ii) There is a number 7> 1 such that ||L(¢x)|l» = O(1),
together with a function ¢(m) tending to zero as m
tends to infinity, such that

| E[L(x+m)|Fe] = EL(@k+m)llg < o(m),
Yk, Ym, (¢g=("1+sH)7.

Then Condition A2) holds with ¢(m, 1) = O(d(m) +
6(m))-
Proof: The result follows directly from the following
identity
E[Fitm|Fe] = EFgtm
= [(Pi+m = Prym)L(0k+m)|Fi]
- E[(Pk+m - Pk+m)L(<Pk+m)]
+ Prym{ E[L(@rtm)|Fr] = EL(k1m)}-

V. ANALYSIS OF THE BASIC ALGORITHMS

In this section, we shall show that, for the basic LMS, RLS,
and KF algorithms, Conditions A1)-A3) can be guaranteed
by imposing some explicit (stochastic excitation and weak
dependence) conditions on the regressors {¢r} and at the same
time prove Theorem 3.1.

A. Analysis of LMS
For the LMS defined by (11) and (12), let us introduce the
following two kinds of weak dependence conditions:

L1) Condition P2 is satisfied but with the boundedness
condition on {¢y } relaxed to the following: There exist
positive constants ¢, 6, M, and K such that

n

S ellgsP < Mexp{K(n— i)}
j=itl

FEexp

Yn>1i2>0.

L1’) The random process Fj 2 @rpy has the following
expansion

Fy = ZAJZIC—]‘ + Dk, Z | Al < o0

j=0 §=0

where {Z;} is an independent process such that
(Z;,5 > k+ 1} and {vj_1,w;,7 < k} are inde-
pendent and satisfies

sup Eexp{al|Zk|'**} < oo, for some a>0,6>0
k

and where { Dy} is a bounded deterministic process.
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Theorem 5.1: Let Conditions P1 and P3 be satisfied. If
either L1) or L1’) above holds, then Conditions A1)-A4) of
Theorem 4.1 hold (for all p > 1.q > 1) and Theorem 3.1 is
true for the LMS case.

Proof: First, in the LMS case, Conditions P1 and L1)
[or L1")] ensure that Condition Al) of Theorem 4.1 holds
for all p > 1 (cf., [9, Theorem 3.3]). Next, when L.1) holds,
by Example 4.1 we know that Condition A2) is true for all
q > 1. Also, when L1’) holds, by the assumed independency
we have for all ¢ > 1

|E(FelFaem] = EFillg = || Y [432k-; = EA; Zi-]
j=m

q

¥Ym > 1.

=o| Y Il
j=m

Hence A2) holds again for all ¢ > 1.

Moreover, Conditions A3) and A4) hold obviously in the
present case. Finally, by (39), the result of Theorem 3.1 (in the
LMS case) follows directly from Theorem 4.1. This completes
the proof.

B. Analysis of RLS
For the RLS algorithm defined by (11), (13), and (14), let
us introduce the following two kinds of excitation conditions:
R1) There exist constants h >0,c¢>0,6 >0 such that

k+h
P{/\min< Z Wiw:) Z C'-}-k} >6. Vk

i=k+1

R1’) There exists h >0 such that

k+h —t
sup E | Amin o7 <o, Yt > 1.

i=k+1

The following weak dependence condition will also be used:
R2) There exists a number ¢t > 5. such that || |ls = O(1),

and that

| Elokok | Fi-m] — Eprpillae < ¢(m).  Vk,m

where ¢(m) — 0 as m — oc.

Detailed discussions and investigations on the above first
two conditions can be found in {10] and [17]. It has been
shown in [10} that if Condition P1 and (21) in Section III
hold, then R1) is true. Also, if {¢x} is generated by a linear
state-space model as in Example 4.2, then R1’) can be verified
(cf., [17]). Moreover, Condition R2) has been discussed in the
last section.

