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Convergence problems of several basic least-squares self-tuning regulators
are solved completely Some recent related results are also surveyed and
extended.
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Abstract—This paper starts with a survey of some recent
results on least-squares (LS} and LS-based self-tuning
regulators (STR). Several long-standing problems concerning
the basic properties of LS-based STR, such as stability,
optimality, consistency and the best convergence rate, are
solved within a unified framework. Some previously related
results are also subsumed and extended Various new
techniques for analysing LS-based adaptive tracking systems
are presented, which may also be useful for analysing other
adaptive control problems.

1 INITRODUCTION

Over the past three decades, a great deal of
research effort has been devoted to the area of
adaptive control, and much progiess has been
made in both theory and applications (see e.g.
Goodwin and Sin, 1984; Kumar and Varaiya,
1986; Astrém and Wittenmark, 1989; Chen and
Guo, 1991; and references therein). However,
because of the strong nonlinearity of the
closed-loop equations of adaptive systems and
the complexity of the stochastic processes
involved, many fundamental theoretical prob-
lems still remain open (see e.g. Astrom, 1983),
among which the convergence of the least-
squares (LS) based self-tuning regulator (STR} is
probably the most notable.

The SIR was originally proposed by Kalman
(1958), and developed for stochastic minimum
variance control problems in the landmark paper
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of Asttom and Wittenmark (1973). Since the
STR is very flexible with respect to the
underlying design method and is easy to
implement with microprocessors, it has received
considerable attention. Apparently, Astrom and
Wittenmaik (1973) were the first to attempt an
analysis of adaptive minimum-variance control
constructed using LS-type estimates. lhey
showed that if the LS parameter estimates
converge to some limit then the adaptive
controller must be optimal. However, as they
noted, since the closed-loop system is charac-
terized as a nonlinear stochastic system, it is very
difficult to rigorously prove that the estimates
are indeed convergent, although simulations of
numerous examples indicate that they do. Later,
Ljung (1977) presented an interesting analysis of
the STR via the ODE approach; however,
some conditions on the input—output signals of
the closed-loop system are required, which are
found to be hard to either remove or verify.
The first significant progress in this direction
was made by Goodwin et al. (1981). They
showed that if the I.S algorithm is replaced by a
stochastic approximation (SA) algorithm then
the resulting adaptive control system is asympto-
tically optimal. However, as pointed out by Sin
and Goodwin (1982), it seems that in practically
all applications of stochastic adaptive control a
least-squares iteration is used, since it generally
has much supcrior rates of convergence com-
pared with stochastic approximation. In view of
this, Sin and Goodwin (1982) and Chen (1984)
studied a modified least-squares (MLS) algo-
rithm for parameter estimation, and showed that
the resulting adaptive control system is asympto-
tically optimal; Kumar and Mooie (1982)
introduced a sequence of weighting coefficients
in the LS algorithm, which is chosen according
to a certain stability measure to guarantee
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convergence. However, it is not known whether

the control laws in Sin and Goodwin (1982) and

Kumar and Moore (1982) enjoy the same nice

convergence 1ate as that of the LS-based

adaptive algorithm. Moreover, the modifications
introduced there are not shown to be really
necessary.

In order to improve the convergence rate, Lai
and Wei (1986) studied another type of
modification  of the  Astrém-Wittenmark
scheme, and, by introdueing oceasional blocks of
white-noise probing inputs, they proved a sharp
convergence rate for the confrol law when the
underlying system is open-loop stable. Guo and
Chen (1988) also modified the LS-based control
law by introducing a sequence of stopping times
as well as a sequence of decaving excitation
signals; they established the convergence rates
for both the controller and the parameter
estimator. The main restriction in Lai and Wei
(1986) and Guo and Chen (1988) is that the
convergence of the adaptive schemes is only
proved for open-lcop stable systems Further, by
using the technique of ‘Bayesian embedding’,
Kumar (1990} succeeded in showing that, outside
an exceptional set of true parameter vectors of
Lebesgue measure zero, the LS-based adaptive
controller converges. However, as implicitly
mentioned by Kumar (1990), the main problems
with the ‘Bayesian embedding’ approach are:

(i) the Gaussianity and independency assump-
tions on the noise are essential;

(i) the convergence is not guaranteed when the
true parameter vector is contained in the
exceptional set.

Recently, on the basis of some ideas in the
analysis of time-varying stochastic systems by
Guo (1990), a novel approach has been found by
Guo and Chen (1991), which leads to a complete
stability proof for a class of LS-based STR.
Later, some results of Guo and Chen (1991)
were generalized to multidelay systems by Ren
and Kumar (1991) and to model reference
adaptive control by Meyn and Brown (1993).
However, several interesting issues are not
addressed by Guo and Chen (1991):

(i) in the case where b, is not available, it is
not known if it is possible to prove the
convergence of the LS-based STR without
making any modifications to the LS
estimate for by;

(i) the methods for establishing the logarithm
law or the best convergence rate of the
LS-based STR are not discussed:

(iti) the consistency of LS estimate in adaptive
control systems is not clear when no
external excitations are introduced

These issues will be discussed here

This paper is based on the work of Guo (1993)
and Guo and Chen (1991). Iis purpose is
threefold:

(i) to present a unified solution for several
long-standing problems concerning the basic
asymptotic properties of LS-based STR;

{ii) to give a survey (and extension) of some
recent theoretical progresses on conver-
gence of both LS estimator and LS-based
STR;

(iii) to refine some key analytical techniques
used for LS-based adaptive systems, so that
they may be easily comprehended and (it is
hoped) applied to other adaptive control
problems.

For simplicity of mathematical calculations, and

for easy understanding of the underlying key

proof ideas, we only consider SISO systems with
unit delay and white noise disturbances in this
paper. More general MIMO systems with
multidelay and coloured noises may be treated in

a similar way, as partly illustrated in Guo and

Chen (1991), Guo (1994) and Ren and Kumar

{1991).

2. PROBLEM FORMUIL ATION
Consider the following SISO system:
AZ)Yn = BZupr +w,, n=0, (1)

where {y,}, {#.} and {w,} are, respectively, the
system output, input and noise processes
(without loss of generality, we assume y, = w, =
u, =0 ¥n<0), and Az} and B(z) are
polynomials in the backward-shift operator z:

A(z)y=1+a;z+ - +a,2", p=0,
B(z)=bi+baz+ + +b2", g=1,

with @; and b; unknown coefficients and p and ¢
upper bounds on the true orders.
We introduce the unknown parameter vectot

6=[-a ~ —a, by - b @
and the corresponding regressor
Pn — [yn un—q%—l]r' (3)
The system (1) may be succinctly written as

Y1 = BIan + Wpi1, H = 0 (4)

YH —p+1 U,

Our control objective is, at any time instant #,
to comstruct a feedback control i, based on the
past measurements {y, Vo Ug " Uy} SO
that the following averaged tracking error is
asymptotically minimized;

1 n
7.2 - Zl (i — v&V, (5)

where {yf} is a known reference signal.
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In order to analyse the above control problem,
we introduce the following standard conditions:
{A.1) The noise sequence {w,, %} is a Martin-

gale difference sequence (where {%} is a
sequence of nondecreasing o-algebras)
with conditional variance o2 ie.

