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Selt-Convergence of Weighted Least-Squares with
Applications to Stochastic Adaptive Control

Lei Guo, Member, IEEE

Abstract— A recursive least-squares algorithm with slowly
decreasing weights for linear stochastic systems is found to have
self-convergence property, i.e., it converges to a certain random
vector almost surely irrespective of the control law design. Such
algorithms enjoy almost the same nice asymptotic properties as
the standard least-squares. This “universal convergence” result
combined with a method of random regularization then easily
can be applied to construct a self-convergent and uniformly
controllable estimated model and thus may enable us to form
a general framework for adaptive control of possibly nonmini-
mum phase autoregressive-moving average with exogenous input
(ARMAX) systems. As an application, we give a simple solution
to the well-known stochastic adaptive pole-placement and linear-
quadratic-Gaussian (LQG) control problems in the paper.

I. INTRODUCTION
C ONSIDER the following linear regression model

Ye+1 = 07 s + Wit M

where # € IR™ is an unknown parameter vector, y:, ¢,
and w, are the observation, regressor, and noise processes,
respectively.

A common and natural way to estimate the parameter ¢
is the least-squares (L.S) method. That is, the estimate is the
minimizer of the following criterion

1 t
J(6) = 5 > ai(yirs — 07i)° @
=0

where a; > 0 is a weighting sequence; it allows us to give
different weights to different measurements of interest. Various

weighted least-squares (WLS) in the literature differ only in

the choice of weights. The standard least-squares correspond
to a; = 1. It is well known that the optimal choice of weights
(in the sense of minimum variance) is that {c;} is taken as the
inverse of the noise variance (cf. [1] p. 36). Also, when 6 is a
time-varying parameter, less (or decaying) weights should be
given to the old measurements so that the estimate has good
tracking performance (cf. Guo et al. [2]).

In this paper, we shall study the WLS from an adaptive
control point of view. In contrast to the insights from pure
estimation, we shall use slowly decreasing weights in (2)
which will give fewer weights to the current measurements.
The motivation of doing so may be explained as follows:
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In analyzing stochastic adaptive control systems, nothing can
be assumed a priori about the closed-loop signals {y:, $:}.
Thus, if {y:, ¢:} has a tendency of growing up unboundedly,
decreasing weights in (2) will depress the undesirable effect
of instability on the estimation, and hence (2) may still give
useful parameter estimates in the case of instability and lack
of excitation. Of course, so that the WLS enjoys the similar
nice asymptotic properties as the standard LS, the decreasing
rate of {c;} should be chosen as slow as possible.

The first paper using WLS in stochastic adaptive control
seems to have been Kumar and Moore [3] where the weights
are chosen according to some stability/excitation measure of
{¢:}. More recently, Bercu and Duflo [4] and Bercu [5]
obtained various. interesting and useful results on WLS which
are parallel and based on those of the standard least-squares.
The weights in [4] and [5] are simpler than those in [3] and are
called “ponderations.” All of these papers, however, concern
exclusively with adaptive control of minimum phase stochastic
systems. ' ‘

This paper is motivated by, and aims at, the study of
general stochastic adaptive control systems. The analysis of
such systems has long been recognized as difficult, due to
the inherent nonlinearity of the closed-loop equations and the
complexity of the stochastic process involved. As a matter of
fact, if the standard LS estimate is used in adaptive control

_design, we are, at present, only able to prove stability and

optimality of the certainty equivalence minimum variance
adaptive control (cf. Guo and Chen [6] and Guo [7], [8]) or its
generalizations under a certain minimum phase condition (cf.
Meyn and Brown [9] and Ren and Kumar [10]). For more
complicated control problems such as pole-placement and
linear-quadratic-Gaussian (LQG) control, the stability analysis
has been hampered by the following facts: i) the standard LS
estimates may not converge (or even may not be bounded) and
ii) the estimated models may not be uniformly controllable.

In this paper, our first contribution is to establish that the
WLS has self-convergence property, i.e., the WLS with slowly
decreasing weights converges to a certain random vector
almost surely irrespective of the control law design.

This “universal convergence” result may considerably ease
the painful task of analyzing stochastic adaptive control sys-
tems and may also enable us to form a general frame-
work for adaptive control of possibly nonminimum phase
autoregressive-moving average with exogenous input (AR-
MAX) models. It is worth noting that the standard LS al-
gorithm does not have the above mentioned self-convergence
property, in general (see [16]).
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Based on this self-convergence result, the estimates modi-
fication procedure of Lozano and Zhao [12] and the idea of
random search in global optimization (cf. e.g., [13]), a WLS-
based parameter estimate, can then easily be constructed so
that the corresponding estimated model is almost surely self-
convergent and uniformly controllable. This finally enables us
to give a simple and complete solution to the longstanding
adaptive pole-placement and LQG control problems for AR-
MAX models without resorting to any projection mechanisms
and conditions other than controllability and passivity, and that
constitutes the other contributions of the paper.

