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1 Introduction\Identi�cation for Control" has since long been of main concern in the systemidenti�cation literature. The identi�ed model always has some intended ap-plication, and if it is control design, the model quality issues must be focusedon that.Model quality has two sides. One is that several design variables in theidenti�cation process a�ect the model properties in di�erent ways, and weneed to understand these in
uences. There is a very active, recent and re-newed interest in various way to adapt the identi�cation process to controldesign. See, e.g.,[3], [4], [17], [7].Model validation is the other side of model quality. It has always played amajor role in System Identi�cation, as a basic instrument for model structureselection and as the last "quality control" station before a model is deliveredto the user [11], [20]. Methods for robust control design have pointed to theneed for reliable model error bounds, for linear models preferably described asbounds on the frequency functions. A large number of approaches have beendeveloped for this. See, e.g., [9],[10],[6],[5],[21]. For recent work on modelvalidation in a worst-case context see [15] and [19]. Many of the contribu-tions use deterministic frameworks to describe the noise and disturbancesappearing in the system in order to avoid probabilistic, \soft", bounds. Ap-proaches like \unknown-but-bounded" noises (the disturbances are assumedto be bounded, but no other assumptions are invoked), see e.g. [18], lead toset-membership procedures, which determine all models that are consistentwith the noise bound given, see, e.g. [1], [14], [22].In this contribution we shall review some of the basic issues in this pro-cess. In Section 2 guidelines for selecting appropriate design variables for theidenti�cation process are brie
y reviewed. Section 3 deals with the underly-ing principles of model validation in general terms, while Section 4 reviewsa recent result on how a classical validation test can be translated to thefrequency domain. In Section 5 we discuss some issues around model vali-dation for FIR models and unknown-but-bounded disturbances. Section 6deals with the question of performing the validation directly in the frequencydomain.
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Some NotationsWe shall use the following notation.The input will be denoted by u(t) andthe output by y(t). The data record thus isZN = fy(1); u(1); : : : ; y(N); u(N)g (1)The input sequence fu(t); t = 1; : : : ; Ng will throughout this paper be con-sidered as a deterministic sequence, unless otherwise stated. We denote itsperiodogram by jUN (!)j2 = 1N ����� NXt=1 u(t)e�i!t�����2 (2)The given model Ĝ will be assumed to be linear, and a function of the shiftoperator q in the usual way: Ĝ(q). The simulated output will thus beŷ(t) = Ĝ(q)u(t) (3)It may be that the model contains a noise assumption, typically in the formof an additive noise or disturbance v(t) with certain properties. It wouldthen be assumed that the actual output is generated asym(t) = Ĝ(q)u(t) + v(t) (4)The model could contain some "prejudice" about the properties of v(t), butthis is not at all essential to our discussion. A typical, conventional assump-tion would be that v(t) is generated from a white noise source through alinear �lter: v(t) = Ĥ(q)e(t) (5)Most of the model validation tests are based on simply the di�erencebetween the simulated and measured output:"(t) = y(t)� ŷ(t) = y(t)� Ĝ(q)u(t) (6)For added generality, we shall consider possibly pre�ltered model errors:"(t) = L(q)[y(t)� ŷ(t)] = L(q)[y(t)� Ĝ(q)u(t)] (7)For example, if the model comes with a noise model (5), then a commonchoice of pre�lter is L(q) = Ĥ�1(q), since this would make "(t) equal tothe model's prediction errors. This choice of pre�lter is however not at allessential to our discussion.In any case we shall call "(t) the Model Residuals ("model leftovers").3



2 Design of the System Identi�cation Processin the Frequency DomainThere is a recent interest in system identi�cation directly from frequencydomain data, as described in e.g., [16], [12]. Most \classical" approachesotherwise take place in the time domain, both when it comes to the mod-els, algorithms and model validation techniques. On the other hand, themodel properties for control design are most of the time best expressed andevaluated in the frequency domain.Most links between the time domain (prediction error) identi�cation meth-ods and the model's frequency domain properties follow from the propertyModel: y(t) = G(q; �)u(t) +H(q; �)e(t) (8)Criterion: VN(�; ZN) =12� Z ��� 12 j ^̂GN(e�i!)�G(ei!; �)j2QN(!; �)d! (9)where ^̂GN(ei!) = YN(!)UN(!) (10)and QN(!) = jUN(!)j2jH(ei!; �)j2 (11)(see, e.g., eq (7.25) in [11].) Here UN (!) is the discrete time Fourier transformof the input UN(!) = 1pN NXt=1 u(t)e�i!t (12)The resulting model parameters are then given by�̂N = arg minVN(�; ZN) (13)The design variables associated with the identi�cation process are thenprimarily the experimental conditions (in open loop, the input spectrum) andthe data pre�lters (which, for SISO systems are equivalent to the noise modelH(q; �), and closely related to the predictors' prediction horizon; see [11].).An identi�cation task to optimize the model quality for a particular pole-placement control design can then be formulated as in eq (12.23) in [11]:min Z ��� EjĜ(ei!)�G0(ei!)j2 jR(ei!)j2�r(!)jG0(ei!)j2j1 +G0(ei!)F2(ei!)j2d! (14)4



