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On Critical Stability of Discrete-Time
Adaptive Nonlinear Control

Lei Guo, Senior Member, |IEEE

Abstract—In this paper, we examine the global stability and many practical systems may be modeled as (1) by use of the

instability problems for a class of discrete-time adaptive nonlinear pasic principles in physics, chemistry, or biology. Three typical

stoch_astlc con_trol. The systems to be controlled may exhibit situations of (1) may be illustrated as follows.
chaotic behavior and are assumed to be linear in unknown

parameters but nonlinear in output dynamics, which are charac- 1) Bilinear models Such models arise naturally in many
terized by a nonlinear function [say, f (x)]. It is found and proved chemical and biological processes (cf., [3]-[5]), where
that in the scalar parameter case there is a critical stability phe- the nonlinearity is characterized by some linear products

nomenon for least squares (LS)-based adaptive control systems.
To be specific, let the growth rate off (x) be f(z) = O(||z||") with
b > 0, then it is found that b = 4 is a critical value for global
stability, i.e., the closed-loop adaptive system is globally stable if

of the input and output variables. The simplest bilinear
model appears to be the following one (cf., [18]):

b < 4 and is unstable in general ifb > 4. As a consequence, we Yrp1 = Yy + buy 4 cypuy + weyy, c£0  (3)

find an interesting phenomenon that the linear case does not have:

for some LS-based certainty equivalence adaptive controls, even and we shall return to this model shortly.

if the LS parameter estimates are strongly consistent, the closed- 2) Hammerstein modelsThis kind of model is linear in
loop systems may still be unstable. This paper also indicates output process but nonlinear in input process with non-

that adaptive nonlinear stochastic control that is designed based . . . : .
on, e.g., Taylor expansion (or Weierstrass approximation) for linearity typically characterized by a polynomial. Some

nonlinear models, may not be feasible in general. practical extremum control problems may be investi-
gated based on such models (cf., [6]).

Models with output nonlinearityThis case is perhaps
more realistic and more interesting. A typical situation
may be described as follows:

Index Terms—Adaptive control, discrete-time, global stability, 3)
instability, least squares, nonlinear system, random noises.

I. INTRODUCTION

_ 2 3
HE discrete-time single-input/single-output nonlinear sto- ~ t+1 = @0 T a1yt +azy; +asyy oyt (4)

chastic model that can be conveniently used in adaptive|; is \worth noting that if the system is uncontrolled, & 0)

control may be described as follows: and undisturbed«, = 0), then (4) may be reduced to

- several standard chaotic models extensively studied in chaos

Yepr =07 fulwe) F g, £ 20 (1) dynamical systems. The celebrated Logisticymap [7], the two-
e =Yt~ Yeopt1, Ut "0 Ut—qy1)” (2)  dimensional Knon map [8], and the cubic map [9], are such

i ._examples. These examples suggest that complex behavior

wherey, u;, andw, are the ssttrem output, input, and noisg, .y ot necessarily require complex mathematical models.

Sequences, respectivelf(.): IR;_(I — k% is a known non- We shall in this paper focus on models that have output

linear function ofz;, and@ € IR* is an unknown parameter. nonlinearities.

Though this model seems to be special, it can be justifiedqor the past three decades, extensive study has been made
from both black-box and grey-box modeling viewpoints. OBy, e adaptive control of linear stochastic models where

the one hand, (1) may be regarded as an approximationirlio(l) the function f,(-) takes the special forny,(z;) =

the familiar nonlinear auto-regressive with exogenous mpuatj?’ vt > 0. Amost all of the theoretical progress has been

(NARX) motc)jel as dlS(;:USSEd '?.’ €9 [1], S|fnce the n_onlé)ne@[)ncerned with minimum phase linear stochastic systems,
term_ may be viewed as a Inite_sum ot a (_:ertam_ aSkhd the most recent advances can be found in, for example,
function expansion of an unknown nonparametric function 0]-[15]. As far as adaptive control of nonminimum phase

x¢. Various basis functions may be used in this expansi Yochastic systems is concerned, the stability analysis has been

(cf., [2]), aqd a typica] and classical case is th? Taylor ,seriﬁﬁmpered mainly by the fact that the estimated models may
or p(_)lyno_mlal_expansmn where the basis function consists o, o uniformly controllable. This difficulty has recently been
multinomials in the components of;. On the other hand, circumvented in [16] by using the self-convergence property
Manuscript received August 11, 1995; revised May 30, 1996 and April 18f a class of weighted least squares (WLS) together with a
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One may naturally expect that the existing results on linetirat in general it is impossible to have global stability results
stochastic systems can at least be extended to the nonlifearstochastic adaptive control systems when the nonlinear
system (1) withf,(-) satisfying the following growth condition function f;(-) is a high-order polynomial of its variables. This
for someb > 1: means that adaptive control based on the method of Weierstrass

approximation (i.e., to approximate nonlinear functions b
1f:@) < ks + Rollz]®, VEeRT, Voe R (5) pgﬁmomials) m;y not bepfzasible in general. Also, we sha}I/I
wherek; > 0 andk, > 0 are constants. Unfortunately, everconclude an interesting fact that the linear case does not have:
for minimum phase nonlinear stochastic systems, the only c48e Some LS certainty equivalence adaptive controls, even if
that can be dealt with by the existing methods is the linefife on-line LS parameter estimates are strongly consistent, the

growth case, i.ey = 1 in (5) (cf., [17]). Indeed, to the best of closed-loop systems may still blow up.

the author's knowledge, there are as yet no concrete stabilityThe remainder of the paper is organized as follows:
results on stochastic adaptive control of (1) when the functig¥ection Il presents the main results on both instability and
f+(-) has a growth rate faster than linear. stability of adaptive systems, together with some remarks