EWen| F]1=0">0 as. ©)
We also assume that there exists §>2
such that

sup E[w,|° | #] < as (7)

(A2} B(z}##0 ¥z with |z|=1 (the minimum-
phase condition).

(A 3) {y}} is a bounded random/deterministic
reference sequence that is independent of
{wn}.

It is well-known (see e.g. Goodwin and Sin,
1984; Kumar and Varaiya, 1986) that for the
control problem (5), the Condition A2 is
necessary for the internal stability of the
closed-loop system.

We first consider the case where the
parameter # is known. Since {w,} is unpredic-
table, it is obvious that the minimum value of
lim/J, is o° and the corresponding optimal

control law satisfies y¥,, = E[y,+: | %], or,
according to (4) and A.1

01 @, = i (8)
From this, the  optimal control u, can be
expressed explicitly as

1
Hy :b_(al.Yrr + -+ apynprrl + b2unﬁ1
1

- bqun—q+l + y;i:+]) (9)

Substituting this into (1), we obtain the
following ideal closed-loop equation in the case
where 6 is known:

Vo~ Vi—w,=0 VYr=0 {10)

Next, we consider the case where 8 is
unknown. In this case the recursive least-squares
(LS) method is usually used, which gives
estimates for the unknown parameter 6 as
follows:

6n+1 = Bn + ananDn(ynnLl - ¢59n); (11)
Pn+1:Pr1 _anPn(Pn‘PrIzPru (12)
3, =L+ @aPun) ', (13)

where the initial values 6, and F,>0 can be
arbitrarily chosen.

According to the ‘certainty equivalence

principle’, replacing the 8 in (8) by its LS
estimate &,, we obtain the following standard
STR:

8,0, = Vi1 (14)
or
1
Uy = bi (aln 7% e oy Yn—p+1— bZnunwl
in
- bqnun—q+1 + y:!:+1); (15)
where a,, and b,, are the components of 4, ie.
Bn é [701,, t _apn bln T bqn]I“

Since the closed-loop equation in the ideal
case is (10), it is natural to expect that in the
adaptive case under (14) the closed-loop
cquation satisfies

Ve —VE—w,=0 V¥n, ina cecrtain sense.

Usually, we expect that the accumulated
‘closed-loop tracking error’

E (i yE - w? (16)

14

R,

satisfies
R,=o0(n) as an

Intuitively speaking, (17) means that the error
‘v, — Vi —w,’ converges {o Zero in an averaging
sense.

By the condition A 1, it is casy to prove that

R,=o(nel,—o? as,
where J, and o are, respectively, defined by (5)
and (6).

Therefore a sufficient and necessary condition
for the optimality of STR is that (17) holds.
Now, a natural question is whether o1 not (17) is
really satisfied for LS-type SIR? Moreover, how
fast is the growth rate of R,? The latter question
is concerned essentially with the accuracy or
convergence rate of the STR. We shall treat
these problems in the subsequent sections.

3 ANALYSIS OF LS

The analysis of the LS algorithm is the first
step in the study of any LS-based adaptive
control.

The origing of LS can be traced back at least
to Gauss (1863), and its 1ecursive form can be
found in the early works of Plackett (1950). A
basic problem in the analysis of LS is strong
consistency, ie. determining the kind of
conditions under which

lim 8,=0 as. (18)

f—s0

There is a vast literature on strong consistency
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of LS. In the ficld of dynamical system
identification the early works are those by Ljung
(1976), Moore (1978) and Solo (1979), among
many others. They proved that if the condition
number of P;' is bounded, or if the
input—output signals satisfy a persistence-of-
excitation (PE) condition, then (18) holds. The
PE condition was later significantly relaxed by
Chen (1982). In a subsequent breakthrough
paper, Lai and Wei (1982) succeeded in
obtaining the weakest condition (in some sensc)
for the strong consistency of the IS algorithm.
Various generalizations of their results are also
available (see e.g. Chen and Guo, 1986; Lai and
Wei, 1986). Unfortunately, it has been found
that the verifications for even the weakest
consistency condition of Lai and Wei (1982) are
surprisingly difficult when the input—output
signals are generated by the closed-loop
equations determined by the LS-type STR. This
is so even if the reference signal {y}} is
sufficiently rich. Nevertheless, analysing pro-
perties of the LS algorithm is a preliminary step
towards the study of LS-based STR.

In this section we shall consider the linear
regression model

Yn+1 B ‘Prt + wn+1) n= Or (19)

which is of the form {4); however, here y, and ¢,
are not necessarily constrained to satisfy (1) or
(3). What we actually require here is that ¢, be
d-dimensional and %,-measurable.

Lemuma 31 Let the condition A1 be satisfied
for the linear model {19). Then the LS algorithm
(11)-(13) satisfies the following identity as

n— o]

+1Pn+19n+1 +[1+o0(1)] 2 ak(‘P ek)z

n

=0” 2, aroiPeey + o(log (det P714))

+0(1) as.,

where ék =8 - 6,!0.

This lemma requires no excitation conditions
on the regression process {¢,}, and is based on
the woik of Lai (1986), Wei (1987), Chen and
Guo (1986) and Guo and Chen (1991). The
proof is supplied in the Appendix. From this
basic lemma, a number of useful results can now
be derived.

Corollary 3.1, Under the conditions of Lemma

3.1, we have

() E (‘Pkek)

= Ol
T+ o Poon (logr,) as,

(ii) 6,.,P,;1.0,,.=0(@ogr,) as,

where

=1+ lel?
i=0

Proof By (12) and (13), it is evident that

Pli=Pi + 2 ool (20)
k=0
So, denoting d = dim (¢,), we have
Iog [dE’t (P;il)] = d lOg ’\max(P;l_-}-l)
=dlogr, +O(1)  (21)

Consequently Corollary 3.1 follows immediately
from Lemma 3.1 by noting (21) and the relation
(A.3) from the Appendix.