Theorem 5.2: Let Condition R1 [or R1’)] and R2) above
be satisfied. Then Conditions Al1)-A3) hold (for any
p<2t.q<t). and Theorem 3.1 is true for the RLS case.
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Proof: First, note that

k

[T U -uF)=0=-w PP VE>i (40)
=i+l
and
Pt = (1= w P + wenel @1
From this and Condition R2) it follows that
1P e = O(1), Ve (0,1). (42)

Also, by Theorem 1 in [10], there is p* € (0,1) such that

{Pc} € Ls(w®), Vs=1 43)
Combining (40), (42), and (43), we get
(F)es,  Vp<ot (44)
Now, define (Py = Pp)
Pl = (1 - wPily + nE(pxs}), (45)

Since either R1) or R1’) implies P1 (cf., [10]) by a similar
(actually simpler) argument as that used for the proof of (43),
we know that ||Px|| = O(1). We next prove that

1P = Py llae = O(6(w)),
6(n) = glizri{\/ﬁm + ¢(m)}.

First, by (41) and (45)

(46)

k
- B -1 T T
Pi -Pp =) (1- Wil — Epipl].  (47)

i=1

For any fixed m > 1, by denoting

8;(i) = Elpip]|Fij]— Elpip] | Fimj—1], 0<j<m—1
we have
wip; — Epip]
m-—1
=3 6;(i) + {Elpig] | Fimm] = Elpivl]}. (48)
3=0

Now, since for each j, the sequence {§;(i),i > 1} is a
martingale difference, we can apply Lemma A.2 in Appendix
A to each such {8;(z),7 > 1} to obtain

k m—1

WS-t Y 60| = O(Em).  @9)
=1 7=0 2t

Also, by our assumption

k
3 (1 = W Eleiei | Fi-m] — Elpip]]}

=1

< p(m).

2t

W

(50)

Hence. (46) follows from (47)—(50) immediately.
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Similar to the proof of (44), it is evident that

{Prerer} € S. (51)

Now
1Pk = Pill < 1Pl 1P = P11 Pl
From this, (43), and (46) it foliows that
I1Px = Pills = O(8(n)). Vs < 2t.( for small p). (52)

Hence, by Proposition 4.2 and (51), we know that {F}.} € S.
This in conjunction with (44) verifies Condition Al).

Now, by (52) and R2) from Proposition 4.3 it is evident that
Condition A2) holds for any ¢ < t.

To prove A3), first note that for any ¢ < ¢, (44) implies

{Fi} € Lag(1").

So we need only to prove that

for some u* >0.

{L;} € L.(p"). for

This is true since by (43) and ||pk|lae = O(1)
{Li} = {Pipi} € Lo(p"), Vr < 4t

and since 4t > 2t/t — 4. Hence A3) holds.

Thus, by taking ¢t = oc in the above argument, we see that
Conditions Al) and A2) hold for all p > 1 and all ¢ > 1.
Hence Theorem 4.1 can be applied to prove Theorem 3.1 for
the RLS case, while the expression for IT, will follow from
Corollary 4.1 if we can prove that

t
§= ——
t—1
where Pi. and Ry are, respectively, defined by (14) and (24).
Furthermore, by (52), it is clear that (53) will be true if

1R = Pill = O(8(n))

1Px = Rills = O(8(p)). (53)

holds. This can be verified, however, by using the definitions
for Ry and P (see Appendix B). Hence the proof is complete.

C. Analysis of the KF Algorithm

Among the three basic algorithms described in Section
I, the KF algorithm defined by (11), (16), and (17) is the
most complicated one to analyze. Let us now introduce the
following two conditions on stochastic excitation and weak
dependence:

K1) There are constants 2 >0 and A € (0, 1) (independent

of 6) such that

i .
— 3 eS(A
{1+bkh+1} )

where SO()\) is defined by (30), and A, and b, are
defined as follows: (Gy is as before the sigma-algebra
generated by {y;.7 < k})

(k+1)h

1 iy,
/\ké Aming B | — Z ——ZQQkh
Lh i THed
be = (1= 8bk—1 + 6(|l@el> +1). b€ (0.1).
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K2) There exists a number ¢ > 7 together with a function
¢(m) — 0 (as m — ) such that [|ox|lss = O(1).
and that

IE[eepk) Fr-m] = Epreille < ¢(m)

Remark 5.2: If Conditions P1 and P2 are satisfied, then
both K1) and K2) above hold (cf., [10]). When P2 is replaced
by, for example, the situation discussed in Example 4.2, then
again, both K1) and K2) can be verified (cf., [8]).