Notwithstanding this, a great deal of effort has been madedfd discussions; Sections Il and IV give the proof for the
the literature. In particular, Cho and Marcus [18] showed th&tain theorems; and some concluding remarks are made in
bilinear stochastic models are in general nonminimum pha3€ction V. Appendix A also contains a stability result on
(in the sense that bounded output does not imply bound@daptive bilinear stochastic control.
input), and hence minimum variance control may not be
feasible for such class of systems. Based on this observation, [I. THE MAIN RESULTS

they considered a weighted one-step-ahead certainty equivarhroughout the sequel, we shall focus on stochastic systems

lence adaptive control for the first-order model (3) by usingith output nonlinearities and consider the following special
a stochastic gradient (SG) estimation algorithm. The stabiliggse of (1) and (2):

proof of the closed-loop adaptive systems in [18], however,

requires a certain condition on the on-line parameter estimate. ¥t+1 =07 fu(yes Ye—15 =, Yempt1) + U + Wiy,

A more recent work on adaptive bilinear control may be found t>0 (6)
in [19], where stability analysis was carried out under a certair]1
condition on the output process. Neither of the conditions )}gter
18] and [19] is as yet known to be verifiable. In Appendi '

[A, Emwev[er, ]we sha)lll show that by using a regularizpe% WLS The standard LS estimafe for 8 can be recursively defined

estimate similar to that used in [15] and [16], the condi'[ioRy

ered ¢ R? is a random or deterministic unknown param-

imposed on the parameter estimate in [18] can be dispensed Orr1 = 0+ Prp1de(ypry1 — ue — ¢y 6:) (7)

with, giving a complete stability result on adaptive control of P.o.oT P,

@A). Py = P oo jf;f;(; . Py>0 (8)
Adaptive control of (4) is, apparently, closely related to A P

the problem of controlling chaos, which has attracted much ¢t = felye - ye—pt1), 20 9

research interest in recent years. Various approaches have Rgesve (9, p,) are the deterministic initial conditions of the
suggested in the literature (see, e.g., [20]-[22]), yet complejfyqrithm, andg, is possibly a random initial value of the
and rigorous theoretic results seem to be hard to find. system.

In the deterministic framework, significant progress has | o {4} be a known bounded deterministic reference signal

been made in adaptive nonlinear control in the past S§ pe tracked. The certainty equivalence adaptive tracking
eral years (cf., e.g., [23]-[26]), and most of the results agiro| is defined by

concerned with continuous-time systems. Unfortunately, it

has been found that the existing continuous-time methods u=—0{¢s +yiy,, t=0 (10)
are hardly. gpph_cab]e tq the d|§crete-t|me case, dug to.sogl?ostituting this into (6), we have the following closed-loop
inherent difficulties in discrete-time models, as detailed in aébuation:

interesting paper [27]. As a matter of fact, even in the noise- .

free case, there are as yet no general discrete-time adaptive Yrp1 = 0] o + iy + wigt, t>0 (11)
nonlinear control results that allow the nonlinear function to <~ A

grow at a rate faster than linear. In recent work [28], thwheref, = 6 — 6;.

standard LS-based adaptive regulation control was analyzed© facilitate the analysis of the above closed-loop control
for a class of discrete-time deterministic nonlinear systemsSystem, we need the following definitions.

We shall in this paper be concerned with the more realistic D€finition 1: The closed-loop control system (6)—(10)
(and more complicated) stochastic case, dealing with adapti§esSaid to be globally stable, if for any initial conditions
control of discrete-time stochastic systems possessing ou;%m ¢o, Fo), the averaged input and output signals are
nonlinearities [see (6)]. The main contribution is to establigpPunded almost surely, i.e.,
that in the scalar parameter case, the vadlue 4 in (5) is a 1
critical case for global stability of a class of adaptive nonlinear limsup = Z (v} +u?) <oo as. (12)
stochastic tracking control systems. As a consequence, we find t—so b
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Definition 2: The nonlinear system (6) [or the nonlineaAssume also that{é, yo, w:, ¢ > 0} are independent. Then,
function f:(-)] is said to belong to a clas€), with ¥ > 1, it can be shown (see Appendix B) that no almost surely
if there exist two constants; > 0 and k, > 0 such that stabilizing controller exists for (14) with > 4, i.e., for any

feedback control sequende}, there exists a seb, with
b P
[fe(@)l < By + Eaflal”, Ve e RE, £ 20 (13) positive probability such that

where]|| - || denotes the Euclidean norm. L&
We shall first show that if the nonlinear stochastic system sl Z yf — 00, asn — oo, on Dy.
(6) belongs toC;, with b > 4, then the closed-loop adaptive [y

system (6)—(10) may not have global stability in general. ) )
Remark 2.3—Consistency of L8et (4, yo) be determin-

istic and the initial valueg6y, yo, Ip) satisfy the conditions

_ _required inD; defined by (16). Also let the noiséw;} be
For the above purpose, we need only consider the followigy - with symmetric Bernoulli distribution. Then we have

A. An Instability Theorem

typical situation: P(D) = P(D,) - P(D;) = 1.
Vi1 =0yl +ur + wisr, £>0 (14) Furthermore, by (7) and (8), it can be derived that
Uy = —0 ¢y, Py = yf (15) N 1 s t—1
6 = B0 — Wi 18
where § € R' is a random (or deterministic) unknown SRS L ; Pittie (19
parameter, and, is the LS estimate generated by (7) and (8).
Let us denote fob > 1 whered, = 6 — 6, and
Dy ={4 <1fol <1, Jwol 2 1+ 10/, Ry =1}  (26) D
00 re=F =5 +Z¢i- (19)
Dy = ({G+ D)7 < |wil < G+ DY} (17) =0
i=1