The remainder of the paper is organized as follows: Section
II proves the self-convergence of WLS and gives a compar-
ison with the standard LS. Section III describes how to get
uniformly controllable estimated models by random search
method. Sections IV and V are devoted to adaptive pole-
placement and LQG control problems, respectively. Some
concluding remarks are made in Section VI

II. SELF-CONVERGENCE OF WLS
Consider the following ARMAX model

A(2)ys = B(z)u + C(2)wy, t2>0 3
A(z)=14+a1z24 - +a,2®, p>0 4)
B(z)=biz+---+bz? ¢g>1 5)
Clz)=1+ciz+--+ez", 7>0 6)

where y;, us;, and w; are the system output, input, and
noise sequences, respectively, and A(z), B(z), and C(z)
are polynomials in backward-shift operator z with unknown
coefficients and known upper bounds p, ¢, and r for orders.
To describe the WLS algorithm for estimating the unknown
parameter vector
0 =[-ay--

—~apby--bger-e]” %)

we need to introduce a set of functions as follows
Fé {f() : f(z) is slowly increasing and

/m%<ooforsomeM>0}. ®

Here, a function f(-) is called slowly increasing if it is positive,
nondecreasing, and satisfies f(z%) = O(f(x)) for all large

z > 0.
The recursive WLS algorithm has the following form

Op1 = 0 + Li(yrr1 — 0] ps) G
P,
L= thﬁ:_ (10)
a;  + ¢ Py
P, T P,
Pop1 =P, — T”@j—t (11)
ap -+ ¢y Py
b= Y- Yopg1 Ut -+ Up—pp1 D -+ Wy p1]” (12)

Wy =y — 0 ¢s1, t>0 (13)
where the initial values 0y and Py = ol, (0 < a < 1) are

chosen arbitrarily, and where {c} is the weighting sequence

defined by

__1
B f("'t)7

with f(-) being any measurable function in the set F' defined
by (®). |

Remark I: It can easily be shown (see Appendix A) that
the necessary condition for a function f € F is that

re= 1P+ S Nl

1=0

o (14)

logz = o(f(z)), as z— co. (15)
Typical functions in F are, for example
f(z) =log"t’z, (logz)(loglogz)'*e, . ... (6>0).

In general, let f(z) be any slowly incréasing function as
defined above, and it can be shown (see Appendlx A) that for
any M > 0

1) = 0(f(@), =>0 16)

and that there exists a constant L > 0 such that
f(z) = O(log" ), for all large z. (n

The property (17) together with (14) implies that
oyt =0(oghry), t>0. (18)

The choice of weights in the WLS here is different from
that in [3] and is also somewhat different from that in [4] and
[5]. From the general definition (14) for «y, it is clear that the
key adaptation property a; € o{¢;,7 < t} can be guaranteed
automatically. Also, (14) together with (8) defines the class of
weights of interest in an explicit way.

To analyze the WLS, we need the following standard
assumptions:

Al) {wy, F} is a martingale difference sequence defined
on the basic probability space (2, F, P) with

sup E[w} ;| Fy] < oo as. (19)
>0 :

A2) The input sequence {u;} is adapted to {F;}.

A3) C7(z) - % is strictly positive real, i.e.,

|m|§>§ |C(z) — 1] < 1.

Under these conditions, the following facts parallel to those
of the standard LS hold (cf. Bercu [5]).

Lemma I: Let the ARMAX model (3) satisfy the condi-
tions A1)-A3). Then the WLS described by (9)-(14) has the
following properties:

i) ||Pt111 Benal> = 0(1)  as.
ii) Z [(970:11)% + (@ — wy)?] < 00 a.s.
t=1
(470.)
iii) < 00 a.s.
Z *1 + ¢; Pigy
where 67t é 6 — 6;.
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Remark 2: In the white noise case (r = 0), the WLS is
precisely the standard LS for the following regularized linear
regression

Tey1 = 070, + Wi

where [§,, 1, ¢y, We41] = V@t [Yt41, dt, wer1]. Hence, by the
standard analysis for LS (see, e.g., [6, (A.3)]) we have
(¢561)
o' + ¢p Prdi
2¢’,;§kwk+1
a; '+ ¢ Ped
+ @i ¢f Pry1drwi g

9k+1Pk+19k+1 = ch lak -

(20)

Now, by (11) and (14) we have (co £ (max{1, ap})PTetr)

i
det(P3Y) = det(D | aiio] + Pot)

=0

t
< (Y aillgll® + (1Pg et
=0

< C()'T‘p+q+r

Since f(-) is slowly increasing, by (16) in Remark 1 there
exists ¢ > 0 such that

Flegtdet(PRL)) < F(rE*7*T) < cf (r4)

and consequently, by (14) we have a; < ¢/ f(cyt det(P34)).
From this, a similar treatment as that for the proof of (30)—(37)
in [15] gives

Z [0 P $:Pt+l$t < X,

t=1

o0
Y 0T Peyadhe =
t=1

Now let us write

o0 oC

2 2 2
Z ki Prs1$rwig = ) 0fd7 Py i
k=0 k=0

X (“U%H - E[w12c+1|~7:k])
+ ) 0t PeridkE[wdy, | Fil.
k=0

The first term on the right-hand side is convergent a.s. by
Chow’s martingale convergence theorem (cf. [14, p. 36]), and
the second term is convergent since condition (19) holds.
Hence, the summation of the last term in (20) is bounded
a.s. (thanks to the choice of the weights).

As for the second last term in (20) ([14, Theorem 2.8, p.