Theorem 5.3: Let Conditions K1) and K2) above be satis-
fied. Then Conditions A1)-A3) of Theorem 4.1 hold (for any
p<2t,q<4t/7), and Theorem 3.1 is true for the KF case.

The proof is prefaced by several lemmas. First, we need
some results proved in the companion paper ([9, Theorem 3.5,
Lemmas 7.1 and 7.2]), which are collected into the following
lemma for convenience of reference.

Lemma 5.1: For the KF algorithm defined by (11), (16),
and (17), let Condition K1) be satisfied, and {|¢x|la: = O(1)
for some ¢t > % Then

i) {P} el (n). VYue(0.1),Vs>1
i) {P7'} € Lo(u™).  Vure(0.1)
{Fc} € S,. Vp < 2t.

Vk.m.

iii)

To apply Proposition 4.3, our main objective is then to show
that { P} can be “approximated” by a deterministic process
{Py} defined by

Pr =[Py + R Elpre)] ™ + 1Q,
FO = Po. (54)
First, by a similar (actually simplified) argument as that for
Lemma 5.1, the following lemma can be established (details
are not repeated).
Lemma 5.2: Assume that |j¢k||2 = O(1) and that there is
an integer h >0 such that

k+h
inf )\min{ > E(pig] )} >0. (55)
i=k+1
Then the following three properties hold
i) Pkl =0(1).  VYue(0.1)
i) P2l =0(). Ve (o).
iii) {(Px — nQ)R 'orpi} € S(1*). vu* € (0.1).

The last assertion iii) above corresponds to that in Lemma
5.1, because by (16), (17), Fj 2 Ly} can be rewritten as

Fy = (P — pQ)R ™ oy

To be able to estimate the “distance” between Py and Py,
we need some auxiliary results.
Define Vk > 1

Ok +1.7) =(I — pFr)®(k, 1),
U(k+1.4) =T — pFr)V(k,d),

(56)

o(i,i) =1,
V(i) =1

(57)
(58)

where Fy 2 (P — tQ)RIE(pr}).
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Lemma 5.3: Let {ex} € M,.r > 1

{Fi} € S(u™).
sup [|®(k.1)llq = O(1).
k>i>0

{Fi} € Lo(p7)

Then for s = (r~! +¢~1 +¢71)7!
k
SOk +Li+ eV (k+ 1+ 1)
i=0
=0 VD, Ype (0.7
The proof is essentially the same as that for Lemma A.2 in
Appendix A, and hence details are not repeated.
Lemma 5.4: Let Condition K1) hold, and ||x|l4: = O(1),
t > 1. If {ex} € M., then for s < (r~1 +3/4t)~"
k
SOk +1,i+1)e ¥ (k+ 1i+ 1)
i=0
= O(u= ),
Proof: We need only to verify the conditions of Lemma
5.3. First of all, K1) implies {\¢} € S®(A). X € (0.1). So by
Theorem 2.2 in [8]

(k+1)ho
inf Amin Z E)N S >0, for some  hg >0

Yy € (0. 1]

s

3

for small p.

i=kho+1
which implies that there exists hq >0, such that
(k+1)hy i
inf Amind Y E[———g} >0
¢ 0 P

hence, we have

(k+1)h1
inf Amin ST Elpigf] p>0.

i=khi+1

Therefore, (55) is true and Lemma 5.2 is applicable.
Now, by Theorem 2.4 in [8]

(k. DIl < (1Pl - P72
So, by Lemma 5.1

sup ||®(k.1)|ly = O(1), Vg < 4¢. (59)
k>i>0
Moreover, by (56) and Lemma 5.1-)
{F:} € Lp(p"). Vp <2.t. (60)

Now, by (59), (60), and Lemma 5.2-iii), it follows from
Lemma 5.3 that the desired result is true. #