Here �r is the spectrum of the reference signal and R(q) is the desired closedloop system, while F2(q) is the feedback part of the (as yet unknown) regu-lator. (Consequently 11 +G0(q)F2(q)is the (unknown) sensitivity function.)The minimization in (14) is to be carried out over all available identi�ca-tion design variables, including possible feedback controls. The solution is,according to Theorem 14.4 in [11] to perform an open loop experiment withinput spectrum�u(!) = �1 jR(ei!)j�r(!)jG0(ei!)jj1 +G0(ei!)F2(ei!)jq�r(!)�v(!) (15)(�v is the additive disturbance spectrum) and a pre�lter=noise modeljH(ei!)j2 = �2�v(!)�u(!) (16)A problem with this { as most of the time with optimal design { is that thesolution depends on unknown quantities (like G0). Several iterative schemesfor the design have therefor been developed. See, among many references,[4], [17], [7].However, in this contribution, the validation of the resulting model is ourmain concern, rather than the identi�cation design. Our main result willactually concern the translation of the basic, classical validation test to thefrequency domain, in much the same way as (8).3 Some Principles of Model ValidationWe place ourselves in the following situation. A model is given. Let it bedenoted by Ĝ (more speci�c notation will follow later). We are also given adata set ZN consisting of measured input-output data from a system. Wedo not know, or do not care, how the model was estimated, or constructedor given. We might not even know if the data set was used to construct themodel.Our problem is to �gure out if the model Ĝ is any good at describingthe measured data, and perhaps also to give a statement how "far away"5



the model might be from a true description. We would like to approach thisproblem as naked as possible, and strip o� common covers, such as "priorassumptions", "probabilistic frameworks", "worst case model properties" andthe like. What are we then left with?Well, a natural start is to consider the model's simulated response to themeasured input signal. Let that simulated output be denoted by ŷ. Wewould then compare this model output with the actual measured output andcontemplate how good the �t is. This is indeed common practice, and isperhaps the most useful, pragmatic way to gain con�dence in (or reject) amodel. This will be the starting point of our discussion.In the end, all we really have to our disposal for model validation is thesequence of residuals, computed on \historic data". We can give di�erentkind of statistics for these residuals, like the maximum absolute value, orthe mean square value. The implication would be that there is some kindof \invariance principle" for the system, so that these statistics will be validalso in the future use of the model.This is one part of the essence of model validation. The other part is to�gure out if there is reason to believe that this \invariance" also will be validif the character of the input is changed:\Here is a model. On past input-output data it has producedmodel errors with certain statistics. If I change the input u, willthen the errors be signi�cantly di�erent?"To check the part of the residuals that might originate from the input thefollowing statistics are frequently used (see e.g., [2].):Let '(t) = [u(t); u(t� 1); : : : ; u(t�M + 1)]T (17)and RN = 1N NXt=1'(t)'(t)T (18)Now form the following scalar measure of the correlation between past inputs(i.e. the vector ') and the residuals:~�MN = 1N ����� NXt=1'(t)"(t)�����2R�1N (19)
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Note that this quantity also can be written as~�MN = r̂T"uR�1N r̂"u (20)where r̂"u = [r̂"u(0); :::; r̂"u(M � 1)]T (21)with r̂"u(�) = 1pN NXt=1 "(t)u(t� �) (22)It is clear that the induction about the size of the model residuals fromone data set to another is much more reasonable if the statistics ~�MN has asmall value.To come up with measures of how well the model describes the truesystem, we shall assume that the data ZN have been generated by a \truesystem" y(t) = G0(q)u(t) + v(t) (23)and we de�ne the discrepancy as~G(q) = G0(q)� Ĝ(q) (24)Some Basic LimitationsModel validation is really about model falsi�cation. That is, we try to es-tablish convincing evidence that a certain model cannot have produced theobserved data. A model that \so far" has not been falsi�ed can be seen { forthe moment { as \validated".It is also the case that the process of validation hinges upon prior knowl-edge or prior hypothesis of di�erent kinds. This is unavoidable. A trivial wayto realize that this must be the case is the time/frequency uncertainty prin-ciple: After having seen N data points we know nothing about the model'sfrequency behavior with a resolution less than 2�=N radians/sampling inter-val. The validation process must then be complemented either by priors onmodel order or on frequency function smoothness. The latter is related tothe rate of decay of the impulse response.With statistics like (19), we are only probing dynamics up to lagM . Thismeans that we do not check the impulse response beyond this lag. Any state-ment about the model quality must thus hinge upon assumptions/knowledgeabout the tail of the impulse response.7