41]), we have for any § > 0
1-9 2 1.5
Z ¢k9kwk+1 {Z (9%0) }2 as.
T4 @tPed| Y+ ¢p Pty
Finally, summing up both sides of (20) from k£ = 0 to ¢, it
is easy to see that Lemma 1 holds. (Note that since both the
noise condition Al) and the definition of weights {a:} here

are somewhat different from those used in [5], there are some
necessary differences between the proofs here and there).
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The general r > 0 case can be proved similarly by using
the standard treatment for ELS together with A3) and the
properties of {c;} (see Theorem 1 of Bercu [5] for related
results and analysis). O

Based on Lemma 1, we may now prove the following main
result of this section.

Theorem 1: Let the ARMAX model (3) satisfy A1)-A3).
Then the WLS described by (9)—(14) has self-convergence
property, i.e., f; converges almost surely to a finite random
vector 6 (not necessarily equal to 6).

Proof: Set

<l5t = [Z/t o Yt—pp1Ug U g1 We et wt—r+l]T- @2n

Then (3) can be rewritten as
Yer1 = 0797 + wepr
and substituting this into (9) we get
Orir = 0e + Le[07 by + 07 (62 — ) + wip1]
t
=00+ ) Lil6] i+ 67(4) — §:) + wisa].

=0

(22)

Now, by taking trace on both sides of (11) and summing
up, we have

S MBI S (B — (P < () < o
o'+ @[ Pig l s

i=0 i=0

(23)

From this, Lemma 1-iii), and the Schwarz inequality, it follows
that

— 1 7 — __IPaill®
;H il {2; ST,
1/2
—  (07¢:)
X; ‘1+¢TP¢>,}
< oo, as.

t
Hence ZLiq&iW,- converges almost surely. Similarly,
i=0

Z L7 (¢? — ¢;) also converges a.s., since by Lemma 1-ii)

i=0
we have

(%) el 2
1Pl
L6 (¢7 — ¢a)ll < 118l S B
;” ' ' {;ail"“ﬁff’i%
o 1/2
> aillg? - 6l
=0
< 0.
As for the last term in (22), by Al), and using (23) again,

we know that

Y EllLwe|?|F] <00 as.

t=1
So by Chow’s martingale convergence theorem we know that
oo

ZLiwiH also converges a.s. Finally, combining all the
i=0 .
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above proved facts, we find from (22) that 6, converges a.s.
as desired. 0

We are now in a position to give a detailed comparison
between WLS and LS.

Remark 3: Theorem 1 can readily be extended to general
linear regression models. Under only the measurability con-
ditions on the fegressors as used here, neither the familiar
stochastic gradient (SG) nor the standard LS algorithms are
known to converge. In fact, for the SG we only know that
the norm ||§; — 6| converges (e.g., [14, p. 108]), while for LS
even the boundedness -of {#;} cannot be guaranteed (see [16,
p. 367]), nor convergence. The only exceptions are the results
derived in a Bayesian framework with Gaussian white noise,
where it was shown that the LS estimate converges outside an
exceptional set of true parameter vectors of Lebesgue measure
zero (see Sternby [17] and Kumar [18]). This property has
been used by Kumar [18] to analyze a variety of adaptive
control schemes for minimum phase systems and is discussed
in more detail by Nassiri-Toussi and Ren [16], where it is
shown that the exceptional set for convergence of LS can
indeed be nonempty.

Remark 4: By Lemma 1-i) we know that

611> = O(\max(Pit1))  as.

Consequently, a sufficient condition for strong consistency of
WLS is that

@5

P—0 as. (25)

If 7 = 0 and the regressor ¢, is free of the initial condition 8y,
then #:—6 for any initial condition if and only if (25) holds.
The necessity can be proven as follows: By (9)—(11) we have

t
1
=P Py 0y — P E Qi hiWit1
=0

Ort1

and since @———»O, Vb, the last term, free of 0y, must converge
to zero, and thus P 1Py 19q——0, Y6y which necessarily
implies (25).

Remark 5: Let Amin(t) be the minimum eigenvalue of
t

Z(ﬁiqﬁf and the weighting sequence be taken as ar =
i=0

1
f § > 1. Th h
(log 7t ) (log log r1,)° or some o > en we have
hein(P74) = Mo el + 1) > ()

=1

consequently, by (24), we have for WLS

~ 2 (log r¢)(loglog 7't)‘5
e = o LoELoEX

This is precisely the convergence rate established for the
standard LS (see [14, p. 96] and [15]). Of course, if the
moment condition in Al) is strengthened to a condition of
order greater than two, then for the standard LS, (26) holds
with § = 0 (see, Lai and Wei [19]). Thus, the WLS may
have a mild compromise on convergence rate (in the case of

> as. §>1. (26)

convergence to §) compared with LS. Nevertheless, due to -
its self-convergence, the WLS is more convenient than LS
in applications to general adaptive control systems as can be
seen from the following sections.

III. UNFORM CONTROLLABILITY OF ESTIMATED MODELS
Let us denote

—aj 1 0
by
A(6) = 0 , w0 =1:] @
M . . bn
4y, O - 0
0(9) = [101 ce cn_l]T, H = [10 S 0} (28)

where n = max(p,q,7 + 1), and a; = b; = ¢, = 0 for i > p,
7> q, k> r. Then (3) can be written in the state- -space form

.’L‘t.H_ = A(B):ct + b(t?)ut + C’(H)wt_,_l
Hmta o = [y07 O]

Many standard control law designs depend on the control-
lability of the system (29), and hence we make the following
assumption:

A4) The pair [A(#),b(9)] is controllable where 6 is the
true system parameter.