By Theorem 2.1, there is a constait > 0 such that for
Note that the first set is related to the initial conditionsall large n
and the second is related to the noise distributions. More
discussions oD, will be given in Remark 2.1. b "L, ’ b—1 = 2 b1
Theorem 2.1:Consider the closed-loop adaptive control (Mn)” < <Z yw) =n Z v <n' e, (20)
system described by (14) and (15) with> 4. Then on the =1 =1

setD 2 D1 N Dy, the long run average Hencer,, — oo a.s. By applying first the martingale conver-
n gence theorem and then the Kronecker lemma to the series
1 Z y?—o0, asn — oo Yoo (¢i/ri)wiyq, it follows thatl/r, EZZO Piwiy1 — 0 a.s.
[ Consequently, by (18) we know thét — 6, a.s. This fact

together with Theorem 2.1 shows that in the control law (15)
gven if the LS parameter estimafie converges to the true
parameterd almost surely, the closed-loop system (14) and
&LS) is still unstable almost surely. |

Remark 2.1—Discussions @: It is worth noting that Remark 2.4: Theorem 2.1 can be generqlized 10 systems
deterministic disturbances are not excluded in Theorem zpipre general than (14). For instance, consider the following

In particular, if |wi| = 1, ¥ (e.g., the Bernoulli distribution), >YSt€™"
then it is obvious that®(D;) = 1. In general, if{w;} is an
i.i.d. sequence with distribution function Lipschitz continuous

at the origin, and withP(Jw; | < 1) # 0, andEfuy |* < oo for  \yhere the nonlinear functiory(-) satisfies [z[2* < 1 +
someb > 1, then it is easy to show tha®(D,) > 0 always If(z)2, z € R, b > 4. Then the result of Theorem 2.1 is

holds. . o still true, and the proof is completely similar.
Theorem 2.1 concerns the instability of the LS-based adap-

tive control (15). One may naturally ask: can we find anoth .
controller that can stabilize (14) in the caseiof> 4? The B. Global Stability
following remark gives a negative answer to this question. Now, to show thab = 4 is really a critical value for global
Remark 2.2—Nonstabilizability of (14) Wheén > 4: stability, we have to prove that the closed-loop control system
Consider (14). Let{w;} be a white noise (i.i.d.) sequence(14) and (15) is indeed globally stable whenebec 4. This
with standard Gaussian distributio’V (0, 1), and let the Will be proved in a somewhat more general setting, namely,
unknown parameteé be a random variable with Gaussiar{6) With 6 € R' and f,(-) € C, with b < 4. We need the
distribution N (6, 1). Assume that the initial valug, is either following noise conditions.
deterministic, satisfyingyo| > 1+(10)**, or random with the A1) {w,, F:} is a martingale difference sequence where
tail of its distribution nonzero (e.g., the Gaussian distribution). {F:} is a nondecreasing sequencegeéigebras with

at a rate faster than exponential.
The proof of this theorem is given in Section Ill. This resul

actually is concerned with the pointwise property{at} on

D. Several remarks explaining Theorem 2.1 are now in ord

Y1 = Of (yr) + wr + wrgg
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(6, ¢o) € Fo. Also, assume that in turn is implied by, for example, the assumption that; }
is i.i.d. with E|w|?* < oo.
sup Eflwey1]?|F]<oc as. forsomed>2 (21)
t

I1l. THE PROOF OF INSTABILITY

> lwil* =0(), as. (22)  The proof of Theorem 2.1 is divided into several lemmas.
Throughout this section, the system and controller are defined
and by (14) and (15), and the sef$, and D, are defined by (16)
lwir1* =0(1) +o(ry) a.s. and (17) withb > 4. To facilitate the instability analysis, we
ast — oo (23) need to establish a chain of inequalities satisfiedhy, and

this is the content of our firsg lemma.
whereb is defined as in (13), and is defined by (19)  Lemma 3.1:0n the setDs = Do N{2°(i + 1) <y, i <

with ¢, defined by (9). t+ 1} we have
Theorem 2.2:Consider the stochastic control system (6) aint/ i \" .
with 6 € IR'. Assume that the nonlinear functigi(-) satisfies Tigl 2 (3) <T‘ 1) ; 0<i<t

condition (13) withb < 4. Assume also that the noise condition
Al) is satisfied. Then, the closed-loop adaptive control SYst&fihere o A (¢i9~i)2/(1 + ¢2P;) andr; is defined by (19).
described by (6)—(10) is globally stable and the tracking error  pyqof- First, note thaty? = 0, so by (11)

{y; — y}} satisfies

Yit1 = Gib; + w1, Vi > 0. (25)
> (yi -y —wi)* =O(log n) as. (24) Note also that by (19)
=1 -,
14¢2P=—" i>0. (26)
The proof is given in Section IV. Ti—1

Remark 2.5:The phenomenon that = 4 is a critical It follows from (25) and (26) that
case for global stabilizability is mainly determined by: 1) the
inherent nonlinear structure of the systems to be controlled; 2) (Yig1 — wi+1)2 =a; —,
the uncertainties of the system parameter; and 3) the random Ti-1
noises involved. It does not depend on the performance indexgut, by the fact thay?’ = ¢2 < r;, we have onDs
to be minimized. It does not even depend on the particular
LS algorithm used in the analysis (see Remark 2.2). From(yit1 — wit1)® <2y + 2wl < 2[y, + (i +2)%"]

T

Vi > 0. 27)

the analysis in the next two sections, it can be seen that <2[y L1 l/b} < 2[7,;/b it 1/b:|
the asymptotic behavior of the closed-loop control system LT 2 i i+ T2 i
essentially hinges upon a two-dimensional linear map whose :37%*1, 0<i<t.