Lemma 5.5: Let {P:} and {Py} be, respectively, defined
by (17) and (54). Then

Py — P = (I = pFx)(Peet — Pe-1)(I — uFe)”
+ pR™H (P — pQ)[E(9r})
— oepR)(Pr — Q)
where Fy is defined by (56) and F is defined as in (58).
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Proof: Denote

[P7Y + pR™ o]
—1 _ .
[Pr_1 + uR™'E(pre}))-

Qk
Qi
Then by (17) and (54)

11>

Po-Pe=Q;' - Qr = Q7' @k - QlQx
= QM{P;}, - PO + uRV[E(pre})
— ol
= Qi Py (Pr-1~ Pre1)Pri1Qr
+ uRIQVE(prw}) — ref]Qr - (61)

But, it is not difficult to verify that (via the matrix inverse
formula)

Q;lpk—_ll =1 - pFy
and
-1 =—-1 =T
P1Qy =1-pFy.
Hence, the desired result follows from (61) directly.

Lemma 5.6: Let Conditions K1) and K2) be satisfied. Then

1Py - Pello = 06(w).  Vs< 5

holds for all small y, where 6(,u) = min>1{/pm + ¢(m)}.
Proof: Set
Hi = R™(Py - Q)
Xk = (orei) (P — pQ).

Then by (57), (58) and Lemma 5.5 we have (Vk>1,Ym > 1)

k
Po-Pr=py @(k+1,i+ 1)H[EX; - Xi]
=1
T (k+ 1,54 1)
k
=uy @(k+1,i+1)[Him
=1

+ (Hl - Hi_m)][EXi - Xl]\IIT(k‘ + 1,7+ 1)-
(62)

Note that by (17), Vi > 1,Vm > 1

Hi—Hi—y =R (Pi = Pi_m)

_ - P10k} Pe-1
—uR! [__ +
# 2 R+ pof Pe_1pk Q

k=1—m+1
(63)
From this and Lemma 5.1-i), we have Vm > 1
|H; = Hi_mllp = O(pm).  ¥p<2t.p€(0.1). (64
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Hence, by Lemma 5.2-iii), (59), and the Hélder inequality, for
any s <4t/5

k
> @k + i+ 1)(Hi — Him)

=1

x [EX; — Xi]U7(k + 1,i+ 1)

k
=0 (um Sa- ua)"“'i)) :

=1

for some « € (0,1))
=0(m), VYm>1. (65)
Now, consider the following decomposition
m—1
Xi—EX; =Y 6;(i) + {E[Xi|Gi-m] — EXi},
j=0
A
8;(i) = E[XilGi—s] — E[XilGi—j-1];
0<j<m-1
Gi = o{ps,s < i} (66)

and note that {H,_.6;(¢),Gi-j,i > 1} is a martingale
difference for each 0 < 7 < m — 1, and that

sup [ Hi_mbi(Dll, = O(1),  Vp<2,1<j<m—1
i,

then by Lemma 5.4 we have for small 4> 0 and for s < 4t/5

k
S @k + 1,i+ D[Hiond (17 (k + Li+1)
i=1

= O(u‘(lmm).

m—1

>

j=

k]

(67)

Next, by Condition K2), (59), and Lemma 5.2-iii), it follows
that for any s <4t/5

k
Z‘Nk + 1,1+ D Hi_n{E[X;|Gi—m] — EXi}
i=1

x UT(k+1,i+1)|| = O(u~'¢(m)). (68)

8

Finally, substituting (65)—(68) into (62) we see that for small
4 and any m > 1

I1Px = Pills = O(Vum + ¢(m)),

Hence Lemma 5.6 is true. #

Proof of Theorem 5.3: First, we prove Condition Al).
By Lemma 5.6, Lemma 5.2-iii), and (56) from Proposition
4.2 we know that {F}} € S. Consequently, by Lemma 5.1,
we have

4
Vs < —.
=%

{(FbeS, [)S Wp<2t (69)
which verifies Condition Al).
Next, by Proposition 4.3 and Lemma 5.6, it can be seen

that A2) holds for any ¢ < 4t/7.

