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Necessary and Sufficient Conditions
for Stability of LMS
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Abstract—In a recent work [7], some general results on ex-
ponential stability of random linear equations are established
which can be applied directly to the performance analysis of a
wide class of adaptive algorithms, including the basic LMS ones,
without requiring stationarity, independency, and boundedness
assumptions of the system signals. The current paper attempts
to give a complete characterization of the exponential stability
of the LMS algorithms by providing a necessary and sufficient
condition for such a stability in the case of possibly unbounded,
nonstationary, and non-�-mixing signals. The results of this paper
can be applied to a very large class of signals, including those
generated from, e.g., a Gaussian process via a time-varying linear
filter. As an application, several novel and extended results on
convergence and the tracking performance of LMS are derived
under various assumptions. Neither stationarity nor Markov-
chain assumptions are necessarily required in the paper.

Index Terms—Exponential stability, LMS algorithm, nonsta-
tionary signals, tracking performance.

I. INTRODUCTION

A. The Contribution

T HE WELL-KNOWN least mean squares (LMS) algo-
rithm, aiming at tracking the “best linear fit” of an

observed (or desired) signal based on a measured-
dimensional (input) signal , is defined recursively by

(1)

where is a step-size.
Due to its simplicity, robustness, and ease of implemen-

tation, the LMS algorithm is known to be one of the most
basic adaptive algorithms in many areas, including adaptive
signal processing, system identification, and adaptive control,
and it has received considerable attention in both theory and
applications over the past several decades (see, among many
others, books [20], [19], and [2], the survey [14], and the
references therein). Also, it has been found recently that the
LMS is optimal in the sense that it minimizes the energy
gain from the disturbances to the predicted errors, and it is also
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risk-sensitive optimal and minimizes a certain exponential cost
function (see [11]).

In many situations, it is desirable to know at least the
answers to the following questions.

• Is the LMS stable in the mean-squares sense?
• Does the LMS have good tracking ability?
• How does one calculate and minimize the tracking errors?

Now, for a given sequence , (1) is a linear, time-
varying difference equation. The properties of this equation
are essentially determined by the homogeneous equation

(2)

with fundamental matrix

(3)

The expression for tracking errors will then be of the form

(4)

where describes the error sources (measurement noise,
parameter variations, etc.). As elaborated, e.g., in [8] and [6],
the essential key to the analysis of (4) is to prove exponential
stability of (3). This was also the motivation behind the work
of [1]. We shall establish such exponential stability in the sense
that for any there exist positive constants and

such that

(5)

The expectation , here, is with respect to the sequence .
Clearly, (5) is a property of the sequence only. We

shall here establish (5) under very general conditions on .
These are of the kind (precise conditions are given in Theorem
2):

• restrictions on the dependence among the: This takes
the form that is formed by possibly time-varying, but
uniformly stable, filtering of a noise source which is
mixing and obeys an additional condition on the rate of
decay of dependence;

• restrictions on the tail of the distribution of : This takes
the form that

(6)
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for some and some constant . Here is the
“source” from which was formed.

Both of these restrictions are very mild and allow, for ex-
ample, the Gaussian, dependent case (unlike most previous
treatments). Now, for sequences subject to these two
restrictions, thenecessary and sufficientcondition for (5) to
hold is that

(7)

for some and . This is the “persistence of
excitation” or “full rank” condition on .

This result is the main contribution of this paper. Fur-
thermore, several direct applications of the stability result to
adaptive tracking will be given under various noise assump-
tions, which in particular, yield more general results on LMS
than those established recently in [8].

B. Earlier Work

Most of the existing work related to exponential stability
of (2) is concerned with the case where the signals
are independent or -dependent (cf., e.g., [20], [19], [4],
[1], and [2]). This independence assumption can be relaxed
considerably if we assume that the signals are bounded
as in, e.g., [6], [18], and [12]. Note that the boundedness
assumption is suitable for the study of the so-called normalized
LMS algorithms (cf. [19], [6], and [15]), since the normalized
signals are automatically bounded. In this case, some general
results together with a very weak (probably the weakest ever
known) excitation condition for guaranteeing the exponential
stability of LMS can be found in [6]. Moreover, in the bounded

-mixing case, a complete characterization of the exponential
stability can also be given. Indeed, in that case it has been
shown in [6] that (7) is the necessary and sufficient condition
for (2) to be exponentially stable.