behavior is determined mainly by the roots of the quadratic

equation:z? — bz +b = 0, b > 0. Note thatb = 4 is precisely From this and (27) it follows thadr;\; > ;(r;/ri—1), 0 <

the critical case for this equation to have real or complex roots< ¢. This completes the proof. O
Remark 2.6:In the noise-free case where in (&) = 0, it To analyze the chain of inequalities in Lemma 3.1, we need

has been shown in [28] that the critical case for global stabilitg find a lower bound td«; }, and this is done in the following

of the closed-loop system (6)-(10) withe R! is b = 8, lemma.

whereb is defined in (13). Consequently, by Theorem 2.1 we Lemma 3.2:If for some¢ > 0

find that in the case wheree [4, 8), although the LS-based

control algorithm (7)—(10) can stabilize the (deterministic)

system (6) withw; = 0, it cannot stabilize the actual stochastic

system (6) in general. This instability phenomenon is differefflen onD = Dy N Dy, we must have

from those already known in the literature of robust adaptive 3

control (cf., e.g., [30]), since here we are concerned with the @i 2 m’

standard LS-based control algorithms together witfite noise ) ) )

disturbances. whereq; is defined in Lemma 3.1.
Remark 2.7: Condition (23) can be verified also for a  Proof: Since|fo| <1, and onDy, maxi<;<i- 1 fw;l? <

large class of systems with pOSSIb|y unbounded noises. M’ < Vi, we have by the Schwarz inequality < i < #)

fact, if liminf, ., 1/t 3;_, w? # 0 as., then by using 2 -
the martingale convergence techniques as used in, e.g., “{ Z biw, +1} i{(éo)Q + 22 }
oy 202

1/b

> 4(i +2)*+ 1, 0<i<t

Ti—1

0<i<t

p. 448], it can be shown that for any, € F;, (6) gives
liminf, o 1/t 3r_ ¥4 # 0as. This can then be used in
guaranteeing (23). For example, for the case of (14) we have ) i ) 3/
¢ = y. Hence, similar to (20) we know that= O(r;) a.s. <iql+Vi Z 2R IPrios.
Consequently, (23) is implied blyv;+1|?* = o(t), a.s., which
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Consequently, byw;|? >
(i + 1727,
< (Gimrw;)?

i—1 2
<2460 = pjwin
=0

2

(i +1)~/2) we have

i—2
+2 90 - Z (/)jwj+1
=0

i—1
<286, — Z pjwir1 ¢ 4 203 %ri s, (1<i<t)
3=0
or
2
N i—1
bo— > pjwjn
7=0
: 1 3/2
> — % g, 1<i<). 28
2 qipapr L i (I<i<t) (28)
Now, by the assumption we have
“71—+‘7%>4(L+2)+1 0<i<t
i—1
or
2 >4(i 4+ 2)*r_ 1, 0<i<t (29)

Hence, by (28) and (29) we obtain
2

i—1
bo— > pjwin
=0

> 1‘2—1 1‘2—1 — 32
T A+ 152 43+ 1)3/2

2

=1 1<i<t,

>
= 4(i+1)5/2

Consequently, by (18) an#f, = 1, we obtain
2
6,)2 > il
G 2 g2 v

From this, by the definition ofx; and (26) we have for

1<i<t

2 h2
(d)z Z)Q Ti—1 > d)z 1—1

1<e<t.

T driri—1 (i + 1)5/2 '

Now, by (29)

& b 1
1= T <1+ ¢7 ) = <1+4(i+2)4

¢2<1+ 1 >:¢_§'1+43'

T 4 x 24 T 43
So
o7 43 .
R - 0<i<t
re = 1443 =t=

Substituting this into (30) we obtain

1 43 \?
> _
T 4(i + 1)3/2 <1 +43>

3
> 5,
13(i +1)5/2

Qg

1<i<t.

(30)

(31)
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Also, since fori = 0, |yo| > (10)**, |6p| > L, we have

2
G020 (80)"10° (5) = 3
0‘0_1+y0b—1+108 1+12 13

So (31) is also true for = 0, and hence the proof is
completed. O
The following lemma is the key leading to the instability
proof of the adaptive systems.
Lemma 3.3:0n the setD we have

>4 +2)*+1,  Vi>O0.

Ti—1
Proof: We use induction. Fof = 0
;i =ro=1+42 >1+(10)% > 1+ 2°
—1
and the assertion holds fér= 0. Now, assume that o

>4(i+2)4 41, Vii0<i<t (32)

Ti—1

holds for somet > 0. We need to prove that this inequality
also holds for; = ¢ + 1.

Let us first show that forD3; defined in Lemma 3.1 we
have D3 = D, or

26+ 1) <7y, 0<i<t+1. (33)
For: = 0, 1, we have by|yo| > 2 andb > 4
r>ro=1+yy > 1+2% > 2" +1)%
Now, for 1 < ¢ < ¢, by (32)
Fipl > 1 > o A6 F2) 1] > re(i +2)% > 28(i +2)2

Hence, (33) is true.
Therefore, by Lemmas 3.1 and 3.2 we havelon

ait( i\
g > (=
7+1_(3) <7’i—1>

1 b T b
> i . 0<i<t (34
- <13(L + 1)0/2> <7’i—1> == ( )

In order to analyze (34), we introduce the following nota-
tions:

b+ b2 (35)
(b— Vb2 - 4b) (36)

bt )\Q.Ti_l, Ty = IOg Ti. (37)

a ol I\DlP—‘

A2

Zy =

Then, by taking logarithm on both sides of (34) we have

=

b
Ti41 Z b(a:i—a:i_l)—b IOg 13—% IOg (L+1), 0 S % S t.