It is a standard result from linear system theory that control-
lability of [A(6),5(8)] is equivalent to the coprimeness of the
polynomials A(z) and B(z) defined by (4) and (5) and which
in turn is equivalent to the nonsingularity of the Sylvester
resultant (eliminant) matrix associated with ‘4. [Note that A4)
implies that either a, or b, in (27) is nonzero, and hence
n = max(p,q).]

Now, let 8; be the WLS estimate discussed in the last
section and @ be its limit. If for the initial' condition 8y the
pair [A(6o),b(6)] is controllable, u, is a rational function-
of {yo,- -+, ¥:}, and all finite dimensional distributions of the
noise process {w;} are absolutely continuous with respect to
Lebesgue measure, then, following Meyn and Caines [15] or
Caines [16], we may prove that [A(8;),b(6,)] is controllable
a.s. for each £ > 1 (see Appendix B).

This, however, does not guarantee that [A(6;),b(6;)] is
uniformly controllable, since the limiting model [A(6),b(@ )]
may be uncontrollable. Thus, modifications:on {6;} seem to
be necessary.

Here, we first follow an idea similar to that used by Lozano
[11] and Lozano and Zhao [12] for such a modification. Let us
denote Bf = Pt_l/ (0 — 6,). Then, by Lemma 1-i) we know
that the sequence {{;} is bounded almost surely, and that

(29)

0 =06, + P2p;. (30)

As observed in [11] and [12], although {3} } is not available
here, given A4), this formula suggests the possibility of finding
a bounded adapted sequence {B:, 7} such that the modified
estimate

6. 2 6, + P*p, 3D

corresponds to a uniformly controllable model ‘We may call
Ht the WLS-based estimate.
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The key point of the modification in (31) is that {(’9;}
possesses almost the same nice properties as those of the
WLS estimate 6;, as demonstrated in the following lemma
(see Appendix C for the proof). k

Lemma 2: Let /01 be defined by (31) with 6, being the WLS
estimate defined by (9)-(14) and {8;} being any bounded
sequence. Then under conditions of Lemma 1 we have:

i) ||P7Y%,) = 0(1) ass.
t

i) Y [(¢70i41)7 + (B; — wi)?] = O(a; logry) ass.

=1
t

i) > (670:)% = o(re) + O(1) as.
i=1

where 8, = 6 — @\t, and all other quantities are defined in
9)-(14).

Next, we proceed to show how {f;} can be constructed
such that the pair [A(gt), b(@\t)] with 8 defined by (31) is a.s.
uniformly controllable.

For§=[—ay - apby---bger--c ™ € R, d=p+q+
r), let the Sylvester resultant matrix M (6) be defined by

M1 0 0 07
ay - by .
. |
M) = ' . (32)
Ap a1 by, b1
\_0 an 0 bn-

where n = max(p, q). (Note that only the first p + g compo-
nents of # are used in the above definition).

Now we introduce the following function

filz) = |det M(8, + P}%z)|, zeR% t>0. (33)

It is clear that {3;} should be chosen such that f:(8;) is
bounded from below. If we look at this problem from an
optimization point of view, then an intuitive way for doing
.80 is to let 3; be as close to the maxima of the function f;(z)
as possible for all ¢ > 0. ‘

Instead of using the deterministic search method for
choosing (3; as in Lozano and Zhao [12], here we use an
optimization-based random search method which has the
advantage that only two matrix determinants are needed to
be calculated and compared at each step ¢. To be specific,
let D be any compact subset. of IR? which coincides with
the closure of its interior. For example, D may be taken as
simple domains like the unit ball {x € R? : ||z|| < 1} or
the unit cube

{e=(x1 25" e R*:0<z;, <1, 1<i<d}. (34)

Let {n:} be an independent sequence of d-dimensional
random vectors which are uniformly distributed on D. Also let
{n:} and {w.} be independent. Take a number v > 0 small
enough so that

1> 2y 442 (35)

83

Finally, the sequence {0;} can be recursively defined as
follows

B8, = {ﬁh if fi(ne) > (14 7) fe(Be-1)
Be—1, if film) < (L1 +v)fe(Be-1)

for all £ > 1, where the initial condition is 8y = 7.

Obviously, for any adaptive control sequence {u.}, {5, F;}
is an adapted sequence where F| = o{w;,m;,1 < t}. Note
that, similar to the deterministic .case (e.g., [12] and [24]),
the introduction of the hysteresis constant ~ in (36) plays a
role of ensuring the convergence of {8;} in sample path. The
following key theorem states that {3;} defined by (36) does
indeed meet our requirements (see Appendix D for the proof).

Theorem 2: Let Al)-A4) hold for the ARMAX model (3).
Then, the WLS-based parameter estimate 6; defined by (31)
with 3; chosen as in (36) has the following properties:

(36)

i) {@}Aconvgrges almost surely.
i) [A(f:),b(8:)] is uniformly controllable a.s.
iiiy All properties of Lemma 2 hold.