Corollary 32. Under the conditions of Lemma
3.1, the following results hold:

1
_qg"_) a8
mln(Pn+l

(i) 6,41 =0(Viogr,) as on {r,— =}

) 18w 012 O

Proof. Note that

P ]
— 218,
)‘min(Pr:-}l-l) o

Heace (i) follows from Corollaty 3.1(ii). So we

need only prove assertion (ii).
By (11) and (19), we have

18,ssl*= §5+1|i

8,,.,=08,+ anPn@n(@gén) + a4, P @ Wit (22)

Note that, by (12)

o

2 argiPipr = E tr (P — Pray) <. (23)
k=1

k=1

So, by the Martingale convergence theorem (see

eg. Chen and Guo, 1991, Theorem 2.3), the
series ﬁ‘, ayPopwy .y, converges as.. Also, by
k=1

{(23) and the Dini theorem (see Knopp, 1928, p.
293), there exists a positive random sequence

{B:} such that 8, —0 and kE BilaweiPigi <=
=1
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a.s. Hence, by (22), the Schwarz inequality and
Corollary 3.1(i)

16,41l = 62 + +0(1)

E akqu’k(‘Piék)
k=1

n 2
=0(1)+ (E akQDkPﬁ‘PkBEI)

k=1
n _ 172
x(3 B i0ker?)
k=1

=0(1) + o(Viog ) N

Remark 3.1. The second assertion of Corollary
3.2 cannot be derived directly from the first,
because the condition Apy,(P,1)— = is not
assumed.

Corollary 3.3. If, in addition to the conditions of

Lemma 3.1
oIP.@0,—0, asr,—®, as. (24)

then

1 & =
lim sup—— Y (pl8 =0 as. (25
n—= n k=0

Furthermore, if (24) is strengthened to

=0(n), {le.l>’=0(n°) (0<8<1) as.
(26)
and :
n=0(tu(PY) as. @7
then

10 E (ei6 Y =0d as, (28)

where d =dim (g;), o is the variance of {w,}
and r, is defined as in Corollary 3.1.

The proof is given in Appendix A.

Remark 3.2, The wverification of the condition
¢rP,p,—0 is the key difficulty in establishing
the logarithm law of LS-based STR. This
condition is satisfied when {¢,} is bounded.
Indeed, by (12), we have

& CHED.
i=1 (1 + M’z”z)(l + @i P()QU,)

(1 ) i)
(P Pi+1)€°i
1+ e

A

MB EME ||Ms

(P Pi+1)< 00,

Il
-

which, in conjunction with the boundedness
of {p} gives 3 (¢plRg) <,

(p,,P,,rp,, —0 When {@:} is unbounded, the
verification of ¢P,@,—0 is much harder
Conditions (26) and (27) are one set of
conditions guaranteeing such a property.

and hence

4 THE ASTROM-WITTENMARK STR: STABILITY
AND OPTIMALITY

For the system (1), the leading coefficient b, in
B(z) is usually referred to as the high frequency
gain. When b, is known, we need only estimate
the following parameter vector

0=[{-a, -~ -a, by b, 1% (29)
in this case the corresponding regression vector
¢, should be defined as

JI/‘:n—q—O—l]Ts

(30)

Pr = [er Yn—p+1 Up—1

and the system (1) may be written in the form
Yus1— blun = qupn + Wnti (31)
The LS estimate for the unknown parameter 8
is

6n+1 6 + aﬂP @n( Yn+1 b ‘Pien)) (32)
— @ P 0nprlas @, =(1+ 01 P) ™

(33)

where the initial conditions 8, and £, >0 can be
arbitrarily chosen.

According to (8) and the ‘certainty equiv-
alence principle’, the LS STR is

Pn+1=Pn

1
b_ (aln Vot + ApnVn-p+1 ™ Danltn—1
1

- bqnun—q+1 + y?‘:+1)

i
= - (vies = 6len), (34)
1

where @, and b;, are the components of 8, ie.
en = [“aln e “apn bZn o bqn]T"

Obviously, the closed-loop control system
defined by (29)-(34) is a highly nonlinear
equation of the output signals. Since the STR
(34) was initially proposed and studied by
Astrom and Wittenmark (1973), it may be
referred to as the Astrém—Wittenmark STR.

Before proceeding further, we need to intro-
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duce some notation that will be used throughout
the sequel:

A (‘szgk)z

Tr othg % WEFo), 09
k& kYrk

ay

21+ el 8.=6-6. (36
i=0

Moreover, we assume that {d,} is a nondecreas-
ing positive deterministic sequence such that

wi=0(d,) as, d,. =0{d,) 37N

Note that under the condition A1, d, can be

taken as

d,=n°® ¥8e(2/B,1), (38)
where £ is given by (7) (cf. Guo and Chen, 1991,
p. 804). Furthermore, if additional assumptions
are imposed on {w,} then d, can be tiaken
smaller. For instance, if {w,} is a bounded noise
then d,=1, and if {w,} is Gaussian white noise
then d,, = log i, etc.

We {first present two preliminary lemmas. The
key idea of the proof is to dominate the output
signals of the nonlinear closed-loop system by
the solution of a certain linear time-varying
equation.

Femma 4.1 Consider the closed-loop control
system (29)-(34). If Conditions A.1-A3 are
fulfilled then there exists a positive random
process {L,} such that

vi=L, ¥Yrn as, (39)

and {7} satisfies the following ‘linear time-
varying relationship™
Ln+1 = (/\ + can SR)L'R + gn) (40)

where the constants A e (0, 1), ¢ >0, «, and §,
are defined by (35), and {£,} is a positive random
process satistying

&, =0(d, logr,), (41
with d,, and r, defined, respectively, by (37) and
(36).

Proof Substituting (34) into (31) yields
Yor1= Qogén T yi Tt Waaa (42}
Then, by (35) and (37), we get
ya1=2(ex0,) + 0(d,)
=2a,[1 + @t P, ¢.] + O(d,)
= Zan[1 + (P;Pthlqon
+ qp;(Pn - Pn+1)(Pn] + O(dn)
=2e,(2+ 8, le.)%) + O(d,)
=2a,8, lle.l>+ O(d, +logr,), (43)

where we have used the fact that ¢iP, @, =1
and e, = Q(logr,) (see Corollary 3.1(i)).

By the Condition A 2, it is easy to see from (1)
that there exists A = {0, 1) such that

Ga=0(Z ) +oW) ()
i=0
Then

2 ~ 2 < 2
leall®= 2 y2oi+ 2> w2,
i=0 i=1

- o3 x93) + 0t

n

Define L, =3 A" ‘y? Then, (39) is satisfied.

i=0
Consequently, by (43), we have
y2i=ca,d,L, + 0(d,logr,), (45)

where ¢>>0 is a constant. From this and the
definition of I,,, we have

Ln+1
=AL,+ y%-z-l = (’\ + ca,,é‘,,)Ln + O(dn IOg rn);

which is (40}, and hence the lemma is proved. O

Next, we estimate the growth rate of the
regression process {¢,} by analysing the ‘linear
time-varying’ equation {40).