From this and the fact thaf; +A2 = A1 A2 = b, it follows that

=

Ziv1 > A1z — blog 13 — %b log (¢ + 1),
0<i<t (38)
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_— L 1
where the initial condition is Tey1 — Aoy > g)\lJr

or IOg T4l — A2 IOg Ty > 3)\t+1 From
this it follows that

20 =20 — dox—1 =log (1 4+ ygb) — Az log 1

Tt41 Aa—1 3 L t1
= log (14 12"). (39) " 2Tyt exp {5 Al } (45)
By iterating (38), we have Now, sinceXs > 1

t ‘ . pr2—1 > 7,3\2—1 > (ygb))\z—l > (108))\2—1 > el8(re—1)
Zip1 2 A 20 — b Z )\?_Z) [log 13+ % log (i + 1)} t

i=0 Hence, by (45)
t
1 4
:)\t1+1{20 -b Z F |:10g 13+ % 10g(L+ 1):| } t7+1 > Xp{g )\tl-l-l + 18()\2 _ 1)}
=0 1 t

(40) consequently, the proof of Lemma 3.3 will be completed by

dlrectly applying the following lemma.
Now, we proceed to analyze the right-hand side of (40). First,| o \ma 3.4: Let A, and A, be defined by (35) and (36)
it is easy to verify that With > 4. Then

i ‘1+1: 1 iiﬂ:( A )2' @y oA H180e -1} 24t +3) 1 VEz 0.
; A )\1—17
i=0 71

; Al A —1
= Proof: Note thatA; + A2 = b and A, > 1, so we have

So, by the convexity o”* %)\1 +18(\2 — 1)

1 1
oo )\1 >§()\1 +)\2)—§+17()\2—1)
eXp{Z A 10g(L+1)} b1 4b
ioo T2 2y vE —mp
Z eXP{IOg(LJrl)} >§_1+1_7 :
=0 -2 2 b —
_ >\1 -1 i+1_ M From this it follows that
MomoAM M-l exp {ZNF 4+ 18N — 1)}
which implies that > exp {30 + 1800 = D}exp (AT}
> e® - exp {\T1).
S e P T — (42) Note that), > ly need h
D e e N1/ ote that); > 2, so we only need to prove that

e®exp {2} >4t +3)*+1, Vt>0.
Also, note that for anyb > 4, 4\ — 1) > b and

A1/(A1 — 1) < 2. We then have by (41) and (42) Fort¢ = 0, this can be verified easily. For> 1, by the Taylor
expansion we have
1 < -
b Z )\H_l [log 13+ - 108 (i + 1)} e® exp {2} > ¢’ exp (t +3) > 1+ 4(t + 3)*.
=0
Ay Hence, the proof is completed. O
< N1 {108 3+5 10% <)\1 _ 1)} Proof of Theorem 2.1:By Lemma 3.3 we have
< 4log (13 x 2°/2) = log (13* x 219). (43)
8 ) =log( ) rt s (b4 2y 1/4>HL+2 V> 0.
Next, by (39) i=0

2% From this, we have by the Stirling’s formula
2o — log (13* x 21%) > log <L>

13% x 210 ¢ ¢ 176
=2 log ) >2log| ——— i=0 i=0
132 x 25 132 x 25 /b
t
114 3 /b .
z2log<—,.) > (44) =7 {H(z+2)}
132 x 25 2 i=0
where for the second to the last inequality we have used the t42 e
fact that(10%** 4 1)® is an increasing function df andb > 4. ~q V2t +2)
Substituting (43) and (44) into (40), we gat;; > AT

Hence, by the definition of;; and z, in (37), we have Hence, the proof of Theorem 2.1 is completed. O
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Now, we taken large enough such that both (48) and (49)

The proof of Theorem 2.2 is prefaced with three lemmas. A0!d- For this fixedn, we proceed to prove that

crucial ingredient in this proof is the following useful technical

lemma on growth rate of nonlinear recursions.

Lemma 4.1:Let {S;} and {C;} be two positive nonde-

creasing sequences such that

Sk

i YE>0
S

t
S <Gt 6 (46)

=1
and that”; = O(S;), whereL > 0,6, > 0,and)_~ & < oc.
If L? < 4M, then{S;y1/5;} is bounded and; = O(C;).
The proof is given in Appendix C.

Remark 4.1:If ¢, = C (a constant), then the conclusion
of Lemma 4.1 implies tha{S,} is bounded. This case was

2 * 5
Yrotit1 S 404+ 2(Yr yipr T W i)

Vi> 0. (50)

First, we prove (50) fol0 < i < p—1.
By (11) and the definition ofy; we have
Trnti

Trti—1
Vi>0.

2
+ 2(9:71-1-1‘-1-1 +wr, yiv1)”

(51)

2
Yz i1 S 200, 44

For0 < i < p—1, by (48) we know that
|¢‘rn+i|2
Trp+i—1

Tr i
T +i—1

=1+ <2

considered in [28], where it was also shown that the conditigbstituting this into (51), we then get (50) o< i < p— 1.

L? < 4M cannot be relaxed in general.
Lemma 4.2:Under the conditions of Theorem 2.2 7if —
oo but liminf; .., 7/t = 0, then

Tt
sup + < o0

t Tt

wherer, is defined by (19) withp; defined by (9).