For general unbounded and correlated random signals, the
stability analysis for the standard LMS algorithm (1) becomes
more complex as to have defied complete solution for over
30 years. Recently, some general stability results applicable
to unbounded nonstationary-dependent signals are established
in [7], based on which a number of results on the tracking
performance of the LMS algorithms can be derived (see [8]).
In particular, the result of [7] can be applied to a typical
situation, where the signal process is generated from a white
noise sequence through a stable linear filter

(8)

where is an independent sequence satisfying

for some

(9)
and is a bounded deterministic process.

It is obvious that (8) has a similar form as the well-known
Wold decomposition for wide-sense stationary processes. Note,

however, that the signal process defined by (8) need not
be a stationary process nor a Markov chain, in general.

Unfortunately, (9) with excludes the case where
is a Gaussian process, since such signals could only satisfy a
weaker condition

for some (10)

The motivation of this paper has thus been to relax (9) so
that at least the signal process defined by (8) and (10) can
be included. This will be done in a more general setting, based
on a relaxation of the moment condition used in [7, Th. 3.2].

II. THE MAIN RESULTS

A. Notations

Here we adopt the following notations introduced in [7].

1) The maximum eigenvalue of a matrix is denoted by
, and the Euclidean norm of is defined as its

maximum singular value, i.e.,

and the -norm of a random matrix is defined as

2) For any square random matrix sequence , and
real numbers , the -exponentially
stable family is defined by

,

for some and

Likewise, the averaged exponentially stable family
is defined by

for some , and

In what follows, it will be convenient to set

(11)
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3) Let . Set

as

(12)
where

(13)

The definition of is reminiscent of the law of
large numbers. As shown by [9, Lemma 3], it includes
a large class of random processes.

B. The Main Results

We first present a preliminary theorem.
Theorem 1: Let be a random matrix process. Then

provided that the followingtwo conditionsare satisfied.

1) There exist positive constants and such that for
any

holds for any integer sequence .
2) There exists a constant and a nondecreasing function

with , as , such that for any
fixed , all small and any

where is defined by (13).

The proof is given in Section IV.
Remark 1: The form of Theorem 1 is similar to that of

[7, Th. 3.2]. The key difference lies in Condition 1). This
condition was introduced in [5, p. 112] and is, in a certain
sense, a relaxation of the corresponding condition used in [7,
Th. 3.2]. Such a relaxation enables us to include Gaussian
signals as a special case when the LMS algorithms are in
consideration, as will be shown shortly.

Based on Theorem 1, we may prove that for a large class
of unbounded nonstationary signals including (8), (7) is also
necessary and sufficient for the exponential stability of LMS.

Let us start with the following decomposition which is more
general than that in (8):

(14)
where is a -dimensional bounded deterministic process,
and is now a general -dimensional -mixing sequence.
The weighting matrices are assumed to be
deterministic.

We remark that the summability condition in (14) is pre-
cisely the standard definition for uniform stability of time-
varying linear filters (cf., e.g., [13]). Also, recall that a random
sequence is called -mixing if there exists a nonincreas-
ing function (called the mixing rate) with

and as such that

where by definition is the -algebra
generated by .

The -mixing concept is a standard one in the literature
for describing weakly dependent random processes. As is well
known, the -mixing property is satisfied by, for example, any

-dependent sequences, sequences generated from bounded
white noises via a stable linear filter, and stationary aperi-
odic Markov chains which are Markov ergodic and satisfy
Doeblin’s condition (cf. [3]).

The main result of this paper is then stated as follows.
Theorem 2: Consider (2). Let the signal process be

generated by (14) where is a bounded deterministic
sequence, and is a -mixing process which satisfies for
any and any integer sequence

(15)

where and are positive constants. Then for any
there exist constants and such that
for all

(16)

if and only if there exists an integer and a constant
such that

(17)

The proof is also given in Section IV.
Remark 2: By taking
and in (14), we see that coincides with

, which means that Theorem 2 is applicable to any-
mixing sequences. Furthermore, if is bounded, then (15)
is automatically satisfied. This shows that Theorem 2 may
include the corresponding result in [6] as a special case.