IV. ADAPTIVE POLE-PLACEMENT CONTROL

Let A*(z) be an arbitrary stable polynomial of degree 2n—1
with n = max(p, q). Then by A4) we know that there exist
unique polynomials L(z) and R(z), both of order (n — 1)
with L(0) = 1, such that

A(2)L(2) + B(2)R(z) = A*(2). 1)
Now, if the feedback coritrol law is generated by
L(z)ue = R(z){y; — yt} (38)

where {y;} is an arbitrary but bounded deterministic ref-
erence sequence, then the resulting closed-loop system has
characteristic polynomial A*(z) and (cf. Goodwin and Sin

22D

A*(2)yr = L(2)C(2)w + B(2)R(2)y;, V. (39
To ensure boundedness of the long-run average of the squared
output process {y;}, it is natural to require that

= (40)

t
1
o2 = limsup " Z w? <oo  as.
=

t—o0 i—1

and this condition will be assumed throughout the sequel.
Let {6;} be defined as in Theorem 2, from which we form
the following estimated polynomials in a standard way

A(z) =1+ a®)z+ -+ an(t)z”
Bi(z) = bi{t)z + -+ + bu(t)2"

Ci(z) =14+ cr(t)z+ - +ca(t)2™. 41)
Then by Theorem 2, the following Diophantine equation

will uniquely determine polynomials L:(z) and R:(z), both
of order (n — 1) with coefficients bounded and convergent.
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Frem this we are able to prove that the following certainty
equivalent pole-placement adaptive control law

Re(2){y} — i}

is stabilizing (see Appendix E for the proof).

Theorem 3: Consider the ARMAX system (3) and the pole-
placement adaptive control law (41)—(43) with {é\t} defined
as in Theorem 2. Then the closed-loop system is stable in the
sense that

Ly(z)us = 43)

lim sup — T E(yt +u?) < oo a.s.

T—s00

Since in Theorem 3 the parameter estimate {/H\t} may not
be strongly consistent, the closed-loop equation under the
adaptive law (43) may not approach to the ideal one (39),
in general. We now use the “attenuating excitation technique”
developed in [15] and [14] to design an optimal controller.

Let {¢;} be a bounded i.i.d. sequence of random variables
independent of {w;,n;} with zero mean and unit variance,
and let u¥ be defined by

Ly(2)u) = Re(2){y7 — ve}- “4)
The actual system input is taken as
.0 €t 1
Ut = Uy + ;E—/E, €€ (0, %) “45)

Theorem 4: Consider the ARMAX system (3) and the
adaptive control law defined by (42), (44), and (45), with
{6,} defined as in Theorem 2. Then the closed-loop system is
asymptotically optimal in the sense that

The proof is also given in Appendix E.

[A*(2)ys—L(2)C(z)w;— B(2)R (z)yt] —->0 a.s.

T—co

HI

V. ADAPTIVE LQG CONTROL

Consider the following quadratic cost function

T-1

J(u) = limsup 1 > v -

T—s00 T .
=0

y)? 4 Ml (46)

where A > 0, and {y;} is a known bounded deterministic
reference signal.
Define the set U of admissible controls

t—1

U= {u: Yy (uf + al®) = 0), lla:|* = o(2)
=0

a.S. Uy € .7:15 Vt} (47)

where {z;} is the state vector defined by (29). Then the

optimal control minimizing J(u) in U is (cf. [14, p. 76])

Ut = L(L‘t + dt (48)

where
L=—(\+b785)"14754 (49)
()\ +B78B) " g (50)
_— Z FITH Y = Fgon — HTy} 1)

S = ATSA CATSH(A+BTSE) T SA+ HTH (52)
F=A-bA+b7Sb)"1b7SA. (53)

Here we have written 4 and b for A(6) and b(8) defined by
(27), for simplicity. H is defined by (28). :

Since (A, H) is observable and (A4,b) is controllable by
Ad), it is known that S > 0 is the unique positive solution of
(52) and F' defined by (53) is a stable matrix (cf., e.g., [14,

p. 75)).

Now, let @\t be the estimate for € which is Adeﬁne/gl as in
Theorem 2, and let At, by, and Gy stand for A(6,), b(6:), and
C(#:). The certainty equivalence LQG control takes the form

uy = L&y + dy (54)
where
Lt = —(/\ + b;Stbt)_lbz;StAt (55)
de = —(A + b7 Seby) 107 Gerr (56)
Ge=—> FTH y},; (57)
j=0
Fy = Ay — by( A+ b7 Syby) b7 S, A, (58)
and {S;} is recursively defined by
St A St 1At A:St_lbt</\ + b;
X Sy-1b) TS Ao+ HTH, Sy 0. (59)

Also in (54), {Z:} is the estimate for {z,} which is
generated by the following adaptive filter

= A&y + byuy + Celypq
-, 0.

Hbtut]
(60)

i'\t+1 - H Atﬁt -

3';\0 = [Z/(), 0) ’

To get an optimal adaptive control law, we use the “attenu-

ating excitation technique” again. Let {e,} be the same as that
in (45) and {u;} be defined by (54)~(59). Then define

Uy = ur + — e€ (0 —1~)

e Yan’”

. T (61)

The following result is proven in Appendix F.