Proof: First of all, we prove that there exists a subse-

quence{r, } such that

¢,

2+ |¢7_77,+1|2+"'+ |¢‘rn+p—l|2n—_)_o>oo- (47)

Let [z] denote the integer part of a real number> 0,
and let

A .
Li = |gipl* + -+ |¢(i+1)p_1|2, Vi> 0.
Then we have
[t/p]-1 t
SooLi<> et Vtzp
=0 =0
Hence by liminf, ..(r/t) = 0, we have liminf, ..,

SRS Lt /p] = 0. This implies thafim inf; .o, L; = 0,
and hence (47) is proved.
By (47), we can take: large enough such that

|¢7_77, +i |2

Tr+i—1

S]-v i:()v]-v"'vp_]-' (48)

Now, let us denotay; = (¢76;)%/(1 + ¢7 Pi¢;), then by
[15, Corollary 3.1], we see that; = O(log ;) a.s.¥Yi > 0.

By this, (23), and the property, — oc, it follows that there
is an integern large enough such that

Tnt+i—1
> [y 42y +wi)’]
J=Tn+i—p
Vi>1

2k7 + 2k3

< Tr+i—1, (49)

where k; and k, are the constants defined in (13) (this
inequality is obvious since when both sides of (49) are divided

by r. 4:—1, the left-hand side will tend to zero as— ).

Next, we complete the proof of (50) by induction. Suppose
that for somet > p — 1 (50) holds for alli < ¢. Then by (13)
and (49) we have

T +t+1

> v

Li=Tn+t—p+2

|pr, 4141 | <

2k7 + 2k3
Trn+t

T Tt

1 [ 741
ohT +2k3 | >

| J=Tn+t—p+2

<
T+t

Aoy +2(yF 4+ w;)?)

<1

(52)

and so(r, y+11)/(rr ++) < 2. Consequently, substituting this
into (51) we have

2 * 2
Yrotere S 4o 1 + 2007, popo + Wrpeg2)”

Thus, (50) also holds fof = ¢ + 1. This completes the
induction argument for (50). By (50) we know that (52)
actually holds for alt > p — 1 and consequently

Ttttl <9 forallt>p—1
Trn+t
which certainly means thatip, (ry41)/r: < oc. O

Lemma 4.3:Consider (6) and the LS algorithm (7)—(9).
Assume that the noise condition Al) is satisfied [(22) and
(23) are not necessary here]. Then we have

Za—i<00, asvVr>1,Ve>0
ré
=1
where; andr; are defined, respectively, by
_ (¢76:)2

R 72 (53)
and

i :||P0_1||+Z ;1% (54)

7=0
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Proof: Consider the Lyapunov functioW’; = V;/rf
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Case i): limy—.o 7+ < oc. In this case, (58) holds trivially

where V; = 67 P'6;. By (6)-(9) we have the following since {r,} is nondecreasing.

standard relationship (cf., e.g., [10, p. 808)):
76i -
Vii=Vi—a; =2 T+ 67 By Wit1 + ¢7 Prpriw?y .

Hence, we have

o 2 </)T

Wi, <Wi—2_ (= ;

* < <> T+ o B
TPir1¢;

+¢”7,7§+1¢w3+1- (55)

T

Now, it can readily be shown thgt ;2 (¢7 Pir1¢i)/ 7 <

oo, Ve > 0. Hence, similar to the proof of [15, Corollary 3.1

(0], it can be derived from (55) that

Z a—: <oo as. Ye>O0. (56)

=1

Next, by the fact that (cf., [15, p. 438}; = O(log r;),
we know that

a7t = 03r), Vr>1,¥Ve>0. (57)

Hence by the arbitrariness efin (56) and (57) we get

() (5) <

and this completes the proof. O
Proof of Theorem 2.2:First of all, we show that if

sw

ﬂm

up t:l < o0 (58)

Case ii): limy_oo 7t = o0, andliminf; .. r:/t = 0. By
Lemma 4.2, (58) holds again in this case.

Case iii): liminf;_,., r+/t # 0. In this caset = O(r,), as
t — oo. Similar to (51) we have

T . .
yi2+l < 2q; , +2(yiy1 + wit1)?, Vi>0.

i—1
So, by conditions (13) and (22) we have

t+1
Teg1 :PO_1+Z o7
1=0
t+1
SPy 2kt +2)+2k5 D i - viepra]I®

=0@)+0 <; |:Oéz <7:_Zl> + (i, + Wi+1)2:| b)
=0 +0 <zt: X <7:—Zl b)

b €
+O<Zé< +>> Ve>0 (62)
1

wheres; = of /r¢ (without loss of generality we may assume
that v > 1).

Now, applying Lemma 4.3, we know thaf ;2,6 <
xa.sYe > 0. Also, since0 < b < 4, we can takee

then Theorem 2.2 will follow immediately. By the fact thaSMall enough such that < ¢ < V(2 = Vb). Therefore,

(cf., [15, p. 438)])

(#76:)°
Z Q; = IOg 7t Q; = W (59)

we have from (11) and (58)

n

n
(Y41 — Yis — wet1) Z R
=0 Tt—1

= O(log 7). (60)

t=0

By (13) we see that

log 7, = log <P0_1 + Z (7)3)

=1

< log <ﬂ + Z Iy - yz‘—p+1]||2b> +0(1)
=0 <10g <1 + z": yf)) + O(log n). (61)

=0

applying Lemma 4.1 to (62) we know that (58) is also true.
This completes the proof of Theorem 2.2. O

V. CONCLUDING REMARKS

We have in this contribution found and proved the critical
stability of a class of discrete-time adaptive nonlinear stochas-
tic control systems. The implications of our results include
the following: 1) in the nonlinear case, strongly consistent
LS estimates may not ensure global stability of the certainty
equivalence adaptive control; 2) adaptive control laws that are
designed based on the Weierstrass approximation (or Taylor
expansion) of nonlinear stochastic systems may not be feasible
in general; 3) control schemes (including the LS-based ones)
that have been proved to be stable in the noise-free case
may indeed lose their stability in the presence of zero mean
bounded white noises; and 4) some chaotic dynamical systems
can be adaptively controlled to follow a desired orbit under
certain noisy environments. The results of this paper also
indicate what may be done and what cannot be done for more
general nonlinear stochastic systems.