Finally, to verify Condition A3), we note that by Lemma
5.1-1)

{L;} € L.(1"). vr<dt., p*€(0.1)
and
* 4t *
{Fl‘} € £2q(,u ). Vg < 77— p* € (0.1).

But (1/2 — 1/2t — 3/2-2/t)~! < 4t. hence Condition A3) is
also true.

Thus, Theorem 4.1 can be applied to prove Theorem 3.1
(by taking ¢ = oc). while the expression for ;4 will follow
from Corollary 4.1 if we can show that
4t

Vs < —.

PR = Rills = O(8(0). -

This, however, follows directly from Lemma 5.6 since it can
be verified (See Appendix B) that

IR = PxR™'| = O(p)-

This completes the proof of Theorem 5.3.

VI. CONCLUSIONS

In this article, we have presented a number of results by
which the true covariance matrix of the parameter tracking
error can be approximated by a matrix that can be computed
by a much simpler equation. As mentioned above, there is a
considerable literature on this problem. We may point to the
following aspects of how the results of this paper extends and
contains earlier ones.

« The approximation in Theorems 3.1 and 4.1 is explicit.
It involves the true error covariance matrix and the
approximating one. The result is not asymptotic. (It is of
interest, however, only for small gains y.) It is applicable
both during the transient and over infinite time horizons.

+ We have treated the whole family of the most commonly
used tracking algorithms in one general result (Theorem
3.D.

« This includes what appears to be the first formal treatment
of the Kalman Filter as a tracking algorithm in this
respect.

 For the LMS case, the regressors are not assumed to be
bounded and/or independent (Theorem 5.1).

« For the RLS case, the Riccati equation for calculating IT
is simpler than those earlier used [See (24)].

« We have also, in Theorem 4.1, given a general result on
the tracking error under quite weak assumptions. Together
with the results of Section V, this may serve as a tool kit
for building specialized results for particular algorithms.

The basic result is quite easy to understand, and its practical
implications for dealing with the key features of tracking
algorithms are quite important. The basis for the important
compromise between tracking ability and noise sensitivity lies
in these expressions. Nevertheless, the analysis and the proof
of the result turn out to be surprisingly technically complicated.
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APPENDIX A
PROOF OF THEOREM 4.1

We first prove several lemmas.
Lemma A.1: Let a € (0.1) be a constant. Then ¥y € (0.1)

i) sup(l - ap)Vk = 0(u=1/?)
k>0

i) Y (1-om)h=0(")
k=0

00
i) Y (1 - ap) V=0
k=0
where the “O” constant depends only on c.
Proof: Denote 3 = e~ <1, then we have

(1—apk <pr,  Yue (o).
Now, note that sup,>o %/ <oc, then replace = by kup
gives assertion i). To prove ii), observe that

o0

d [ 1
S (™)

k=0

1 9 1 11
-~ log ﬁ@(l —ﬂ“) = (Blog B)? w2’
Hence ii) is also true. Finally, iii) follows from ii) via the
Schwarz inequality.
Now, define
Ok + 1,i) =T — pFp)®(k.1).
®(i, 1) =1, Yk >i>0.

Lemma A.2: Let {ex} € M,.7 > 1,and {Fi} € Sp(u™) N
,ctgu*g.p >1.t> 1" €(0,1). Then for s 2 (r~1 +p~1 +
t~1)~

k
S ok +Li+ e = O(u= ),
i=0

Proof: Set S(k.1)
parts

k
S0k +1i+1)e

i=0

V€ (0, 7]

s

= Xk_

J=i €j, then by summation by

k
=Y @k +Li+1)[S(k.9) - S(k.i+1)]
=0
k
= Ok + L.1)S(k.0)+ Y _[®(k+1,i+1)
=1
— ®(k+1,0)]S(k.1)
k
= ®(k+1.1)S(k.0) + p »_ Bk + L.i+ 1)FiS(k,1).
=1

So by the Holder inequality and Lemma A.1

k
S o+ Li+ e
=0

8

< 1@k + 1 Dllp - 1Sk, 0}

k
+ Y [[@k+ L+ Dl I Fille - Sk Dlr

=1
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=O([1l — ap)*Vk)+ 0O (u S (- ap)tVE - z>

=0
= 0@~ VD) + O(u= D) = O(u=/2),
Vi e (0, 7). (A))
#
Note that by (19)
k
feyr =@k + 1,00+ p Y d(k+1,i+1)
=0

[=pLivi + ywiy1]-

Applying Lemma A.2 we immediately have the following.