Theorem 5: Consider the ARMAX model (3) where Al),
A3), and A4) hold. Let {6;} be defined as in Theorem 2 which
is used in defining the adaptive LQG control laws (54) and
(61). Then {u.} is stabilizing and {u}} is optimal, i.e.,

J(u) < oo and J(u*) = Jmin a.s.
where Jy,;, is the minimum of the cost function (46) (see [14, »
p- 2507).
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VI. CONCLUDING REMARKS

The self-convergence property of WLS together with the
method of random regularization has enabled us to give
a complete solution to both the stochastic adaptive pole-
placement and L.QG control problems for ARMAX systems,
requiring only controllability of the true system together
with the standard passivity condition on the noise model.
The stability of the closed-loop system is achieved without
introducing any excitation probing signals into the system,
and the optimality is established by only incorporating with
decaying excitations (which seems to be necessary).

The applications of the self-convergence property are not
limited to these, and a universal procedure for the design
of stochastic adaptive control laws for ARMAX models may
be formed as follows: 1) To get a self-convergent parameter
estimate via WLS, ii) To modify the WLS estimate via (31),
so that the estimated model is uniformly controllable (or
satisfy other requirements, depending on specific applications),
and iii) To form the adaptive control law via the certainty
equivalence principle (incorporating with the “attenuating ex-
citation technique,” if necessary). Finally, we remark that
generalizations of the results of the paper to multidimensional
ARMAX models as studied, in e.g., [14], are straightforward,
and the proofs are only notationally more complex.

APPENDIX A
PROOFS OF (15)~(17)

First, for any f(z) € F and for large z > 0

1 2 v odt ¥odt

08T _ / —S,‘Z/ —— =0(1), as
flz) " f@) )zt vz tf(t)

which proves (15). Next, for any M > 0, there exists an

integer m > 1 such that M < 2™. Hence, following the proof
ideas in [25, p. 276], we have for z > 1

r— 0

(=) f<x2*" 3 (Calld) ,
i@ =@ H] - W
which is (16). Furthermore, for = € [e? , 2k+1) E>1

H f ) +log f(e?)

= O(k-) = O(log loge2")
= O(loglog x)

log f(z) < log f(e2")

" which implies (17). Hence the proof is completed.

APPENDIX B
CONTROLLABILITY OF [A(6,), b(6,)]

Let M(9) be the Sylvester resultant matrix defined by (32).
We only need to prove that det M (8;) # 0 as. Vi. For this,
let N(6) be defined in the same way as M () but with the
elements’ 1’s in the diagonal replaced by 0. Then, by (9), we
have

M(0t+1) = M(at) + N(Lt(yt-i—l - ¢:‘,r61))

M(8,) + (ye+1 — D7 0:) N (Ly).
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Let us assume that det M (6;) # 0 a.s. for some ¢ > 0. Then

det M(0t+1) .
= det M(6;) - det[I + (ye1 — b7 0:)M ™ (8:) N (Ly)).
Obviously
Flwo, - wer) S deb[I + (gey1 — 70 M ()N (Ly)]

is a rational function of {wo, -, w41} If it is a constant,
then set w1 = #78; — 87¢), where ¢? is defined by (21),
and we get (ys+1 — ¢76;) = 0; hence this constant must
be 1 and M(6;41) is nonsingular a.s. by our assumption.
If f{wo, -, wyp1) is not a constant, then by the absolute
continuity of the distribution of {w;}, we know from Meyn
and Caines [20] or Caines [21] that f(wp, -, wi41) # 0 as.,
and hence M(6;,1) is again nonsingular a.s. This completes
the induction proof.

APPENDIX C
PROOF OF LEMMA 2

i) By Lemma 1-i) and (31) we have
P78 = 1P 20 - 0, — P28y
< IB7Y26, + 18:)) = O(1).
ii) By Lemma 1-ii) and the Kronecker Lemma

t

STU@70:1)% + (@ - wi)?] = O(a7)  as.

i=1

but

t
D (#76i1)* <
=1

t
Z [(¢70:41) + (97 P2 Bi41)%)
=0(a; ') + O(Z ¢; Piv1¢i)
=1

ot Z 047,¢ Pz+1¢z)

=1

=0(a; ') + O(a

=0(a; ! logr)

and hence the assertion ii) holds.
iii) First, Lemma 1-iii) together with (18) in Remark 1 im-

plies that Z(qﬁ{ 6,)%/re < 0o a.s. So, by the Kronecker
=1
t

Lemma, Z(¢{67t)2 = o(r¢) + O(1) a.s. Now, since

=1
P, — P;11—0 as i—00

S(078:)% < 2316782 + (67 P2 )]
i=1 =1
=o(r:) + 0> ¢7 Pig)
=1
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t
=o(re) + () 7 Pir1¢i)

i=1

+0() " ¢7(Pi = Piy1)ds)

i=1

=o(re) + O(a; " logrs) + o) _ [14ill*)
=1
:O(T't) + O(l)

This completes the proof.

APPENDIX D
PROOF OF THEOREM 2

The proof is divided into the following four steps.

Step 1: We first prove that for any ¢ > 0, the pair [A(6y),
b(ﬁt)] is controllable, a.s., or fy(B:) # 0, a.s., where fi(x) is
defined by (33).