Lemma 42 Under the conditions of Lemma
4.1, we have

lgal?=O(rid,) as. Ve=0,
whete r, and d,, are defined by (36) and (37),
respectively.

Proof. By (40)

=0

i=0j=i+1

=T A+ A eq;8,) L
=0

+> A I @+ aes)é (46)
i=0 j=i+l
We now proceed to analyse the products in
(46). First, from

2 8= (B —trP,)
j=0

j=¢

=fr Py<< oo, (47)

we know that §;— 0. Then, by Corollary 3.1(i), it
is known that for any e >0, there exists i, large
enough that

Ale X say=elogr, Vn=ziziy (48)
j=i



Convergence of self-tuning regulators 441

From this and the inequality 1 + x =e*, x =0, we
have, Vh =i =,

,H- (1+ A7 ") <exp ()l_lc E aj-Sj)
=i j=i
=exp(elogr,)=rr (49)

Substituting this into (46) and using (41), we
have L,.,=O0(rid,logr,) Ve >0, whence, by
the arbitrariness of €, we have from (39),
Yae1 = Ored, ) Ve >0 It follows from this and
(44) that wZ=0(r:d,), Ye>0. Hence the
lemma is proved. m

Once the growth rate of {¢,} is determined,
the optimality of STR can easily be derived using
Corollaty 3.1(i), as will be seen from the
following theorem.

Theorem 41 Consider the adaptive control
system (29)—(34) Let the Conditions A.1-A.3
be satisfied. Then the closed-loop system is
stable and optimal, and

R,=0(logn)+ O(e,) as. (50)
with
€. = (logn) max {8i°d} Ve>0, (51)

l=i=n

where R, 8, and d, are defined by (16), (35} and
(37}, respectively

Proof. First, note that e,= Qnd,) Ye>0
Hence, if (50) holds then, by (38), the optimality
R, = o(n) holds obviously. Furthermore, by the
optimality (17) and the Conditions A.1-A.3, it is
immediately seen from (1) that

i (yi+ud)=0(n) as.

Hence, the stability property is also true.

Thus, we need only prove (50). By (33),
Corollary 3.1(i) and Lemma 4.2, we derive from
(42) that

R,= E (Yaﬂ v — Wj+1)2
=0
n n

2((@16) ——Zﬂf,(l"‘@ Pgo:)

i=0 i=0

Otogr) + O[3, a5, Il

= O(logr,) + O( max {8;r7d;} log r,,)

1=i=n
Ve >0 (52)

Therefore, for (50), it suffices to prove that

r,= O{n). By (52) and the assumptions on {y#}
and {w,}, it is evident that

n+1

S y2=0(n) + 0(rid,) Ve>0
=0

By this and Condition A 2, it follows from (1)
that

> u?=0(n)+0(d,) Ve=0.
i=0

Therefore, by the last two relationships, we have
for any € >0

r,=1 +§)II¢HI2=
=0(n)+ O@n®) V6 e(2/8,1)

Take e small enough that € + 8§ <1 We get

o0 -of (5
-ou-o(2))

It is seen from this that r, = ({(n) holds. O

O(n) + O(r7d,)

Remark 41. If §,=0{n ®) for some &«
(2/B, 1) then the result of Theorem 4.1 implies
R, = O(logn) This theorem is an extension of
Theorem 1 of Guo and Chen (1991) in that here
the condition p=1 on the system order is no
longer required and the convergence rate is
more precisely established.

5 THE ASTROM-WITTENMARK STIR: THE
LOGARITHM LAW

In Theorem 41 we have shown that the
growth rate of R, is bounded by O(n°d,,)) Ve >0.
However, a natural question is: what is the
precise growth rate of R,? This question in
essence concerns the best convergence rate of
STR, and will be answered by establishing a
logarithm law in this section.

Lemma 5.1 Consider the system (1) and the R,
defined by {16). Let the Conditions A.1 and A 3
be satisfied and let B(z) and A{z)—1 be
coprime with |a,|+1|b,| =0 Moreover, assume
that there exist a nondecreasing tandom
sequence {7,} and a set D such that R, ., = o(z,)
on D Then

1 &
Hminf /\mm(g > qo,-I) >0 as on D,
T i=0

#i—>0

where ¢; is defined by (30).
" This lemma can be found in Theorem 2.1 of



442 Lei Guo

Guo (1994). The next lemma is a direct corollary
of the work of Tain ef @l (1975).

Lemma 52 Let {w, %} be a Martingale
difference sequence satisfying the (7) and let
{fi, #} be an adapted process. If there is a

constant € < [0, 1) such that s f2=0(n) and
i=1
f2=0(n°) a.s. then
> fwier=0(Vnloglogn) as.
i=1
Theorem 51. Under the conditions of Theorem
41, if B(z) and A(z)—1 are coprime with

ja,| + 0,10 then the following logarithm law
holds for the closed-loop system:

R
lim—=2=(p+g—1)g? as.
nl—mc 10g n (p 4 )U

1
16, - 0 - 0 \/“E %) 4,

where R, is defined by (16).

and

Proof. By Theorem 4.1, R, = o(n) as. and
2 lal*=0@) as. (53)
i=0
Hence, by Lemma 5.1,
1 1
lim inf Amin(" > gojgp}) >0 as. (34)
A0 i=0
Also, by (53), Lemma 4.2 and (38), we have
el =0@®) as. V8e(2/B,1) (55)
Hence, by Corollary 3.3, we have

>, (9x8Y ~ o*(p + g~ 1)logn
k=0

From this and (42), the first assertion of the
theorem follows,
To prove the second assertion, write 6, as

n—1

8,— 0=PF, Py (68— 0) + Py >, owier (56)
=0

13

By (53)-(55) and Lemma 5 2, we have
n—1
E ew..1={Vrnloglogn) as.
=0

Hence, by this and (54), the second assertion of
the theorem follows from (56).

Remark 5.1. Theorem 5.1 means that the r-step
accumulated tracking error of the closed-loop

system is precisely O(log ), and the logarithmic
law holds, ie R,~(p+g—-1)o’logn
Obviously, this result is much deeper than the
optimality {17).

6. LS-BASED STR

In this and the next sections we shall treat the
general case where the high frequency gain b, is
unknown. In this case the unknown parameter 9
and the regressor ¢, should be defined by (2)
and (3). We shall adopt the notations «,, 5, and
r, defined by (35) and (36).