Lemma A.3: Let {L;v;} € M,, {w;} € M, {F} € Sp
(*) N L(p),r>1,p>1,t>1, pu* €(0,1). Then for
s2 (14 p~t 47171, and Vpu € (0, "]

10k+1lls = 0(ﬂ+ ﬁ +(1 - au)’c)

holds for all £ > 1, where o € (0,1) is a constant. #
Now, let us introduce a new sequence {f}

Ors1 = — pE[F))0k — pLivk + YWk+1,

o =bo. (A2)

Similar to the proof above, we have the following lemma.
Lemma A.4: Let {Li’l)i} € MT,{wi} e M,, r>1, {Ft}
€ S(p*), u* € (0,1). Then

el = O(Vi+ J + 1 - ). Ve 0]

\/—
where a € (0,1) is a constant (without loss of generality, it
may be taken as the same as that in Lemma A.3). #

Proof of Theorem 4: By (A.2) and Condition A4) it is
evident that

Met1 = Efr1pa),  VE20.

Hence by Schwarz inequality
| ElBr416741] — el
= ”E[gkﬂal:ﬂ - 9k+19k+1]H
= | El(frs1 — Ors1)0rr1 + Or1 (Bfa — By )]l

< NOksr = Gerallz - Wbksrllz + 18ksalle]. (A3
Denote
v k
epla) = + —= 4+ (1 —ap)”. (A4)
k() =V NG ( )
By Lemmas A.3 and A.4, we know that
18x+1ll2 + 1x+1ll2 = Oler(a)). (A5)

So we need only to consider the first term on the right-hand
side of (A.3).
By (19) and (A.2), it is seen that

ékol - ?1\.,1 = (I — uE[Fk])(ék — ak) + [,A(E[Fk] — Fk)ék.



Define
U(k + 1.1) =(I — pE[F:])V (k. 1),
V(i) =1, Vk > i.

Then we have (Yk > 0)

k
Brsr = Oksr =p Y U(k+ Li+ 1)(E[F] - F)6;
1=0
=u S Uk +1.i+ 1)(E[F)) - F)b;
=0
k
+u Y U(k+1,i+ 1)(E[F] - F)

—

X {Bicm + (i — i)} (A.6)
where m = m(u) which is defined by
(A7)

m(p) = arf;rllin[ﬁm + ¢(m, )]
Note that
ViEM(p) < am(p) + ¢(m(u), ) < Vi + ¢(1, 1)

which implies that

¢(lip) o
N

for some constant ¢ > 0. Consequently, for any o € (0,1)

m(p) <1+

Vu € (0,1)

(1-ap)™®W < (1-ap) V¥ =1, as p—0

hence (1 — au)~™®) € (0,1), is a bounded function for
any a € (0,1). In the sequel, we will frequently use this
fact without explanations and will also drop the variable  in
m(p) in what follows.

Now, denote
11 1\
s={-+-+—} .
T p 2

Then by (A.4), Lemma A.3, and Conditions A1)-A4) we have
Vi € (0,p*]

(A.8)

6x+1lls = O(ek(@)))- (A.9)

Note that the number s defined by (A.8) satisfies [s™! +
(2¢)"1]~' > 2, we have by (A.9)

m—1
pll S Wk + 1+ D)(E[F] - F)6i|| = O(umer(a)).
=0
’ (A.10)

So, we need only to consider the last term in (A.6) for
k> m.

