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Abstract

Model Validation is at the heart of the System Identification process. Re-
cently, much renewed interest has been expressed in so called “identification
for control”. This means that the design variables associated with the identi-
fication process are tailored to achieve models that are well suited for control
design purposes. A separate, but closely related issue is to devise validation
tests that give information about the model’s quality and suitability for con-
trol design. This paper shows and discusses how a basic and classical residual
test gives such information.
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1 Introduction

“Identification for Control” has since long been of main concern in the system
identification literature. The identified model always has some intended ap-
plication, and if it is control design, the model quality issues must be focused
on that.

Model quality has two sides. One is that several design variables in the
identification process affect the model properties in different ways, and we
need to understand these influences. There is a very active, recent and re-
newed interest in various way to adapt the identification process to control
design. See, e.g.,[3], [4], [17], [7].

Model validation is the other side of model quality. It has always played a
major role in System Identification, as a basic instrument for model structure
selection and as the last ”quality control” station before a model is delivered
to the user [11], [20]. Methods for robust control design have pointed to the
need for reliable model error bounds, for linear models preferably described as
bounds on the frequency functions. A large number of approaches have been
developed for this. See, e.g., [9],[10],[6],[5],[21]. For recent work on model
validation in a worst-case context see [15] and [19]. Many of the contribu-
tions use deterministic frameworks to describe the noise and disturbances
appearing in the system in order to avoid probabilistic, “soft”, bounds. Ap-
proaches like “unknown-but-bounded” noises (the disturbances are assumed
to be bounded, but no other assumptions are invoked), see e.g. [18], lead to
set-membership procedures, which determine all models that are consistent
with the noise bound given, see, e.g. [1], [14], [22].

In this contribution we shall review some of the basic issues in this pro-
cess. In Section 2 guidelines for selecting appropriate design variables for the
identification process are briefly reviewed. Section 3 deals with the underly-
ing principles of model validation in general terms, while Section 4 reviews
a recent result on how a classical validation test can be translated to the
frequency domain. In Section 5 we discuss some issues around model vali-
dation for FIR models and unknown-but-bounded disturbances. Section 6
deals with the question of performing the validation directly in the frequency
domain.



Some Notations

We shall use the following notation.The input will be denoted by u(¢) and
the output by y(¢). The data record thus is

2" = {y(1),u(1), ..., y(N), u(N)} (1)

The input sequence {u(t),t = 1,..., N} will throughout this paper be con-
sidered as a deterministic sequence, unless otherwise stated. We denote its

periodogram by
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> u(t)e !

t=1

Un)f =5 )

The given model G will be assumed to be linear, and a function of the shift

operator ¢ in the usual way: G(g). The simulated output will thus be
§(t) = Glq)u(t) (3)

It may be that the model contains a noise assumption, typically in the form
of an additive noise or disturbance v(t) with certain properties. It would
then be assumed that the actual output is generated as

ym(t) = G(g)ult) + v (t) (4)

The model could contain some ”prejudice” about the properties of v(¢), but
this is not at all essential to our discussion. A typical, conventional assump-
tion would be that v(¢) is generated from a white noise source through a
linear filter:

v(t) = H(q)e(t) (5)
Most of the model validation tests are based on simply the difference
between the simulated and measured output:

£(t) = y(t) = 9(t) = y(t) — Glq)u(?) (6)
For added generality, we shall consider possibly prefiltered model errors:
£(t) = L(@)[y() — 9(1)] = L(@)[y(1) — G(g)u(?)] (7)

For example, if the model comes with a noise model (5), then a common
choice of prefilter is L(q) = H '(q), since this would make £(¢) equal to
the model’s prediction errors. This choice of prefilter is however not at all
essential to our discussion.

In any case we shall call £(¢) the Model Residuals ("model leftovers”).
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2 Design of the System Identification Process
in the Frequency Domain

There is a recent interest in system identification directly from frequency
domain data, as described in e.g., [16], [12]. Most “classical” approaches
otherwise take place in the time domain, both when it comes to the mod-
els, algorithms and model validation techniques. On the other hand, the
model properties for control design are most of the time best expressed and
evaluated in the frequency domain.

