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Adaptive control of a class of discrete-time a�nenonlinear systems1
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Abstract

The adaptive control problem is addressed in the paper for a class of discrete-time a�ne nonlinear input=output stochastic
models with linear unknown parameters. The controller is a certainty equivalence weighted one-step-ahead control and
is constructed by using the weighted-least-squares and random regularization methods. Global stability of the closed-loop
systems is established, which shows that arbitrarily large growth rate is allowed for the multiplicative nonlinear part of the
systems. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider the following discrete-time nonlinear
stochastic system:

yt+1 = ��f(’t) + ��g(’t)ut + wt+1; (1)

’t =(yt · · ·yt−p+1; ut−1 · · · ut−q)� (2)

where yt , ut and wt are the output, input and random
noise sequences, respectively, �∈Rm and �∈Rl are
the unknown parameter vectors, f(·) and g(·) are non-
linear vector functions de�ned on Rp+q.
In terms of the connections with the input ut in

Eq. (1), f(·) may be called additive nonlinearity,
while g(·) multiplicative nonlinearity, and the system
(1) may be (formally) regarded as an a�ne nonlin-
ear input=output model. Obviously, it includes several
standard models of interest.
During the past several decades, much e�ort

has been devoted to the adaptive control of lin-
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ear stochastic models where in (1) f(’t)=’t and
g(’t)= 1. Fairly complete theory is now available
for both minimum-phase (cf. e.g. [4] and the refer-
ences therein) and nonminimum-phase (cf. e.g. [5])
linear stochastic systems, and e�cient methods for
both design and analysis have been relatively well
developed. These methods can be directly applied
to a class of nonlinear models where in Eq. (1) the
additive nonlinear function f satis�es a linear growth
(LG) condition and the multiplicative function g is
bounded from both below and above [9]. Naturally, it
is desirable to remove or relax the LG condition on f
and the boundedness of g. Unfortunately, the relax-
ation of the LG condition has turned out to be the key
technical di�culty in the discrete-time case. This is
so even for deterministic systems, since the existing
design and analysis methods which are successful in
the continuous-time case (cf. e.g. [8]) do not seem to
be applicable to the discrete-time case (see e.g. [7]
for related discussions).
Recently, it has been shown in [6] that there are in

fact some fundamental limitations in relaxing the LG
condition in the discrete-time case. To be precise, for
nonlinear stochastic models with only additive non-
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linearity (i.e. g(·)= 1 in Eq. (1)), it has been shown
in [6] that in order for the system to be globally stabi-
lizable, the growth rate of f(x) should be slower than
O(||x||4). Further investigation in [10] shows that the
growth rate allowed for global stabilization actually
depends on the dimension m of the unknown parame-
ter vector �, and when m increases, the restriction on
f(x) approaches linear growth.
For the multiplicative nonlinear part, however, the

boundedness condition on g(·) may not be necessary,
and the situation seems to be quite di�erent. Indeed,
for the simplest (but nontrivial) bilinear model where
in (1), f(’t)=yt , and g(’t)= [1; yt]�, a complete
stability result was given in [6], which improves on
an earlier result in [3] and shows that g(·) is allowed
to have at least linear growth rate.
The main objective of this paper is to present some

general conditions under which the system (1) is adap-
tively stabilizable. We will �nd that, unlike the ad-
ditive part, the multiplicative part is allowed to have
arbitrarily fast nonlinear growth rate.

2. The main results

We need the following conditions for the system
(1):
(A1) There exist constants K1 and K2 such that

||f(x)||6K1 + K2||x||; ∀x∈Rp+q:

(A2) p¿q, and there exists a decomposition p=p1+
p2 withp2¿max(q; p1); p1¿0 such that the function

g(x)= g(x1; x2; x3); x1 ∈Rp1 ; x2 ∈Rp2 ; x3 ∈Rq

is uniformly bounded for bounded x2, and uniformly
tends to∞ as ||x2||→∞, where the uniformity is w.r.t.
(x1; x3)∈Rp1+q.
(A3) There exists a nonzero multivariate polynomial
function P(
); 
∈Rl, such that the set

B, {
: P(
) 6=0} (3)

contains the true system parameter � de�ned in (1),
and for any 
∈B there exist constants L(
)¿0 and
M (
)¿0, such that for all ||x2||¿L(
),

||g(x1; x2; x3)||6M (
)(|
�g(x1; x2; x3)|);
∀(x1; x3)∈Rp1+q:

(A4) {wt;Ft} is a martingale di�erence sequence,
where {Ft} is a non-decreasing sequence of sub-�-

algebras. Assume also that

sup
t

E[|wt+1|2|Ft]¡∞ a.s.

and
n∑

t=1

w2t =O(n): (4)

Obviously, (A1) and (A4) are standard conditions.
(A2) simply says that ||g(x1; x2; x3)|| grows to ∞ as
||x2||→∞, while (A3) requires that its growth rate is
unchanged when it is multiplied by any 
 de�ned in
Eq. (3).
We now give two examples to illustrate (A2) and

(A3).