Naturally, the estimate for & should be given
by the LS algorithm (11)-(13), and the STR
should be defined by (14) or (15). However, the
first problem that we shall meet now is that u,
may not be well defined, since the set {b;, =0}
may have a positive probability, unless addi-
ticmal assumptions are imposed on the distribu-
tion of the noise seguence {w,}.

If we do not imtend to make additional
assumptions on the noise process, a natural and
simple method for overcoming this difficulty is to
modify by, or 8, slightly. Let us denote the
modified estimate by 8,,. Then the LS-based STR
is naturally defined from

éi@n :y:l;c-t-l (57)
or

1
U, = 8-_ (a inVn + ot apn ynfpﬂkl - anunfl
¥

- T Bqnun—q+1 + ytﬁ:+]); (58)

where 4, and Ejn are the components of 8.,
which are the {modificd) estimates for 4, and b,
respectively.

We shall first list several requirements on {6,}
that aie needed to establish a fairly general
theorem; then we shall show that how these
requirements on {8,} can be fulfilled.

(H1)  8.1>=0(0gr, ) as.

< (‘Pfléz')2
H2 —— = ¥ 5.
(H.2) ,-:Ellﬂo,-TR@f Ollogr,)  as

(H3) iminf Vlog (n + 7, ) |h1,/=0 as.

Here {¢,} and {P,} are defined, respectively, by
(3) and (12), 8,2 6 — 8, and b,,, is the estimate
for b, given by 8,

We now proceed to analyse properties of the
closed-loop system under the control law (57).

Similarly to Lemma 4.1, we first dominate the
output signals by the solution of a ‘linear
time-varying’ equation. The following lemma is
proved in the Appendix.

Lemma 61 For the system (1), let the
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conditions A.1-A.3 hold and let the control law
be defined by (57), with {8,} satisfying H 1-H.3.
Then there exists a positive random process {L.}
such that

visL, Vk

and {L,} satisfies

Lici=(A+efi )y + &,
where the constants A € (0, 1), ¢ >0 and

fo =l log (k + 1) + a e,
e = O(di log’ (k + 7))
Similarly to Lemma 4.2, we can also prove the
following lemma (see the Appendix).
Lemma 6.2. Under the conditions of Lemma
6.1, we have
leal?=0((n +1.)d,) as Ve,

where r, and d, are defined by (36) and (37),

respectively.

By Lemma 6.2, the following theorem can be
proved in completely the same way as that for
Theorem 4.1 (the details are not repeated hete).

Theorern 61. For the system (1), let the
conditions A.1-A.3 be satisfied, and let the
control law be defined by (57), with {8,}
satisfying F1.1-H.3. Then the closed-loop system

is stable, optimal and has the rate of

convergence
R,=0(logn +¢,) as, (59)

where R, r, and ¢, are defined by (16), (36) and
(51), respectively.

Now, by Cozollaries 3.1 and 3.2, the standard
LS satisfies H.1 and H 2, with 8, = 8, Hence we
have the following.

Corollary 6.1 Let the conditions A.1-A3 be
satisfied for the system (1). If the conirol law is
defined by the (non-modified) LS STR {11)-(15)
then the property (59} holds a.s. on the set

D2 {bln #=0 Vn;

X liminf [log (n +7,_1)] |1, # 0}.‘ (60)

Remark 6.1. By a refined (essentially the same)

argument as that for Lemmas 6.1 and 6.2, it can
be shown that Corollary 6.1 holds on a set laiger
than that defined by (60). For example, in

Corollary 6.1 we may take D = | D,,, with
m=1

D, = {bm #0 Vn; liminf

R—so0

X flog (14 7)) oyl %0}

Next, we consider suitable modifications on
the standard LS, so that the property H.3 holds
as.

Case 1. If the sign of b, is known, for example
b; >0, then a standard way to avoid the
zero-divisor problem in (15) is to replace (11) by
the following projected LS:

én+1 = Jrn[én + anPn‘Pn(y;HI - ‘Prltén)]) (61)

where 7,{'} is 2 projection operator defined by
TAx}=atgmin [P, 1%x —y)ll, xR,

yeD,
(62)
with

1
D,,={9:b 2———}, =1 {63
' Vlog (n + 1) 63)
Note that because of the simple form of the
domain D,, the computation of the projection in
(61) is an easy task (cf. Goodwin and Sin, 1984,
pp. 93-94).

Theorem 62 Let the conditions A 1-A3 be
satisfied for the system (1) with 6,>>0, and let
the control law be defined by (57), with {6,}
generated by (61). Then (59) holds with
probability one.

Proof. First, by the definition of the projection
in (62), {8,} obviously satisfies the condition H.3.
Next, we note that Corollary 3.1 obtained for the
standard LS (11) can be derived mutasis
mutandis for the projected LS (61). Hence {8,}
also satisfies H1 and H2, and consequently
Theorem 6.1 is applicable. (0

Case 2. If nothing is known about b,, we may
introduce a modification {only) to b,,, which is
similar to that of Guo and Chen (1991).
However, the guaranteed convergence rate in
that case will be poor {although it may not be so
practically). Here, similarly to the work of
Lozano and Zhao (1994) we consider the
following form of modifications to 6,:

B, = 6, + Pi%,, (64)
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where 8, is the LS estimate defined by (11), £, is
defined by (12), and {i;} is a sequence of integers
taking values on {0,1, .. ., d} withd =p +q, and
is defined by

ip = aIDg mgx b1 + epi 1 Piel, (65)
=7=

where e, =0, and ¢, 1=i=d, is the ith column
of the d X d identity matrix.

Theorem 6.3 Let the conditions A.1-A 3 hold
for the system (1), and let the control law be
defined by (57), with 8, defined by (64) and (65).
Then the closed-loop tracking system has the
convergence rate (59).

Proof By Theorem 6.1, we need only show that
{6,} defined by (66) satisfies the tequirements
H.1-H.3. First, by Corollary 3.2(ii), H1 is
satisfied, since both {¢,} and {P;*} are bounded.
Next, by Corollary 3.1(i) and the relation (A.3)
from the Appendix, together with (21), we have

i [oi(8 — 8,
= 1+ erPe,

k

E ak[qoi(f? — 6, — P}cfzeik)]z
=1

o( 3 alol(® - 00P) + 0 3 aueithiv)
=1 k=1
= O(log ).

Hence, H.2 is also satisfied.