Note that by (19), Vi > m

~ ~ 1’71 ~

0; —6;i—m = Z [—quﬁj - uLjvj + ’)”LUJ'_H]. (A.11)

j=t—m
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So by denoting

-1
1 1

u = (* + —) (A.12)
s 2q

and applying the Holder inequality to (A.11) and by noting that

{—pL;v; +ywjs1} € M, C M, we have for any i > m

16; = 0i—ml|u

i—1
< N wllFillzg - 1650
j=i—m
i-1
+l Yo (=rLjvi+ywis)

j=i—m
J u

i—1
= O(Z usj(a)> + O(Vm[p +4])

= o((vim|vii+ %ﬁ]) 4 O(um(1 - o)™,
(A.13)

for u € (0,p*].

By (A8) and (A.12) and the definition of r in Condition
A3), it is readily verified that 1/2 = 1/2q 4+ 1/u. Hence, by
(A.13) and Condition A1) we obtain (Vk > m)

k
3 Uk + 1+ 1)(B[F] = F)(6: = fi-m)

i=m

L

2
k

< NPk +1i+ 1)

: \|1E7[;«1-] — Fill2g - 16 = i—mllu
o 3]

+O(u*m(k = m)(1 — ap)*~™)
)

+ O(*msup{k(1 ap)*})

= o(\/’,;m[\/p+ %D (A.14)

where for the last relationship we have used Lemma A.1-i).
Now, set for j > 0,0 > m

8;(i) 2 E[F|Fi-j] - E[Fi|Fi_j-1].

Then Vi > m
m—1
F,—EF,=Y_ 8;(i) + E[Fi|Fi—m] - EFi. (A5
3=0

For any fixed 0 < j < m — 1, denote e; = §;(i)fi—m, then
it is obvious that {e;, F;_;,i > m} is a martingale difference
sequence and that by (A.9) and the fact that 1/2 > 1 /2q+1/s

ledla < 2l Fillzg - 1Bi—mlls = Olimm(a)).

i>m.
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Consequently, denote S(k.1) 2 E;?:i ej. we have for any
k>i>m

. 1/2
Sk, D)llz = {2E63}

j=i

:o<m(ﬂ+ %)

+(1—ap)mum?).
Hence similar to (A.1) we have by (A.4) and Lemma A.1

m—1

> 65(0)0iom

=0

k
I Z\P(k+1,i+1)

t=m

2

k
S Uk +Li+ e

i=m

<uy

-1

.
o

2

-

3

<u Y N8k + L+ - [SCk.m)l

2

m-—1 k
)Y k4 Li+ D)

Il
o

j=0 i=m+1
NEF - 11S(k. 92
= m 2 —ap)km™ -m
—0<u (ﬁ+ﬁ){<l W E=m
k
+u Yy (l—au)k'i\/k—i}>
i=m+1

+ 0(yim(1 = Suf)
- ofyima ()

Note that by (A.8) and the definition of 7 in Condition A3),

we have 1/2 = 1/q+ 1/s. Hence by (A.9) and Condition A2)
k

STk + 1+ D{E[Fi| Fiom] - EF}i_m

t=m

vk > m. (A.16)

"

2

<y I8+ 1i+ DI [BIF|Fiom]

— EFillq - 16i=mls

- ofsmia(3)

for any p € (0.p*].
Combining (A.16) with (A.17) and noting (A.15), we see
that

(A.17)

k
ST Uk + L+ D[F = E(F)fi-m

i=0

= 0([viim + ¢(m, Ml&k(%))

this in conjunction with (A.14) and (A.10) yields

U

2

641 = Brsall2

= o(1vam + stm.le (5 )) = 0(otwex(3))-
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Finally, substituting this and (A.5) into (A.3), we obtain
Yu € (0,p"]

Bk - Tl < 0000 =G @

Finally, substituting (A.4) into (A.18) we see that Theorem
4.1 is true.

APPENDIX B
ANALYSIS OF THE RICCATI EQUATIONS (24) AND (25)

Lemma B.1: Let Condition P1 be satisfied and {Si} be
bounded. Then the following two assertions hold:
i) For {Ry} recursively defined by (24) (with Ry, =
Py > 0), we have for all small >0

Rk = Pell = O(n), VK

where {P}} is defined recursively by (45).
ii) If {Ry} is defined by (25) (with Ry = PsR7!) and
{Py} is defined by (54)), then for all small > 0

Rk = PxR7Y| = O(n),  Vk.