4 Translating the Basic Model Validation Testto the Frequency DomainThe question now is, what can be said about the model error ~G based on theinformation in ZN .The procedure will be to form"(t) = L(q)(y(t)� Ĝ(q)u(t))and then ~�MN as in (17)-(19). In these calculations replace u(t) outside theinterval [1; N ] by zero. Assume that RN > �I. It is then shown in [13] that� 12� Z ��� ��� ~G(ei!)���2 ���L(ei!)���2 jUN(!)j2 d!�1=2 �� (1 + �) � 1N ~�MN �1=2 + (1 + �)xN + (2 + �)Cu 1Xk=M j�kj (25)Here� xN = ��� 1N PNt=1 ~v(t)'(t)���R�1N� ~v(t) = L(q)v(t)� �k is the impulse response of L(q) ~G(q)� jUN j2 is the periodogram (2).� � = CuMpN�� Cu = max1�t�N ju(t)j.If the input is tapered so that u(t) = 0 for t = N � M + 1; :::N , thenumber � can be taken as zero.Let us make a number of comments:� The result is really just a statement about the relationship between thesequences ~v(t) = L(q)[y(t)�G0(q)u(t)], and "(t) = L(q)[y(t)�Ĝ(q)u(t)]on the one hand and the given transfer functions L(q); G0(q); Ĝ(q) to-gether with the given sequences u(t); y(t) on the other hand. There areas yet no stochastic assumptions whatsoever, and no requirement thatthe \model" Ĝ may or may not be constructed from the given data.8



� By the choice of pre�lter L(q) we can probe the size of the modelerror over arbitrarily small frequency intervals. However, by makingthis �lter very narrow band, we will also typically increase the size ofthe impulse response tail. (Narrow band �lters have slowly decayingimpulse responses.)� In practical use the often erratic periodogram jUN j can be replaced bysmoothed variants.� For the quantities on the right hand side, we note that ~�MN is known bythe user, as well as �;N and Cu. The tail of the impulse response �kbeyond lag M is typically not known. It is an unavoidable term, sinceno such lag has been tested. The size of this term has to be dealt withby prior assumptions.� The only essential unknown term is xN . We shall call this \The cor-relation term". The size and the bounds on this term will relate tonoise assumptions and we will deal with these in some detail in the twofollowing sections.The implications of this result under varying assumptions about the additivedisturbance v(t) are discussed in [13]. We shall here make some commentsrelated to control design applications. We shall then concentrate on a non-probabilistic framework.5 Example application: FIR models and unknown-but-bounded disturbancesThe term xN measures the correlation between the input u and the �ltereddisturbance ~v. In a deterministic setting it is not so easy to formalize what weshould mean by \uncorrelated disturbances". One could of course postulatethat the disturbance sequence that we expect to enter the process is suchthat quantities like xN decay like 1=N or logN=N or in any other way.From [13] we also have the following results:
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A simple boundSuppose that ~v(t) is any sequence, and all that is known about it is anamplitude or an energy bound.xN � " 1N NXt=1 ~v2(t)#1=2 (26)A bound on disturbance power or amplitude will thus directly give a hardmodel error bound in (25).The Case of Periodic InputIf the input is periodic with period P , thenxN � CN �max! j ~V (!)j (27)where ~V (!) is the discrete time Fourier transform of ~v(t), (cf (12)) andCN = 1 + log(N=P + 1)pN � pMPp� � Cu (28)The lemma says that for periodic input and for noises with suitablysmooth spectrum, the model error essentially decays like O( 1pN ). This is thesame type of result that is obtained in the classical stochastic framework.Model Validation with FIR ModelsThe result (25) can be used in a variety of ways. We will see in the nextsection how a given model can be probed using validation data and di�erentpre�lters.Another illustration is as follows. Suppose that the data has been gener-ated by a system y(t) = G0(q)u(t) + v(t) (29)where all that is known about v(t) is that it is bounded:jv(t)j � Cv (30)
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Suppose that the model ĜN is estimated using ZN as an M :th order FIR(�nite impulse response) �lter using the least squares method. Then byconstruction, ~�MN is zero. By (25) and (26) we then have the following result:� 12� Z ��� ���G0(ei!)� ĜN(ei!)���2 jUN(!)j2d!