Substituting this into (60) we are easily convinced of the fact Both the new results and the analytical methods provided in
that>"_, v7 = O(n). Consequently, by (60) and (61) we gethis paper may be regarded as a start toward a more compre-

the desired result (24).

hensive investigation and understanding of adaptive nonlinear

Next, we prove (58) by considering the following three casetochastic control systems. Many interesting problems remain

separately.

open even for the seemingly simple nonlinear model (1) and
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(2); for example, it would be of interest to generalize Theoreithe certainty equivalence control is (cf., [18])
2.2 to the vector parameter case. Clearly, more efforts are )
needed in this challenging field. ey + by

Uy = - (64)
' (Cryr + bt)2 + A

APPENDIX A _ . _
ADAPTIVE CONTROL OF (3) but here the estimate&,, b;, and ¢, are defined by the

regularized WLS estimate (63).

Note that the three properties of parameter estimates as
listed in Lemma A.1 are sufficient for the stability analysis
in [18] to carry through. Hence, following the proof of [18],
then (3) can be written as a standard linear regression ~ We can obtain the following theorem.

Theorem A.1:Consider the bilinear system (3) where the
Ypr1 = 07y + Wiy, noise process is a martingale difference sequence satisfying
N (21). Then the certainty equivalence control (64) defined by
Now, let 6; = [at, b, x]” be the WLS estimate fol, using the regularized WLS estimate (63) is stabilizing, i.e.,
which is recursively defined by [16, p. 80, eqgs. (9)—(11)] (but
with the present regressors). Similar to (64) and (65) in [15, . 1 5 5
pp. 443-444], we consider the following regularized WLS limsup — > @itui) <o as.

t—oo

Denote

O=1la, b, c” and ¢y = [y, ur, yerue]”

t

estimate forf: =0
b, = 6, + P} ¢, (63) APPENDIX B
h PROOF OF REMARK 2.2
wit . ”
Let {8, yo, we, t > 0} satisfy conditions of Remark 2.2.
iy = argmax |c; + e3P e Then it is well known that the LS algorithm (7) and (8)
0<i<3 with P, = 1 coincides with the standard Kalman filter, which

where P, is the information matrix associated with WLS generate_s_the minimum variance e_snmatgéfcamd produces
the conditional variance of the estimate, i.e.,

eo = 0, and{e;, ¢ = 1, 2, 3} is the natural orthogonal basis
3 _ ~
of R , L.e., [61, ca, 63] = _[3>-<3. 9t — E[9|Ey]7 Pt — E[(et)2|ﬂy]7 t Z 0
Then we have the following result.
Lemma A.1: Consider the bilinear model (3). Let the noise y A :
. . . Where 7Y = ofy;, ¢ <t}
process{w,, F; } be a martingale difference sequence with the | v ble feedback |
conditional variance process almost surely bounded. Also tNOV\.” _et u € F; be any measurable teedbac _f:ontro.
) en it is known (cf., [29]) that giver}, the conditional

the mput_proces{mt} be adapted t§F; }. Then the regmanz.ed_distribution of y,41 is Gaussian with conditional mean and
WLS estimate defined by (63) has the following properties: . ; .
variance respectively given by

1) limsup |6 <0 as; A ,
too mi = Elye1|FY] = ue + 0ugy

t

~ and

2) 167¢3l|* = o(re) +0(1)  as.; N ,
; o 2 Var (yes1|FY) = ¢ P + 1.
3) inf|&|>€ as. for some e > 0;
t Consequently, we have
wheref, 2 6, —6, r, = 1+ 3'_ ||¢:]| andé, is the estimate El? | FY) =m? + o?

for ¢ given by 6,. = (uy + 0,0,)% + & Pib, + 1
Proof: The first two assertions follow directly from [16, (u t9t) e

Lemma 2], since that lemma actually holds for general linear 2 (7”?(7” +1

regression mod_els. So, we need only to prove 3). But, by using _ ¢ +1=_" 7 ¥Yt>0, as. (65)
[16, Lemma 1 (i)] and the fact that+ 0, we can prove 3) by Te—1 Ti—1

using the same technique as that used in the proof of [15, p. . )

444, Th. 6.3]. This completes the proof. O Wwherer, = 1+3, (67

Remark: In comparison with the SG estimate used in 1he idea behind the proof of nonstabilizability is as follows:

[18], the regularized WLS estimate not only has a fastéfstarting with (65) we can show that on a set with positive
convergence rate, but also can guarantee the Property 3pbability the relationship (34) appearing in the proof of
Lemma A.1, which has previously been assumed as a conditigmma 3.3 holds in the current situation, then similar to the
in [18]. proof of Theorem 2.1 we can show that— oo at a rate faster
Now, following [18] we consider the control performancetha” exponential, resulting in the desired nonstabilizability.
To this end, we need to get an appropriate upper bound on
J(u) = Elyiy 1 + i F, A > 0. Ely?, | 7] first.
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Denote
Ag = {w: [yo] = 1+ (10)**},
t>1

1497

Hence, we conclude that

t+1
P(Dy) = lim P<ﬂ Ai> > 0.