Proof: i) We first show that for all m > 0 and small
>0

Ron >0, tr(Rma)<2dh6™' +tr(Ro)  (B.1)

where 6 and h are defined in P1 and d = dim(py).

Let (B.1) hold for some m > 0, and we proceed to prove
that (B.1) also holds with m replaced by m + 1. By (24), we
know that Ry < (1 + p)Rk—1, and that

Re = RY2A10+ I - nR SRR,
Consequently, it is easy to see that for all suitably small 1> 0

Ry >0, Vk € [mh,(m + 1)h]. (B.2)

Now, iterating (24) we see that R, 1), can be represented
by {Rmh,Sk,mh +1 < k < (m+1)h} as follows

(m4+1)h
Rim+1yp = (1 + ph)Rmp — 1t z Ronn Sk Rmh + 1% Bm
k=mh+1
(B.3)

where ||B,|| < B and B depends only on h and the upper
bound of tr(Rm,s) in (B.1).

Let us denote 7, & tr(Rmn). By the inequality tr(RZ,) >
d='r2, and Condition P1 we get from (B.3) that

Pma1 < (14 ph)rm — péd ™12, + p?Bd. B.4)

Note that the function (14 puh)z — ufd='z? is positive and
increasing for = € (0,(1 + ph)d/2u6). Thus, if 4 is small
enough that

(1+ ph)d

6 -1
M = 2dhé™ + tr(Ro) < o
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Then by (B.4) and the assumption r,, < M. we have

Fnat < (14 ph)M — pbd=*M? + p*Bd.
=M1 + ph — péd™*M + u?BdM ™1
<M[1 — ph + p?BdM ™1

<M. for small > 0.

Hence by induction, (B.1) is proved. Consequently, (B.2)
holds for all m > 0.
Furthermore, by (B.1) and the inequality

R < (1 + p)Ri—1

it is easy to see that { R} is uniformly bounded with respect
to small x> 0.
Next, by the matrix inversion formula from (24) we have

-1 R B o172
k 1+ 14p k
U+ T = pSY Ry S S

Since {Ry} is bounded, from this it is evident that {R} '} is
also bounded for small gz >0 and that

Ry' = (1— mRL, + uSk + O(u?).
This in conjunction with (45) gives
-1 5-1
HRkl = P [l = O(n).
Hence, by the boundedness of { R} and { P} [see Lemma
5.2-1)], we get
—— —_——1 — p—
1Re = Pell = |Re(Py = RHPll = O(w).
This proves the first assertion of the lemma
ii) Similarly to the above analysis for (24), by (25) it can
be shown that {R;} is a positive definite sequence and is

uniformly bounded with respect to all small x> 0.
Now, rewrite (25) as

Ry = Rllc/—Ql(I - URi/-Ql Slelc/—21)Rllc/—21 + QR
We see that
)\min(Rk) 2 (1 - “M))‘m'm(kal) + N‘R_l)‘min(Q)
where M supy, ||R,1€/_21SkR,1c/_21H. This implies that {R; '}

is also uniformly bounded with respect to all small ;> 0.
Note that (25) may also be rewritten as

Ri =(I = pRr_1Sk)Rr—1 (I — pRik—15k)7
+ 1Ry ST — uSy* R 1 Sy*)SE * Ry
+ QR
Hence by applying Theorem 3.4 in [9] we know that
{Ri_1Sk} € S, where S is defined by (29). Furthermore,

by Proposition 4.1 we also know that { Rg—1Sx +O(u)} € S.
Next, by the matrix inversion formula it can be verified that

R = (R, + pS) ™' + pR7'Q + O(4?).

Similarly to the proof of Lemma 5.5, from this and (54)
we have
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Rk - ﬁkR_l = [I - l‘Rk—ISk + O(/LZ)]
% [Re—t = Pecy R7N(I = uFy) + O(u®)
(B.5)

where {Fj} is defined as in Lemma 5.5. Since both
{Rik-15k + O(n)} and {F} belong to S. by iterating the
above equation it is easy to see that the desired result holds.
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