Note, however, that a linearly filtered-mixing process like
(14) will no longer be a -mixing sequence in general (because
of the possible unboundedness of ). In fact, Theorem 2 is
applicable also to quite a large class of processes other than

-mixing, as shown by the following corollary.
Corollary 1: Let the signal process be generated

by (14), where is a bounded deterministic sequence,
and is an independent sequence satisfying (10). Then

for all if and only if there exists an
integer and a constant such that (17) holds.
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Proof: By Theorem 2, we only need to show that (15) is
true. This is obvious since is an independent sequence
satisfying (10).

Remark 3: Corollary 1 continues to hold if the indepen-
dence assumption of is weakened to -dependence.
Moreover, (10) used in Corollary 1 may also be further relaxed
if additional conditions are imposed. This is the case when,
for example, is a stationary process generated by a stable
finite-dimensional linear state-space model with the innovation
process being an i.i.d. sequence (see [16]).

III. PERFORMANCE OFADAPTIVE TRACKING

Let us now assume that and are related by a
linear regression

(18)

where is the true or “fictitious” time-varying parameter
process, and represents the disturbance or unmodeled
dynamics.

The objective of the LMS algorithm (1) is then to track the
time-varying unknown parameter process . The tracking
error will depend on the parameter variation process
defined by

(19)

through the following error equation obtained by substituting
(18) and (19) into (1):

(20)

where .
Obviously, the quality of tracking will essentially depend

on the properties of . The homogeneous part of
(20) is exactly (2) and can be dealt with by Theorem 2. Hence,
we need only to consider the nonhomogeneous terms in (20).
Different assumptions on will give different tracking
error bounds or expressions, and we shall treat three cases
separately in the following.

A. First Performance Analysis

By this, we mean that the tracking performance analysis
is carried out under a “worst case” situation, i.e., the param-
eter variations and the disturbances are only assumed to be
bounded in an averaging sense. To be specific, let us make the
following assumption.

A1) There exists such that

and

Note that this condition includes any “unknown but
bounded” deterministic disturbances and parameter variations
as a special case.

Theorem 3: Consider the LMS algorithm (1) applied to
(18). Let Condition A1) be satisfied. Also, let be as
in Theorem 2 with (17) satisfied. Then for all and all
small

where is a constant.
This result follows immediately from Theorem 2, (20),

and the H¨older inequality. We remark that various such
“worst case” results for other commonly used algorithms (e.g.,
recursive least squares and Kalman filter) may be found in
[6]. The main implication of Theorem 3 is that the tracking
error will be small if both the parameter variation and the
disturbance are small.

B. Second Performance Analysis

By this, we mean that the tracking performance analysis is
carried out for zero mean random parameter variations and
disturbances which may be correlated processes in general. To
be specific, we introduce the following set for :

(21)

where is a constant depending onand the distribution
of only.

Obviously, is a subset of defined by (12). It is
known (see [9]) that the martingale difference, zero mean-
and -mixing sequences can all be included in. Also, from
the proof of [9, Lemma 3], it is known that the constant
can be dominated by in the first two cases and by

in the last case.
Moreover, it is interesting to note that is invariant under

linear transformations. This means that if and are
related by (8) with , then implies that

. This can be easily seen from the following
inequality:

Thus, random processes generated from martingale differ-
ences, or - or -mixing sequences via an infinite order linear
filter, can all be included in .

Now, we are in a position to introduce the following
condition for the second performance analysis.

A2) For some and

Theorem 4: Consider the LMS algorithm (1) applied to
(18). Let be defined as in Theorem 2 with (17) satisfied,
and let the Condition A2) hold for a certain. Then for all

and all small
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where and are the constants defined in (21), which
depend on the distributions of and , respectively.
Moreover, is the same constant as in Theorem 3.

Proof: By [8, Lemma A.2] and Theorem 2, it is easy to
see from (20) that the desired result is true.

Note that the upper bound in Theorem 4 significantly
improves the “crude” bound given in Theorem 3 for small

, and it roughly indicates the familiar tradeoff between noise
sensitivity and tracking ability.

Theorem 4 can be applied directly to the convergence
analysis of some standard filtering problems (cf. [20], [4],
and [2]). For example, let and be two stationary
processes, and assume that our purpose is to track the LMS
solution

of

recursively, based on real-time measurements .
Now, define by

It is then obvious that . Furthermore, in many
standard situations it can be verified that for
some . Thus, Theorem 4 applied to the above linear
regression gives

which tends to zero as and .
Apparently, Theorem 4 is also applicable to nonstationary

signals and .