To prove HJ3, let us set B, = P;"(6— 6,).
Then we have 6 = 8, + P8, and, by Corollary
3.1(ii), we know that [|B.]*=O(logr,_i). It
follows from this that

b = |byy + e P
1

= ‘[bu: e;+1P}cf2 [Bk,]

=|[bw €PN+ ] Bel®)

= O{|| [P e;+lp}c/2]|1210g Tie1)

2

Now, since the Condition A2 implies that
b, #0, we know that there exists a random
variable ¢ > ( such that

[ E2272 6’;+1Pi1clz}||2 =

Vk. 66
logr_; (66)

Let us denote
1 1 o]
M=[ ]

€ €1 €a
Then, since M is nonsingulat, we have

Ao = Apin(MMTY > 0.

From this, by (64)—-(66), we have
161 = by + epI+1P11c’tzeik|2

_ 1 plz, 2
= max b + e, P e

O=i=d
2

1
— T 1/2
=max |[byx €p+1P% ][
0=i=d &

=(1+d) 7 by e PEEIMIP
=Ao(1+ d)_l H[blk e;ﬂP.}&a]”z
o I
1+dlogr,_,
which implies that H 3 hoids. O

Remark 62 Theorem 6.3 shows that in the
genetal case where b, is not available an
LS-based STR can be designed so that its
guaranteed convergence rate is exactly the same
as that proved for the LS SIR with b, known
(see Theorem 4.1).

7 THE NONMODIFIED LS-8TR

Throughout this section we consider the
nonmodified IS STR defined by (11)-(15). Of
course, some results on such STR have been
presented in Corollary 6.1. However, we hope
the results there hold with probability one (or at
least with larger probability). We proceed with
the following lemma (for the proof sece the
Appendix), which shows what will happen if the
LS estimate for /; has a subsequence not
converging to by

Lemma 71 For the system (1), let the
Conditions A.1-A.3 be satisfied, and let the
control law be defined by (15). Moreover, let
{z,} be a strictly increasing random sequence of
integers that satisfies

inf Vlog r, |b:(1, +1)—b,|>0 as. on D,
(67)

where P(D) >0 and b,(n) is the LS estimate for
b, given by 8,. Then, by any € >0

sup @ li>=O(1id,) as. on D (68)

=7,

and

r.,=0(7,) as on D, (69)
where 7, and d, are defined by (36) and {37),
respectively.

In the sequel, whenever the control law (15) is
concerned, we always assume that

P(by(n) =0 Vn)=1, (70)
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where and hereinafter we write b,, appearing in
(15) as b,{n) for convenience of presentation.
Equation (70) can be guaranteed by imposing
additional conditions on the noise sequence. In
fact, Meyn and Caines (1985) proved that if all
finite-dimensional distributions of {w,} are
absolutely continuous with respect to the
Lebesgne measure then (70) must be true.
Define

D = {w :lim inf Vlog (n + r,-1) |b,(n)] #0}

]

(M)
For any constant a e(0,|b;]), define a
sequence {1,} as follows:
1, =inf{k > 1, ,:Viegr,
Xk + 1)~ by=a}, T,=0 (72)

Obviously, on Dfj, the complement set of
Dy, 1, < ¥n So, if we define

{n w e Dy,

, 73
T, weDjS (73)

o, =
then o, < ¥r,and g, —> > as.

Theorem 7.1 Let the Conditions A 1-A 3 hold

for the system (1), and let the LS SIR be

defined by (11)-(15). Then the following results

hold:

(i) If o, is defined by (71)-(73) then r,
O(o,) as, and

R, .1=0(od,) as Ve>(, 74)

where R, r, and d,, are defined by (16), {36)
and (37), respectively

(ii) Let D, and 7, be defined by (71) and (72),
respectively. Denote

D =D1 UDz, (75)

n>1

Then
R,=0(n% V8e(2/8,1) as. on D, (77)

lcm| (76

where S is given in the Condition A.1.

Proof (i) Since, by Corollary 6.1, the result is
true on Dy, we need only consider D$. By the
definition of 7,

inf Viegr, by(1, + 1) —bi|=a>0, w e D5

So, by Lemma 7.1, we know that on Dj

r, = O0(z,), suplie)®=0(td,) Ve>0.

i=1,

Consequently, by (4), (14) and Corollary 3.1(3)

f,,+l Z (6: ‘Pz

Zn

=> a(l + o' Pop)

i=0

= O(ff,d,n D a,)
=0
= O(r5d, log1,) Ve>0.

Therefore (74) also holds on Df.

(ii) First, taking d, as defined by (38) in
Corollary 6.1, we know that (77) holds on D,
On the set D,, by a similar argument as above, it
follows that R, = O(t3) V8 < (2/8, 1) Hence

sup (n °R,)

ne[t 7o)

sup (n °R,) = sup

= Sup ( k+1) (Tk+1 rk+1) < w0,
which means that (77) also holds on D, O

The next corollary follows directly from
Theorem 7.1.

Corollary 7.1. Let the conditions A.1-A3 be
satisfied for the system (1), and let the LS STR
be defined by (11)-(15). Then the following
assertions hold:

(i) There always exists a random sequence
0, — « a.8., such that the closed-loop system
is optimal along this sequence, ie. R, =
o(o,) as.

(if) The closed-loop system is optimal, ie.
R,=o0(n)as.,if

(a) Hminf)b{n)| =0 as,
(b) lim [b,(n)| as. exists, or

(c) there exists an increasing random
function %, with k,— o, k,../k.=
(1), such that

min {|b1(k)E}—>0 a.s.

kekn. Foyg 1

We remark that both (b) and {(c) include the
case where lim |by(n) =0 a.s. Next, we prove

that the optimality does hold for a large class of
tracking systems. We start with a lemma that can
be found in Theorem 2.1 of Guo (1994).

Lemma 72 Consider the system (1} Let the
conditions A.1-A.3 be satisfied, and let A(z)
and B(z) be coprime with |g,|+ |,

Moreover, assume that there exist a nondecreas—
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ing random sequence {o,} and a set D with

positive probability such that

[Un(Rcr,,+1 + log lOg O’)’l)]la = O(A:Elin(a-n)) on D
(78)

Then

mm(EO P:pi )

#0 as on D, (79

lim inf
R—a ‘\f:un( n)

where ¢, and R, are defined, respectively, by (3)
and (16), and

Ninlr) = A 2, YY),
i=Q

Yi=[yF

(80)

y?7p7q+1]T

Theorem 7.2 For the system (1) let the
conditions A.1-A 3 be satisfied, and let A(z)
and B(z) be coprime with |a,|+|b,i#0.
Morcover, assume that the refelence signal {y¥}
satisfies

n*“vd, = O(A%.(n)) (a>1) (81)
If the LS STR (11)—(15) is applied then the

closed-loop equation has the following
properties:
. R, 2
(i) lim sup s (p +g)o* as, (82)
logn
8, 6|*= O( )
| i ()

(ii) If (81} is strengthened to n = O(Aki(n)) as.

then the following logarithm law holds:
R,~(p+q)o*logn as.

and

6. —el?=0

=y

(iog log n)
n

where R,, d, and A%, (n) are defined by (16),
(37) and (80), respectively.