Most links between the time domain (prediction error) identification meth-
ods and the model’s frequency domain properties follow from the property

Model: () = Glg, O)u(t) + H(g. 0)e(t) (8)
Criterion: Vn(0,ZV) =

= ’ LGN ™)~ Gl OPQu(w. 0)ds (9)

whore  Giy(e*) = 2 ((‘:; (10)

md Qule) = M (1)

(see, e.g., eq (7.25) in [11].) Here Uy (w) is the discrete time Fourier transform
of the input

Un(w) = \/LN S u(t)e (12)

The resulting model parameters are then given by
Oy = arg minVy (6, Z") (13)

The design variables associated with the identification process are then
primarily the ezperimental conditions (in open loop, the input spectrum) and
the data prefilters (which, for SISO systems are equivalent to the noise model
H(q,0), and closely related to the predictors’ prediction horizon; see [11].).

An identification task to optimize the model quality for a particular pole-
placement control design can then be formulated as in eq (12.23) in [11]:

T A - R(e') *®, (w)
min E|G(e™) — Go(e™)[? . | . .
), BIGE) = Gole™) |Go(e™) 21 + Go () Fy(ei)|2

dw (14)
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Here @, is the spectrum of the reference signal and R(q) is the desired closed
loop system, while Fy(q) is the feedback part of the (as yet unknown) regu-
lator. (Consequently

1
1+ Go(q)Fa(q)

is the (unknown) sensitivity function.)

The minimization in (14) is to be carried out over all available identifica-
tion design variables, including possible feedback controls. The solution is,
according to Theorem 14.4 in [11] to perform an open loop experiment with
input spectrum

|[R(e™) | (w)
Go(e)[[1+ Go(e™) Fy(e™)]

O, (w) = O, (W) Py (w) (15)

(®, is the additive disturbance spectrum) and a prefilter=noise model

b, (w)

He ) = g

(16)
A problem with this — as most of the time with optimal design — is that the
solution depends on unknown quantities (like G). Several iterative schemes
for the design have therefor been developed. See, among many references,
4], [17), [7).

However, in this contribution, the validation of the resulting model is our
main concern, rather than the identification design. Our main result will
actually concern the translation of the basic, classical validation test to the
frequency domain, in much the same way as (8).

3 Some Principles of Model Validation

We place ourselves in the following situation. A model is given. Let it be
denoted by G (more specific notation will follow later). We are also given a
data set ZV consisting of measured input-output data from a system. We
do not know, or do not care, how the model was estimated, or constructed
or given. We might not even know if the data set was used to construct the
model.

Our problem is to figure out if the model G is any good at describing
the measured data, and perhaps also to give a statement how ”far away”



the model might be from a true description. We would like to approach this
problem as naked as possible, and strip off common covers, such as ”prior
assumptions”, " probabilistic frameworks”, ”worst case model properties” and
the like. What are we then left with?

Well, a natural start is to consider the model’s simulated response to the
measured input signal. Let that simulated output be denoted by 7. We
would then compare this model output with the actual measured output and
contemplate how good the fit is. This is indeed common practice, and is
perhaps the most useful, pragmatic way to gain confidence in (or reject) a
model. This will be the starting point of our discussion.

In the end, all we really have to our disposal for model validation is the
sequence of residuals, computed on “historic data”. We can give different
kind of statistics for these residuals, like the maximum absolute value, or
the mean square value. The implication would be that there is some kind
of “invariance principle” for the system, so that these statistics will be valid
also in the future use of the model.

This is one part of the essence of model validation. The other part is to
figure out if there is reason to believe that this “invariance” also will be valid
if the character of the input is changed:

“Here is a model. On past input-output data it has produced
model errors with certain statistics. If I change the input u, will
then the errors be significantly different?”