Ay = {w: E[2|FY_|] < 1363/21/%), o

Finally by (65), we know that oD
Do = ﬂ A,. y by (65) ()
t=0

b CoND
7’t+12< L 5 ><”>7 Vi>0
We now proceed to show thdt(Dg) > 0. 13(t + 1)5/2 Te—1
Set which is similar to (34). Hence by the proofs of Lemma 3.3 and

I V142 £> 0 R Theorem 2.1, we conclude that— oo on Dy at a rate faster
o(z) = VI3(t + 1)3/4 =0 r el than exponential, and hence the desired nonstabilizability is

. . .. . . roved.
Sincery41 > yt2-l|)—1 andy,; is conditional Gaussian (with P

the conditional mean and variance denotedrhy and o7,

respectively), we have for any> 0
PA7 |1 FY)
= P(E[} | FY) 2 13t + 1)y |7
< P(o?+m? > 13(t+ 1) 22, | FY)

= P< < Lt<%> Ff)
Ot
Li(z)—=x
_ L/ N/ gy
\/% —Lt(l‘)—l‘ ar;:’rnt/o't

Li(x)—x 5 A
< sup / e~/ gy 2 a:.
27 weR'J—L,(z)—=

Y41
Ot

Now, by the mean value formula, for any> 0 andz € R}

there exists\,(z) € [—L,(z) — z, L,(x) — x] such that

1 2 \/ic
_ =N (#)/2) - v=
a; = sup e\t 2L(x)] <
" Ve xe}%[ (@)l < VI3 (t+ 1)3/4
where
c= sup (e~A@/D\/p2 1)
t>0
zeR!

(66)

APPENDIX C
PROOF OF LEMMA 4.1

We first prove several auxiliary results.
Lemma C.1:Let {x;} be a nonnegative sequence satisfying

t
$t+156+25i$i, Vt>0

=0

wherec > 0 is a constant$; > 0, and EZO 6; < oo. Then

{z+} is bounded.
Proof: Denotex} = maxi<;<:; and taket, > 1 large

enough such that £ > iz, 6 < 1. Then we have

to—1

iy <c+ Z bix; + vy,
1=0

V>t

and this implies tha{z}} is bounded. O
Lemma C.2:Let L > 2 and recursively define a sequence
{A:} as follows:
(L-DM\-M
Ai—1 ’
If L? < 4M, then there exists a finite integés such that

Nig1 = Xo=L-1,i>0. (68)

which can easily be shown to be finite. Consequently, we haxe < (A7 — 1)/(L — 2).

o>
E ap < o0,
t=0

Next, letI(-) be the indicator function of a set, then by th

measurabilityd; € F¥, ¥Vt > 0, we have by (66) and (67)

t+1 t+1
P(ﬂ Ai> =E ] 1(4)

=0

:E{E[I(At+1)|]:f] H I(Ai)}

- {[1 - Pl ] I(A»}
>(1- >E{H I(A»} >

(67)

Proof: First of all, L? < 4M implies that

L<2VM <1+ M (69)

Svhich in turn implies that M — 1)/(L — 2) > M/(L — 1).

So we only need to prove that there exists a finite integer
such that
M
o < —.
Ain < L-1

Now, consider the following function:
_(L-DA-M

It is easy to see thaf(\) is strictly increasing in(M/(L —

1), o0) and f(oo) = L — 1.

Suppose that (70) were not true. Then we would have
Ai > M/(L —1), ¥i > 0. Thus, by the increasing property
of f(A) we would have

A1 :f()\o) < f(OO) =X
Az =f(A1) < f(Qo) = M

(70)
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Continuing this argument, we would know th@a; } is mono-
tonically decreasing and has a lower bound (L — 1).

Thus, there must be a real number € [M/(L — 1), o)
such that\; —;_., A*, and by (68)A* must satisfy

Case i)l < L < 2: Note that (71) implies

-1 N I-1 ‘
SiM S( 5 ) < S
S Si_1 Si_1

and so by (46)

NN =) =(L— DA\ =M
SL 1

oM
Sz 1

5t+1
or \* is the real root of the quadratic equatidh— LA+ M = S, = St

0. However, the inequality.,? < 4M means that there is no =
real root for this equation, and we thus have a contradictioRence, by Lemma C.14S;/S;_1} is bounded.

Hence, the lemma is proved. U Case ii)L > 2: Now, by (46) again we have

Lemma C.3:Let {S;} and {\;} be recursively defined in Lo
St—l—l S;
8
Se ~ St ; <S>‘ ) <Si—1>

Z(S

1

Lemma 4.1 and Lemma C.2 with > 2. If \;1; € [1, L —1]
for somei > 0, then boundedness dfS;;,/S;"} implies
boundedness ofS,4;/5, " }.

Proof: First of all, by (68) A= M -
L-2
A\ = M —Xi ' Hence, by Lemma C.1 we know that in order to prove bound-
L—1-Xn edness of S;+1/S;}, we only need to prove thdtS;;,/S}}

is bounded.

Now, consider the sequende\;} defined in Lemma C.2.
Since Ao = L — 1, by (69), (46), and Lemma C.1, it is easy
to see tha S, /S, } is bounded. If\y < ), then obviously
{St+1/S7} is bounded. Otherwise, iy > ), then by (68)
it can easily be seen tha; € [1, L — 1), hence by Lemma
C.3, we know that{S,;;/S;"} is bounded. If\; < ), then
the proof is finished. Otherwise, iX; > A, then similarly
we can show thafS,,;/S;2} is bounded.--. Continuing
this argument, we know by Lemma C.2 that there must be a
finite integerio > 0 such that{StH/St’\iO} is bounded and
that \;, < A. Hence,{S:;+1/5;} is bounded and the proof
is completed.

By S?f“ < Sff“, V3 < t, and the inequality (46) for
St+1 we have

. z
A - i A J J\l
St +1 St +1 +1 S

SL )\7+1
<C+Zé< ST, ), <C—

SL )\7+1 1 S
<C+Z(5 < JM >\7+1 )(S%‘j“

j—1
§c+z 5j<
j=1
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