Proof. By Theorem 71(i) and (81), applying
Lemma 7.2 to the subsequence {o,} defined by
(73), we have

/\min( Eﬂ (PI(PII)
lim inf =
o0 Amin(o'n)

>0 as (83)

It follows from this and Corollary 3 2(i) that
O( logr,, )
Ao}

But, by Theorem 7.1(i), we know that

18,11 =

log 7, #O(Iog o,) Hence, by (81) again, we
have Vlog ]9 +1ll = 0; in particular

Viogr,, |bi(c, +1) — by|——0 as. (84)

We now proceed to prove that the set D,
defined by (71) satisfies P(D,)=1. If P(D7)}>0
were true then, by the definition of &, it would
follow that o, < =, and on D{ we should have

Viogr, [bi(o, +1)—by|=a>0 Va=l

This obviously contradicts (84), and hence
P(D,)=1. Consequently, by Lemma 62 and
Corollary 6.1

1o 12+ R, = O(nd,) as. Ve>0, (85)
and o, = n a.s. Therefore, by (83) and (81)
n*Vd,= OAmn(Pr ) (a>3).  (86)

By (85) and (38), we know that if € is taken
small enough such that e+3§<a, with
8 «(2/B, 1), then

leall? = OV, Vd,) = O(n'n**Vd,)

=o0(n"Vd,) = 0(Amin(Py ).

Consequently
Il 11
/\min(PfIl)

and hence, by Corollary 3.3, it is evident that

erPo, = -0,

R,
fim sup msup;—— Z (918,

n—rco 0g A

=(p +q)0' as.

This proves the first assertion of the theorem,
while the second can be derived from Ceorollary
3.3 using a similar treatment to that for
Theorem 5.1. g

Remark 7.1. Equation (85) does not require that
the teference signal {yf} satisfy the usual
‘persistence-of-excitation’ condition. For in-
stance, when d, =1, we need only require that
A%:.(n) have a growth rate O(n*}a > 1), rather
than Q(n).

In general, for any reference signal {y}’}, not
necessarily satisfying (81), in order to simul-
taneously have optimality of LS SIR and
consistency of LS, we may use the ‘decaying
excitation’ method (cf. Chen and Guo, 1986) to
define the control law from

-2
@nlly = Vst +5§, 0<e <%E_ (87)
instead of (14), where {8,} is defined by the
standard LS (11)-(13), B is defined in (7}, and
{v,} is a bounded white noise sequence that
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possesses a continuous distribution and s
independent of {y% w,}, with E(v)>0. The
following theorem can be proved in completely
the same way as Theorem 7 2.

Theorem 7.3. Let the conditions of Theorem 7.2
be satisfied except for (81). If the STR is defined
by (87) then the closed-loop system has both
optimality and consistency in the sense that
R,=o0(n)and 8,— G as.

The key difference between this theorem and
Theorem 3 of Guo and Chen (1991} is that hete
no modifications are introduced to bound the
estimate for the high-frequency gain b; from
below. Certainly, the present case is more
complicated to analyse.

8 CONCLUSIONS

Convergence and convergence rates of some
standard LS-based STR have been studied in
detail in this paper. A unified treatment for
several basic theoretical problems has been
presented. Some recent advances in this area
have also been surveyed. Of course, much
remains to be done. We remark that:

(i) many pieviously established results using
stochastic gradient algorithms may now be
established using the standard least squares;

(ii) owing to the flexibility of the various
analytical ideas and techniques presented
here, they are most likely to be applied to
deal with other stochastic adaptive control
problems, e.g. adaptive pole-assignment and
robust adaptive control, by using Ileast

squares.
These issues are for further investigation.
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APPENDIX—PROOFS

Proofs of Theorem 3.1 and Corollary 33

Proof of Theorem 31. Consider the standard Lyapunov
function V, = 8LP; '8, By (11)-(13), we have the following
relationship (cf. ¢ g. Guo and Chen, 1991, p. 808):

Viar = Vi — {018, — 2, 0f 8, wi 1y
+ ok Py wE 11

Summing from &k =0 to r yiclds
Vi + Z ax{phB ) =V, — 2 2 a9 Bewi sy
k=

+ E @i P peWi (A1)

k=0

We estimate the last two terms of (A 1) separately By a, =1
and a,¢i8, = %, we know from Theorem 28 of Chen and
Guo (1991) that

> akqp;{ékw“,:ou)m(z ak(qp,{ék)Z) as. (A2)

We now proceed to estimate the last term in (A 1). First,
following Lai and Wei (1982), by taking determinants on
both sides of the identity Pzl, = P! + @piof, we have

Prlil = 1P (1 + @fPugps)

Therefore
n H P—l — P—]
> @ elPip = 2%15;‘|
k=0 izo Pl
= 1Pt dx
S —
.'?;:0 IP;” X
=log|P 1| +log Pyl (A3}

By the C, inequality and the Lyapunov inequality, it is easy
to see that for any a  [2, min (8, 4)],

sup E[wivs — Ewi | 117 | #]
=2 sup Ellwil” | &)< as

Consequently, by Theorem 2 8 of Chen and Guo (1991), we
have

n

> a ok Popn(Wh o — E[wi, | %D

= (S, Galiog [S.(3e) +el**) as VY>0, (A4)
where

n e
S.(3a) & [ > (HkGFJEPk‘Pk)“m:I
k=0

Note that @, ¢l P, <1 and e > 1. By (A 3), we know that
SJ:(Jia) = 0(1) + O((bg |P:11']|)2"u)‘

Thus, by (A 4), we have

n

2 a0k Pepewte =0 2, aplPoey T o(log P71 + O(1)
k=0

Finally, substituting this together with (A 2) into (A 1), we
see that the desired result is true This completes the proof.

Proof of Corollary 33 First, similarly to the proof of
(A.3), we see that

|Peta — P&
eiPp = > — &
2 o= S

lekﬂldx
0]

Pl X

R‘M:'

=log|P, 1} +log|B.