To check the part of the residuals that might originate from the input the
following statistics are frequently used (see e.g., [2].):
Let
o) = [u(t),u(t —1),...,ult — M +1)]" (17)

and

Ry =y > (et (18)

Now form the following scalar measure of the correlation between past inputs
(i.e. the vector ) and the residuals:

(19)




Note that this quantity also can be written as

N =T RN e (20)

where
fau — [fau(o)a -'-772511,(M - 1)]T (21)

with
Teu(T Z Ju(t — 1) (22)

It is clear that the induction about the size of the model residuals from
one data set to another is much more reasonable if the statistics £¥ has a
small value.

To come up with measures of how well the model describes the true
system, we shall assume that the data ZV have been generated by a “true
system”

y(t) = Golq)u(t) + v(t) (23)
and we define the discrepancy as
G(q) = Go(q) — G(q) (24)

Some Basic Limitations

Model validation is really about model falsification. That is, we try to es-
tablish convincing evidence that a certain model cannot have produced the
observed data. A model that “so far” has not been falsified can be seen for
the moment as “validated”.

It is also the case that the process of validation hinges upon prior knowl-
edge or prior hypothesis of different kinds. This is unavoidable. A trivial way
to realize that this must be the case is the time/frequency uncertainty prin-
ciple: After having seen N data points we know nothing about the model’s
frequency behavior with a resolution less than 27 /N radians/sampling inter-
val. The validation process must then be complemented either by priors on
model order or on frequency function smoothness. The latter is related to
the rate of decay of the impulse response.

With statistics like (19), we are only probing dynamics up to lag M. This
means that we do not check the impulse response beyond this lag. Any state-
ment about the model quality must thus hinge upon assumptions/knowledge
about the tail of the impulse response.



4 Translating the Basic Model Validation Test
to the Frequency Domain

The question now is, what can be said about the model error G based on the
information in Z%.
The procedure will be to form

£(t) = L(@)(y(t) — G(q)u(t))

and then £ as in (17)-(19). In these calculations replace u(t) outside the
interval [1, N] by zero. Assume that Ry > ¢1. It is then shown in [13] that

=1

1/2 oc
< () [SE] e+ @G Y Il (29)

G| [Le)] Un(w)? dw} Y <

Here

o ox =[x S 00e()],

e 0(t) = L(g)u(1)
e py is the impulse response of L(q)G(q)
e |Uy|* is the periodogram (2).

_ M
= nNs

e C, = maxj<n |u(t))

If the input is tapered so that u(t) = 0 for t = N — M + 1,...N, the
number 7 can be taken as zero.
Let us make a number of comments:

e The result is really just a statement about the relationship between the
sequences 0(t) = L(q)[y(t)—Go(q)u(t)], and e(t) = L(q)[y(t) -G (q)u(t)]
on the one hand and the given transfer functions L(q), Go(q), G(q) to-
gether with the given sequences u(t), y(t) on the other hand. There are
as yet no stochastic assumptions whatsoever, and no requirement that
the “model” G may or may not be constructed from the given data.

8



e By the choice of prefilter L(q) we can probe the size of the model
error over arbitrarily small frequency intervals. However, by making
this filter very narrow band, we will also typically increase the size of
the impulse response tail. (Narrow band filters have slowly decaying
impulse responses.)

e In practical use the often erratic periodogram |Uy| can be replaced by
smoothed variants.

e For the quantities on the right hand side, we note that 5% is known by
the user, as well as n, N and C,. The tail of the impulse response p;
beyond lag M is typically not known. It is an unavoidable term, since
no such lag has been tested. The size of this term has to be dealt with
by prior assumptions.

e The only essential unknown term is xy. We shall call this “The cor-
relation term”. The size and the bounds on this term will relate to
noise assumptions and we will deal with these in some detail in the two
following sections.

The implications of this result under varying assumptions about the additive
disturbance v(t) are discussed in [13]. We shall here make some comments
related to control design applications. We shall then concentrate on a non-
probabilistic framework.