For this, we only need to show that fi(7;) # 0 as., YVt > 0;
since by the definition (36) we have

ft(ﬂt)
fi(Be) > m,

We need the following fact which follows from the proof
in (e.g. [21, pp. 778-780]): Let P(z1 - --x4) be a real-valued
nonzero polynomial of d real variables. Then m({z1 - - xq) :
P(zy---x4) = 0) = 0, where m(-) is the Lebesgue measure
on IR

Now, by (30) and A4) we know that det M (8; + Pl/ z)is
an a.s. nonzero polynomial for any ¢ > 0. Consequently, by
the above fact we know that

m(z: fy(z)=0)=0 as.

vVt > 0. (62)

V>0

which implies that the uniform f)robability measure p(-) de-
fined on D satisfies

wzeD: fi(z)=0)=0, as.

since y(-) is absolutely continuous with respect to m(-).

Note that for any adaptive input {u;}, the random
process f;(-) is measurable with respect to the o-algebra
o{w;, 1,1 < t} £ G,y Let I(-) denote the indicator
function of a set. By the independence of n; and G;—; and
[14, Theorem 1.8], we have

EI(fi(ne) = 0) = E{E[I(f(n:) = 0)|Go]}
= B{ o I(fi(z) = 0)u(dz)}
= B{iz € D fy(x) = 0)} =0
which means that P(f:(n:) = 0) = 0 or fi(n:) # 0 as,
Vi > 0. Hence the desired controllability is proven.

Step 2: Next, we prove that there exists a positive random
variable 6., > 0 such that

Vi >0

limsup fi(n:) > boo a.s. (63)
t—00

Denote

b = maxft(a:)
D2 {zeD: fi(z) 2 4.

Note that 8, Ptl/ 2 and d; are all G,_q-measurable, and that
7; is independent of G;_1, where G;_; is defined as in Step 1.
Then again by properties of conditional expectatlon (cf. [14,
Theorem 1.8]), we have

P(a > $i0s) = [ 1w %)u(@

We now proceed to show that u(D;) #— 0, a.s. as t — o0.

Note that both {6;} and {Ptl/ ?} are convergent a.s.; we may
then define a function f(z) as

f(=z)

Now, let 5* be a convergence point of {8} } defined in (30),
then by condition A4) we know that f(5*) = | det M ()] # 0.
Therefore, f(z) # 0, as., which necessarily implies that
max f(z) # 0, as., since f(z) is the absolute value of a

()

= lim_fi(z), as. ze R (65)

real polynomial (with variables being the components of ),
and since m(D) > 0. Furthermore, it is easy to see that f;(z)
converges to f(z) uniformly on D. Consequently, b — oo
w1th500~maxf( ) > 0 as.

Since f (3:) is a continuous function, we have m(Dy) >0
a.s., where D, is defined by
1

Do ={zeD: f(z) > M} §‘</\ < 1.

Hence it is easy to see from the convergence of {fi(x),6:}
to {f(z),6c0} that for sufficiently large ¢, m(D;) > m(Ds),

which implies u(D;) /— 0 a.s. since p(Dy) = T;;(%) .
Hence, by (64) we know that ‘

Zp<ft(77t) > %Igt—1> =00, as.
=1 H

Consequently, by the Borel-Cantelli-Lévy Lemma (cf. The-
orem 2.5 in [14]) we have
bt
> = =0 as.
> %)

Zf<ft(77t)
t=1
5?.0 >0 as.

which implies that
limsup fi(n:) > l Hm 6; =
t—00 2 t—o0
hence (63) is proved.

Step 3: We now prove that there exist ‘positive random
variables § and #y such that

f(B) =6 as, Vi>tg, (66)
where f(z) is defined by (65).
By (62) and (63) it is obvious that
. oo
Ifisip Je(Be) > Tt >0 as. (67)
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From this and the uniform convergence of fi(z) to f(z) on
D, it is easy to see that there exists a positive random variable
é > 0 and a random time ¢3 > 0 such that

Jto(Bro) =226 >0 (68)

and

F(Bs) €428, Vt>10,¥s>0  (69)

|f(188) -

where « is given as in (36).
We now prove (66) by induction. First, for ¢ = g, by (68)
and (69)

F(Bro) 2 fuo(Bro) =476 2 (2 =976 2 6.

Next, assume that (66) holds for ¢ = k > to, i.e., f(B%) > 6,
we need to consider the case where ¢t = k + 1. If Biq1 = Gy,
then (66) is true by the induction assumption. Otherwise, if
Br+1 # Pr then by the definition (36), we know that

Fet1(Br41) > (1 +7) frr1(Br)

from ‘this, (69), and f(fB:) > §, we have

FBr+1) = frr1(Brt1) —
> (L+7) frr1(Br) — 776
> (L+7)[f(Br) — 6] -
2[1+71=)=716>6

(70)

(71

where for the last inequality we have used (35). Hence (66)
is proven.

Step 4: Finally, we prove that all the results of Theorem
2 hold. By Lemma 2 we need only to prove the properties
i) and ii).

Let us first show that the limit tli_rgo f(B:) = f exists
and f > 0 a.s. For this we need only to show that f(B) is
nondecreasing for k > ¢¢. This is true since when Sx+1 # B
with & > ¢o we have from (71) and (66) that

FBra1) = F(Br) +7F(Br) — (L +7)¥26 — 4%
> f(Be) + 6yl — 2y —~%
> f(Br).

Furthermore, by the uniform convergence of f.(z) to f(z) we
know that tE&noo fer1(Be) = tEgloo fi(B:) = f > 0 as. This
together with the result in Step 1 implies that property ii) is
true.