Then, by (24) we have

n n n

E i P = 2 piProoy — Z ﬂk(‘PkPkQDk)z

= k=0 =

=log P11l +log (P
+ 0( E ak‘PIPkSDk),
£=0
which, in conjunction with {A 3), yields

> @@l Peg - log P71, (A5)

since r, — « implies log {P;;1,j— ®. Note also that

2 ak(ﬁp}fék)z

k=0

(2180 = 2 avolPop(eld,)

M=

= 2 (elB 2+ 0(2 a (el 9k)2) (A.6)
k=0 k=0

Substituting this and (A.5) into Lemma 3.1 and noting (21),
we see that (25) is true

Furthermore, if {26) and {27) hold then it is not difficult to
see that
log |P7Lyf~dlogn (A7)
Note that, by (56), (27) and Lemma 5 2
851 P 1Bt = Aand Pt 1612

Pn+1(Pl5wiéo* 2 ‘P:'W;'H)

i=0

2

=0fn)

=Ologlogn) as.
Finaily, substituting this together with (A 5)—(A.7) info
Lemma 3 1, we derive (28). This completes the prooi. 0

Proofs of Lemmas 61, 6.2 and 71
Proof of Lemma 6.1. By (4) and (57), it is seen that

Ver1 = QRO +yEar + Wear, (A 8)
and then, by (35) and (36) (with 8, 2 0 — §),
Vit S2Aed8e)? + 0(dy)
= 2o [1 + @i Fer1ge + 0Py — Perr)pr] + O(dy)
=20,{2 + & llgel®) + Oldy)
=20, 8 | @ell” + Olds + log r)) (A:9)

By the stability of B(z), it is known from (1) that there is
a constant A = (0, 1} such that (44) holds. Hence

k
(hel? =) = O 2 15757 + 0 (A10)

i={)
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Now, by the properties H.1 and H 3, it follows from (58)
that

([IOg(k""”k il (E Vi- :+E H :)

+ log (k + rk,l))

Moreover, putting (44) into this, it follows that

~0(rog (k + )](i ¥hira)) A

i=0
Hence, by (A .10) and (A .11), we have
fex |I* = O([tog (k + re1)T°Ly)

+ O(d[log (k + e 1)F), (A12)

13
where L, 2 3 A*~iy2 Note also that
i=0

bruy = ©f8, + v + by, — 87 )
So, by (A 10), we have

biug =308, 02+ 01+ by, — 8D
{

=3if P+ O, +di) (A13)
Similarly to the proof of (A.9), it is known that
(2£8:)" = o8¢ llpell? + 2
Substituting this into (A 13}, we see that
ug = Ol by Nl el ?) + OLy + dy + log ri)
Combining this with {A 10), we get
Bee = Ol 8, o) + O(Ly + di +log 1)

Putting (A 12) into this, we have

llpx b2 = Oax 8, [log (k + 71} L)
+O(L, +d [log{k + r. )P}
Finally, substituting this into (A 9), we find that there is a
constant ¢ >0 such that y3,,=cfiL, + &, where f, and &

are defined in Lemma 6 1. Furthermore, by this and the
definition of L,

Lpm=AL, vyl S(A+cfidly+ & {A14)

Hence the lemma is true. 0
Proof of Lemma 62. By Lemma 6 1

Loy = A7 []f[ 1+ A‘lcﬁ)]f_u

+§)A"—f[ H (1+,\-1q;)]§,.. (A 15)

j=i+1
We proceed to estimate the product AH (a+a7'eh)

First, by Corollary 3.1, for any e>0 there exists >0
such that

L) a;=eflogr,) Vn
j=0

Also, by {47}, there is an integer i, > sufficiently large that
4 ¢ 12 = ] ‘
5(;) 25,55 Vizi, (A 16)
Then, by the inequalitics
1+2%=e®, (1+x)=({1+x}{1+y), x=0, y=0,

we know that, for any n=i=l,

H 1+ A7 ¢[a;8log (j + ;)]
j=itt

< 1T 1L+ (6] f[ {1 + ,\—’c[% 8 log (j + r}-):|2}

j=it1 j=i

<exp (3 E )exp [: (i)m.i L 10g(j+r])}

F=i+1 J=i+1

=exp(elogr,)exp {[log (n+r,,)][ ( )mié]}

=rjexp {[log (n +r.)]e}
=(}’|‘. —|—rﬂ)2E as. (A 17)

Furthermore, for anyn =i =i,

jlj(l + A7 ey 8)) = exp ( 2 )exp ()\Si Bj)
= o) (A 18)

Finally, by the definition of £ in Lemma 6 1, it follows from
(A.17) and (A 18) that

IT a+cafy= [1 1 +ca o8 log (j + )}
j=i+l J=i+1

<[] 0 +eaa8)

j=i+1

=0{(n+r)*) as. ¥Ya=iz=i,

Putting this into (A 15), we have, after some simple
manipulations

Lin=0(n+r)d,log*(n+r,)) Ve>D
Then, by Lemma 6 1 and the arbitrariness of €
,""EVH SLerl = O((H + rrx)e rr) Ve >0

From this and (A 10), we know that wu’=OQ{((n+
r,)%d,,) Ve >0. Hence the lemma is proved. [

Proof of Lemma 71 From the proof of Lemma 6.1, it can
easily be seen that (A 9) holds with 8, =8 — 6, However,
since H.3 is no longer assumed, the property (A 11) cannot
be directly applied. We now proceed to derive a similar
upper bound for u}

First, by (20) and Corollary 3 1{ii), we have

2 (9}8,.1)*=0(logr,) as, (A 19)

=0
which implies that

max (05,1 = Olog,) as (A 20)
For simplicity, we shall omit the phtase ‘as on D’ in the
sequel, and all relationships should be understood to be held

on D with a possible exceptional set of probability zero.
Denote

bir, +1y=b,—by(t.+1).
Then, by (67)

inf Vlog rr, 15,(t, + D=0
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Hence by (A.10), (A20) and the fact that [|8,.,)|2=
O(logr,), it follows that forall k=1, n=1

1 -
"%=m[lﬁ(rﬂ + D J?
I = .
:W{[W{efnﬂ — by (7, + D]
— ?Eéfnﬂ}z

2 ~ -
Sm{ldf’%ﬂ = by{z, + Dy

+ (¢I£éfn+1)2}

= O((log rz, Y{ll @ |1* — u)) + O(log ry,)
= O((log r, Y’Ly) + O(d, (log .. )*),

k
where L% 3 A*7y2 Combining this with (A10), we
obtain, foralt £ =<1,
fepell? = O((log® r. )L} + O(d, (log r. ),

which is similar to (A 12) From this and the argument
leading up to (A 14), we know that there is a constant ¢ >0
such that, Yk =1,

Lo ={A+ cou e[l + a8 log r, YT
+0(d. (logr. )" '

Similarly to the proof of Lemma 6 2, it can be derived that

sup ouf*=0(rsdy) Ve>0.
STn

Therefore (68) holds. Furthermore, by this and Corollary 3.1,
(69) can easily be derived from (A .8) This completes the
proofl 0