5 Example application: FIR models and unknown-
but-bounded disturbances

The term zy measures the correlation between the input u and the filtered

disturbance . In a deterministic setting it is not so easy to formalize what we

should mean by “uncorrelated disturbances”. One could of course postulate

that the disturbance sequence that we expect to enter the process is such

that quantities like z decay like 1/N or log N/N or in any other way.
From [13] we also have the following results:



A simple bound

Suppose that ©(t) is any sequence, and all that is known about it is an
amplitude or an energy bound.

Ty <

Lo 1/2
F30 (t)] (26)

A bound on disturbance power or amplitude will thus directly give a hard
model error bound in (25).

The Case of Periodic Input

If the input is periodic with period P, then
xy < C’N-muz)ix\f/(wﬂ (27)
where V(w) is the discrete time Fourier transform of #(t), (cf (12)) and

_ 1+log(N/P+1) VMP
a VN Vo

The lemma says that for periodic input and for noises with suitably
smooth spectrum, the model error essentially decays like O(#) This is the
same type of result that is obtained in the classical stochastic framework.

Cn

Cy (28)

Model Validation with FIR Models

The result (25) can be used in a variety of ways. We will see in the next
section how a given model can be probed using validation data and different
prefilters.
Another illustration is as follows. Suppose that the data has been gener-
ated by a system
y(t) = Golg)u(t) + v(t) (29)

where all that is known about v(¢) is that it is bounded:

lw(t)] < C, (30)
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Suppose that the model G’Nis estimated using ZV as an M:th order FIR
(finite impulse response) filter using the least squares method. Then by
construction, £V is zero. By (25) and (26) we then have the following result:

=

< (1+n)Cy+(2+n)C Z A (31)
k=

. R 2 1/2
Go(e™) = G ()] [Ux (@) Pe| <

where pj is the impulse response of G¢(q). The variable n was defined fol-
lowing eqn (25).

Under such very weak assumption about the disturbance, we cannot,
with this result, come below a certain lower limit for the fit, no matter how
large we choose N and M. On the other hand, a good signal to noise ratio
(C,/|Uy| small) can give very good fits by making M sufficiently large. (To
keep 7 small, N must increase faster than M?.)

It might also be noted that without further assumptions about v, we
don’t gain much (“certified”) model quality by concentrating the fit to certain
frequency bands: If the data is prefiltered before used for estimation, so that
the power of |[Uy(w)] is concentrated to certain frequency bands, the right
hand side of (31) does not decrease. This follows from the fact that the power
of v, as measured in (26) could be concentrated to the same frequency bands
as those selected by the prefilter.

6 Model Validation in the Frequency Domain

The traditional way of validating models is, as we have seen, figures like
Fig 2, where the cross correlation between residuals and input (regressors) is
plotted. From a control design point of view, it would be much more natural
to rather look at the Fourier transform of this plot, i.e. the cross spectrum
between input and residuals. That will tell not only the integrated size of
the model error Gy (e), as in € in (19), but also how it is distributed over
frequencies. The usefulness of looking at this cross spectrum was pointed out
by Kosut in [8], but has not been further elaborated. The idea is illustrated
by the following example.

Example 6.1 The fourth order system
y(t) — 2.2y(t — 1) + 2.42y(t — 2) — 1.87y(t — 3) + 0.7225y(t — 1)
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= u(t—1)+ 0.5u(t —2) (32)

was simulated with a binary, white input and negligible additive noise. Two
second order ARX models were estimated, one based on the original data set
and one based on the data filtered through a (5th order, Butterworth) low
pass filter with cut-off frequency 0.2m. The amplitude Bode plots of these two
models, together with the true system are shown in Figure 1.

10°

10" b

10 |

10

-2

. .
107 107 10° 10

10

Figure 1: Bode amplitude plots. Solid: True system. Dashed: Model based
on unfiltered data. Dash-dotted: Model based on filtered data.