For proving i) we need only to prove that {/3; } is convergent
a.s. This is true, because, otherwise, by the definition (36), (70)
would hold for infinitely many & on a set I' with P(T") > 0.
Now, let such k tend to infinity we would have

f>2Q@Q+~)f onl.

This is impossible since v > 0 and f > 0 a.s. Hence the proof
of Theorem 2 is completed.
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APPENDIX E
PROOF OF THEOREM 3

Denote
vy = Ay(2)ys — Be(2)us. (72)
Then we have [with ¢? defined by (21)]
VUt =Yt — §T¢t 1+ [Ci(z) — 1]iv;
= wy +07¢_y — O] by 1+[Ct(z)—1]wt
=w + 0t b1+ 9T(¢t—1 -1) +[Ce(z) — .1]@t
= C(2)ws + Oy dp—1 + [Ot(z) — C(2)] @,
= Cy(2)ws + 0, ps—1 + [C(2) — Cy(2)](ws —

Hence, by Lemma 2 ii) and (18) we know that for some L > 0

w). (73)

t

> (v

=0

~ Cy(2)w;)? = O(logh ™ 1y). (74)

Now, since all the coefficients of the polynomials A;(z),
By(z), L(z), and Ry(z) are convergent, by (42), (43), and
(72) with some standard manipulations, we obtain
A" (2)ye = [A(2) Le(2) + Bi(2) Re(2) ]y

= Li(2)[Ae(2)ye] + Be(2)[Re(2)ye]

+of max {lye-il})

= Ly{(2)[By(2)ur + vi] + Be(2)[Re(2)yf — Le(2)us
+o( max {lve—il})
= Ly(2)vy + [Bi(2) Re(2)]y;
+ O(Oggﬁgn{lyt—il + |ue~il})- 75
Similarly, we have
A*(2)uy = —Ry(2)ve + [Ae(2)Re(2)]y} 76)

ol max {lye—i| + lu—il}).

By (40), (74)~(76), and the stability of A*(z), it is easy to
convince ouneself that

t
Y WF +uf) = O(t) + ofr).
i=1
From this it is easy to see that r, = O(¢), and the proof is

complete.
Proof of Theorem 4: First, in the completely similar way
as the proof of Theorem 3, it is easy to show that

lim sup = Z(yt+ut)<oo as.

T—00

Consequently, applying Lemma 3 of Guo and Chen [6], we
know that

> co tl 2en Vt

mm(z $id7

for some constant ¢g > 0. From this and (18) it follows that
P;—0, and then by Lemma 2 (i), 0, is a strongly consistent
estimate for the true parameter 6. Consequently, L:(z), B:(z),
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and R;(z) converge to L(z), B(z), and R(z), respectively,
and the desired result follows immediately from (75) [since
the decaying term {tf/t2} in (45) does not influence (75)].

APPENDIX F
PROOF OF THEOREM 5

We first prove that {u;} is stabilizing. By Theorem 2,
[A4, 0] converges a.s. to a controllable pair [4, B], and it
follows from [14, Theorem 3.4 ] that S; defined by (59)
converges to the unique positive solution S of the following
algebraic Riccati equation

S=ATSA- A"Sb(\+b"Sh)"B"SA+H'H (17
and that F} defined by (58) converges to a stable matrix. (Note
that the condition detA # 0 in [14, p. 70] can be removed
since it is unnecessarily used in proving boundedness of {R;}
there, see e. 2.5 [23 Lemma 5.1]).

Now, let 9t—+0 and rewrite the model (3) as

Y1 =867 <15t + Wit
= 0790 + wip1 + (0 — 8) ¢

= §T¢? + Wiyl + U (78)

where v, = (6 — 940 = (6—08,)¢?
2-iii) it can be shown that
t

ZU

=1

o{r) + O(1). (79)

By (78), similar to (29) we can get an aliernative state space
representation as

Tepl = A\xt +3'U/t + 6wt+1 +H v

Y = H$t7 Ty = [y0707 ) O]T (80)

where 4,5, and C stand for A(8), b(8), and C(A), and H is
defined in (28).
Now, let us write
T _ T 7 T [l o7
zi = [2,27], 2] = [%,% ]
where z; and Z; are (n — 1)-dimensional.

Then, similar to the proof of (8.71) in [14, p. 257] we know
that

§t+1 - Tt 7 Ct:l
~ = ~ |+ Mydy + N, +
L’Hl - Zt-r—l] ¢ |:Zt - zt} K daiars [ 0 v
(81)

where &;——® and & is a stable matrix (see, [14] p. 259), M,
and IV are bounded vectors, and d; is defined by (56).
From (79) and (81), it follows that

1

> [l + Nl — %) =

=0

O(t) + o(rs)

+ (6, —0)¢?. By Lemma

by this and the fact that Z} =
(60) and (80)], we have

; [thisican be seen from

Z(llﬂﬁzll2 + H%II"’) =0(t) + O(n)

=0
From this and (54) we find that

t

S +yd) =

i=1

O(t) + o(re)

which implies that 7, = O(£), and hence {u;} is stabilizing.

By a completely similar argument, we know that the control
law {u}} defined by (61) is also stabilizing. Then similar to
the proof of Theorem 4 we know that under this control law
@; is a strongly consistent estimate for the true parameter 6.
By this, the optimality of {u}} can easily ‘be proved along
the same lines as those in [14 pp- 264-265]. This completes
the proof.
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