�1=2 �� (1 + �)Cv + (2 + �)Cu 1Xk=M j�kj (31)where �k is the impulse response of G0(q). The variable � was de�ned fol-lowing eqn (25).Under such very weak assumption about the disturbance, we cannot,with this result, come below a certain lower limit for the �t, no matter howlarge we choose N and M . On the other hand, a good signal to noise ratio(Cv=jUN j small) can give very good �ts by making M su�ciently large. (Tokeep � small, N must increase faster than M2.)It might also be noted that without further assumptions about v, wedon't gain much (\certi�ed") model quality by concentrating the �t to certainfrequency bands: If the data is pre�ltered before used for estimation, so thatthe power of jUN(!)j is concentrated to certain frequency bands, the righthand side of (31) does not decrease. This follows from the fact that the powerof v, as measured in (26) could be concentrated to the same frequency bandsas those selected by the pre�lter.6 Model Validation in the Frequency DomainThe traditional way of validating models is, as we have seen, �gures likeFig 2, where the cross correlation between residuals and input (regressors) isplotted. From a control design point of view, it would be much more naturalto rather look at the Fourier transform of this plot, i.e. the cross spectrumbetween input and residuals. That will tell not only the integrated size ofthe model error ~GN(ei!), as in ~� in (19), but also how it is distributed overfrequencies. The usefulness of looking at this cross spectrum was pointed outby Kosut in [8], but has not been further elaborated. The idea is illustratedby the following example.Example 6.1 The fourth order systemy(t)� 2:2y(t� 1) + 2:42y(t� 2)� 1:87y(t� 3) + 0:7225y(t� 1)11



= u(t� 1) + 0:5u(t� 2) (32)was simulated with a binary, white input and negligible additive noise. Twosecond order ARX models were estimated, one based on the original data setand one based on the data �ltered through a (5th order, Butterworth) lowpass �lter with cut-o� frequency 0:2�. The amplitude Bode plots of these twomodels, together with the true system are shown in Figure 1.
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Figure 1: Bode amplitude plots. Solid: True system. Dashed: Model basedon un�ltered data. Dash-dotted: Model based on �ltered data.The standard cross-correlation residual tests (both performed for the orig-inal, un�ltered data) are shown in �gures 2 and 3. Applying the result (25)would give a large value of the test quantity ~� and { correctly so { tell us thatthere is a signi�cant discrepancy between both models and the true system,when evaluated over the whole frequency range (The periodogram jUN (!)j is
at). The test would not tell us the character of the discrepancy.Estimating the transfer function from u to " using spectral analysis, givesthe results shown in Figures 4 and 5.We see that these two �gures give correct information about the reliabilityof the transfer function estimates. The information is consistent with Figure1 (which of course will not be known to the user.)To use the classical residual test, and result (25), supposing we were in-terested in the model �t over the frequency range [0 0:2�], we should pre�lterthe residuals, so that L(q) in (25) picks out the desired range. Residual plotsfor such pre�ltered data are shown in Figures 6 and 7.12
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Note that the measure ~� only uses the correlation for positive lags. Con-sequently the \�ltered model" in Figure 7 will pass the test, and { correctlyso { tell us that the model �t over the frequency range of interest is good,according to (25).7 ConclusionsThe classical paradigm for model validation tells us that we should buildmore and more complex models (like increasing the model order) until amodel is found that passes model validation tests, like~�MN � C� (33)The \identi�cation-for-control" movement has in a sense rejected this atti-tude, by stressing that control design might require simpler models than so,and that we can very well live with model errors that are statistically signi�-cant. It is just a matter of choosing the identi�cation design variables so thatthese model errors fall into frequency regions that can be well handled byfeedback. The challenge is then to evaluate the model errors without havingaccess to a validated model.Looking back at (25), we see a result that tells us the (weighted frequencydomain) quality of a given model, regardless of whether it is \validated" ornot. To use it we must invoke knowledge/assumptions about the nature ofthe disturbances (for xN ) and about the tail of the true system's impulseresponse. Such assumptions in one or another form are unavoidable.We also see how the classical validation criterion (33) becomes natural inthis context: It makes the two �rst terms of the right hand side of (25) balanceeach other under the typical probabilistic assumptions about v (making xNbehave like 1=pN). Note that this also covers the deterministic case (27).In this light it is always natural to press the model to such a point that (33)holds. Then we have the best possible knowledge about its discrepancy fromthe true system. If the model is too complex to be used for control design, itcan always to reduced: In that case we know exactly the di�erence betweenthe validated model and the reduced one. That can be translated to a lessconservative error bound on the reduced order model, used for the controldesign.In fact, the process illustrated in Section 6, with spectral analysis of thetransfer function from u to the residuals is of the same nature. If we had done16
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