The standard cross-correlation residual tests (both performed for the orig-
inal, unfiltered data) are shown in figures 2 and 3. Applying the result (25)
would give a large value of the test quantity & and  correctly so  tell us that
there is a significant discrepancy between both models and the true system,
when evaluated over the whole frequency range (The periodogram |Uy(w)] is
flat). The test would not tell us the character of the discrepancy.

Estimating the transfer function from u to € using spectral analysis, gives
the results shown in Figures 4 and 5.

We see that these two figures give correct information about the reliability
of the transfer function estimates. The information is consistent with Figure
1 (which of course will not be known to the user.)

To use the classical residual test, and result (25), supposing we were in-
terested in the model fit over the frequency range [0 0.2, we should prefilter
the residuals, so that L(q) in (25) picks out the desired range. Residual plots
for such prefiltered data are shown in Figures 6 and 7.
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Figure 2: Residual test for the second order

filtered data

lag

10

model estimated using the un-

Correlation function of residuals. Output # 1

15

20

25

5

10

lag

15

20

Cross corr. function between input 1 and residuals from output 1

Figure 3: Residual test for the second order model estimated using the filtered
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data. The test is performed on the original data
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AMPLITUDE PLOT, input # 1 output # 1
10 T T

10 . .
10” 10" 10° 10*

frequency (rad/sec)

Figure 4: Amplitude plot with confidence interval corresponding to 3 stan-
dard deviations for the transfer function from input to residuals from the
second order ARX model, estimated from unfiltered data.

AMPLITUDE PLOT, input # 1 output # 1
10 T T

frequency (rad/sec)

Figure 5: As Figure 4, but using residuals from the model obtained by filtered
data.
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Correlation function of residuals. Output # 1

5

Cross corr. function between input 1 and residuals from output 1

10

lag

15

20

Figure 6: Residual test for the second order model
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filtered data. Test performed on filtered data.
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Figure 7: Residual test for the second order model estimated using the filtered
data. Test performed on filtered data.
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Note that the measure §~ only uses the correlation for positive lags. Con-
sequently the “filtered model” in Figure 7 will pass the test, and — correctly
so  tell us that the model fit over the frequency range of interest is good,
according to (25).

7 Conclusions

The classical paradigm for model validation tells us that we should build
more and more complex models (like increasing the model order) until a
model is found that passes model validation tests, like

EN < Ce (33)

The “identification-for-control” movement has in a sense rejected this atti-
tude, by stressing that control design might require simpler models than so,
and that we can very well live with model errors that are statistically signifi-
cant. It is just a matter of choosing the identification design variables so that
these model errors fall into frequency regions that can be well handled by
feedback. The challenge is then to evaluate the model errors without having
access to a validated model.

Looking back at (25), we see a result that tells us the (weighted frequency
domain) quality of a given model, regardless of whether it is “validated” or
not. To use it we must invoke knowledge/assumptions about the nature of
the disturbances (for xy) and about the tail of the true system’s impulse
response. Such assumptions in one or another form are unavoidable.

We also see how the classical validation criterion (33) becomes natural in
this context: It makes the two first terms of the right hand side of (25) balance
each other under the typical probabilistic assumptions about v (making zy
behave like 1/4/N). Note that this also covers the deterministic case (27).
In this light it is always natural to press the model to such a point that (33)
holds. Then we have the best possible knowledge about its discrepancy from
the true system. If the model is too complex to be used for control design, it
can always to reduced: In that case we know exactly the difference between
the validated model and the reduced one. That can be translated to a less
conservative error bound on the reduced order model, used for the control
design.

In fact, the process illustrated in Section 6, with spectral analysis of the
transfer function from u to the residuals is of the same nature. If we had done
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FIR modeling of the transfer function from u to £ the sum of the nominal
model G and the one estimated using £ would have constituted a validated
model.

The bottom line seems to be that even for control oriented model valida-

tion there is no real escape from the classical paradigm: Obtain an unfalsified
model: reduce it if necessary.
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