C. Third Performance Analysis

By this, we mean that the analysis is purposed to get an
explicit (approximate) expression for the tracking performance
rather than just getting an upper bound as in the previous
two cases. This is usually carried out under white noise
assumptions on . Roughly speaking, the parameter
process in this case will behave like a random walk, and some
detailed interpretations of this parameter model may be found
in [14] and [8]. We make the following assumptions.

A3) The regressor process is generated by a time-varying
causal filter

(22)
where is a bounded deterministic sequence, and

is a -mixing process with mixing rate
denoted by . Assume also that (15) and (17) hold.

A4) The process satisfies the following condi-
tions:

a)

b)
c)

where and are constants, and denotes
the -algebra generated by .

Theorem 5: Consider the LMS algorithm (1) applied to
(18). Let Conditions A3) and A4) be satisfied. Then, the
tracking error covariance matrix has the following expansion
for all and all small :

where the function as , and is recursively
defined by

with and and being defined as in
Condition A4).

This theorem relaxes and unifies the conditions used in [8,
Th. 5.1]. The proof is given in Section IV. The expression for
the function may be found from the proof and from the
related formula in [8, Th. 4.1]; see (45).

Note that in the (wide-sense) stationary case,
and will converge to a matrix

defined by the Lyapunov equation (cf. [8])

In this case, the trace of the matrix, which represents the
dominating part of the tracking error for small and
large , can be expressed as

where . Minimizing with respect to , one
obtain the following formula for the step-size:

IV. PROOF OF THEOREMS 1, 2, AND 5

A. Proof of Theorem 1

By the proof of [7, Lemma 5.2] we know that Theorem 1
will be true if [7, eq. (32)] can be established. However, by
[7, eq. (34)] and Condition 2), it is easy to see that we only
need to show that for any fixed and
and for all small

(23)
where is a constant and

with
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Now, let us set

Then for any and
, by using the inequalities and

, we have for

Consequently

(24)

Note that

Now, applying the Minkowski inequality to the above
identity, noting the disjoint property of the sets

for taking
small enough so that and using Condition 1), it
is evident that

Finally, from this and (24), we have for any

, for all small

which is (23). This completes the proof of Theorem 1.

The proof of Theorem 2 is rather involved, and so it is
divided (prefaced) by several lemmas.

For the analysis to follow, it is convenient to rewrite (14) as

(25)

where by definition

(26)

(We set if for some .)
The new process has the following simple prop-

erties.

1) For any and .
2) For any fixed , the process is -mixing with

the same mixing rate as .
3) For any and is -measurable.

These three properties will be frequently used in the sequel
without further explanations.

Lemma 1: Let be a -mixing -dimensional matrix
process with mixing rate . Then

where is defined by (13) and is defined by
.

Proof: Denote . Then by [10, Th. A.6,
p. 278], we have

Consequently, by using the inequality

We get

This gives the desired result.
Lemma 2: Let , where is defined by (14)

with . Then , where is
defined by (12).
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Proof: First of all, we may assume that the process
is of zero mean (otherwise, the mean can be included in).
Then by (25)

(27)

Note that for any fixed and , both the processes
and are -mixing with mixing rate
and , respectively (where by definition,

).
By Lemma 1, it is easy to see that the last term in (27) is of

order . For dealing with the second last term, we denote

(28)

where is defined as in Lemma 1. Consequently, by
, , it is not difficult to see that

(29)

and

(30)

Now, by the summability of

as

Hence by (29)

(31)

and by (30)

(32)

Combining (31) and (32) gives

(33)

By this and Lemma 1, we know that the second to the last
term in (27) is also of the order , uniformly in . Hence,

by (12).
Lemma 3: Let . Then if

and only if (17) holds, where is defined in (11).

Proof: Let us first assume that (17) is true. Take
. Then applying [6, Th. 2.1] to the

deterministic sequence for any ,
it is easy to see that .

Conversely, if , then there exists
such that . Now, applying

[6, Th. 2.2] to the deterministic sequence ,
it is easy to see that (17) holds. This completes the proof.

Lemma 4: Let , where is defined by
(14) with (15) satisfied. Then satisfies Condition 1) of
Theorem 1.

Proof: Without loss of generality, assume that .
Let us denote

(34)

where is defined by (26). Then by the Schwarz inequality
from (25) we have

Consequently, by the Ḧolder inequality and (15) we have for

This completes the proof.
The following lemma was originally proved in [5, p. 113].
Lemma 5: Let be a nonnegative random sequence

such that for some and for all

(35)

Then for any and any

where is the indicator function.
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Proof: Denote

Then by first applying the simple inequality
and then using (35), we have for any subsequence

By this we have

This completes the proof of Lemma 5.
Lemma 6: Let , where is defined by

(14) with (15) satisfied. Then satisfies Condition 2) of
Theorem 1.

Proof: Set for any fixed and

Then, similar to (27) from (25) we have

(36)

We first consider the second to the last term in (36). By the
Hölder inequality

(37)

where is defined by (34).
Now, let , and note that

and we have

By this and (15) it is easy to prove that the sequence
satisfies (35) with and , where
is defined as in (15). Consequently, by Lemma 5 we have for
any

(38)

Now, in view of (38), taking and
, and applying the Ḧolder inequality, we have

(39)

where as , which is defined by

Next, we consider the term .
By the inequality we have

for small

(40)

As noted before, for any fixed and , the process
is -mixing with mixing rate .

Consequently, for any fixed and , both and are
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also -mixing with mixing rate .
Note also that by Lemma 1

where is defined by (28).
Therefore, applying [7, Lemma 6.2, p. 1383], we have

(41)

Finally, combining (39)–(41) and using the Schwarz in-
equality we get

Substituting this into (37) and noting (33), it is not difficult
to see that there exists a function such that for
all small

Obviously, for the last term in (36), a similar bound can
also be derived using a similar treatment. Hence it is easy to
see that the lemma is true.

B. Proof of Theorem 2

Necessity:Let for . Then by [7, Lemma
2 and Th, 3.1], we know that . Consequently, by
Lemma 3 we know that (17) holds.

Sufficiency: If (17) holds, then by Lemma 3 we have
. By this and Lemmas 4 and 6, we know

that Theorem 1 is applicable, and consequently
. This completes the proof.

C. Proof of Theorem 5

We need to verify all the conditions in [8, Th. 4.1]. However,
by Theorem 2, Lemma 3, and the conditions of Theorem 5, it
is not difficult to see that we need actually to verify the weak
dependence condition in [8], p. 1392. In other words, we need

to show that for any , there is a bounded function
such that

as

and

(42)
First of all, since is -mixing, we can apply

the mixing inequality in [17] to obtain

(43)

for any nonnegative integers and , where
is defined by (26), depends only on , and
where by definition for .

Without loss of generality, we may assume that is
of zero mean. Then, with some simple manipulations we get
from (22) or (25) that

(44)

Now, by (43), the second last term in (44) can be bounded
by

which tends to zero as by the dominated convergence
theorem.

The last term in (44) can be treated similarly. Denote the
right-hand side of (44) by . It thus tends to zero as

. Hence, (42) is true and the proof of Theorem 5
is complete. To find the degree of approximation, define,
analogously to [8, Th. 4.1]

(45)

V. CONCLUDING REMARKS

The LMS is a basic algorithm in the estimation of time-
varying parameters of dynamical systems as well as in adaptive
signal processing. There is an extensive and growing literature
devoted to the study of its properties from various aspects,
among which the exponential stability is the most fundamental.
Despite the remarkably simple structure of LMS, character-
izing its properties analytically has long been known very
complicated in general. The main contributions of this paper
are summarized as follows.

1) For a large class of nonstationary weakly dependent
signals, (17) is shown to benecessary and sufficientfor
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the exponential stability of LMS, even in the case where
the signals are unbounded and non--mixing.

2) The main stability result—Theorem 2—has quite wide
applicability. In particular, it is applicable to a typical
situation where the signals are generated from, e.g.,
Gaussian white noises via a time-varying linear filter
of infinite order (see Corollary 1).

3) A “three-stage procedure” for the tracking performance
analysis is delineated (see Section III), according to
different assumptions on parameter variations and distur-
bances. These assumptions include “worst case noises,”
“colored noises,” and “white noises.” By doing so, we
have also generalized and simplified the recent related
results on LMS in [8]. The basis for this tracking
performance analysis, in all its stages, is the exponential
stability.
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