Example 1. Consider the following system with the
multiplicative nonlinearity being a polynomial of yt :

yt+1 = a1f1(yt; ut−1) + · · ·+ amfm(yt; ut−1)

+ (b0 + b1yt + · · ·+ blyl
t )ut + wt+1;

where �=(a1; : : : ; am)� and �=(b0; : : : ; bl)� are un-
known parameters; |fi(x)|6M (||x||+1); x∈R2; 16i
6m; and bl 6=0; l¿1. Set p1 = 0; p2 = 1 and q=1,
and de�ne g(x1; x2; x3)= (1; x2; : : : ; xl2)

�, and P(
)= 
l
for 
=(
0; : : : ; 
l)� ∈Rl+1, then it is easy to see that
(A2) and (A3) hold.
It is worth noting that the power l in the above

example can be arbitrarily large. We next present an
example where the multiplicative part also contains
the input sequence ut .

Example 2. Consider the system:

yt+1 = a1f1(yt; yt−1; ut−1) + · · ·
+ amfm(yt; yt−1; ut−1) + [b0 + b1B1(yt)

+ b2|yt−1|� + b3B2(ut−1)]ut + wt+1;

where, �=(a1; : : : ; am)�; �=(b0; : : : ; b3)� are un-
known parameters; �¿0 ; B1(·) and B2(·) are two
bounded functions; |fi(x)|6M (||x||+1); x∈R3; 16i
6m; and b2 6=0. To verify (A2) and (A3), we just
set p1 =p2 = q=1, g(x1; x2; x3)= [1; B1(x1); |x2|�;
B2(x3)]�; and P(
)= 
2 for 
=(
0; 
1; 
2; 
3)�.
Now, we consider the following weighted one-step-

ahead control performance:

J (ut)=E{y2t+1 + �u2t |Ft}; �¿0: (5)

Here, to guarantee the �niteness of the control energy,
we do not choose the pure minimum variance cost
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J1(ut)=E{y2t+1|Ft}, since even for simple bilinear
systems the usual minimum phase condition may not
be satis�ed (cf. [3]).
The optimal nonadaptive control law that minimizes

Eq. (5) is given by

ut =− [�
�f(’t)][��g(’t)]
[��g(’t)]2 + �

: (6)

For estimating the unknown parameters in this con-
trol law, we adopt the random regularization method
introduced in [5] and the weighted least squares
(WLS) algorithm proposed in [2] and further studied
in [1, 5].
Set

�= [��; ��]�; (7)

 t = [f�(’t); g�(’t)ut]�: (8)

Let �t be the estimated values of �, which are recur-
sively de�ned by the following WLS algorithm:

�t+1 = �t + atPt t(yt+1 −  �
t �t); (9)

Pt+1 =Pt − atPt t �
t Pt ; (10)

at =(�−1t +  �
t Pt t)−1; (11)

where the initial values �0 and P0¿0 can be chosen
arbitrarily, {�t} is the weighting sequence de�ned by

�t =
1

h(rt)
; rt = ||P−1

0 ||+
t∑

i=0

|| i||2 (12)

with h(x)= log1+� x (�¿0), or see [5] for more gen-
eral choices.
Since the estimate for � given by the above WLS

may not belong to the setB de�ned by Eq. (3), we now
resort to the random regularization method introduced
in [5] to secure this.
Let {�t} be an independent sequence of (m + l)-

dimensional random vectors which are uniformly
distributed on the unit ball {x∈Rm+l: ||x||61} and
independent of {wt}. De�ne Tt(x)= |P(�t + P1=2t x)|,
x, (x1 · · · xm+l)∈Rm+l, where P(x1 · · · xm+l),
P(xm+1 · · · xm+l) is the polynomial function de�ned
in Eq. (3). Take a number �∈ (0;√2− 1), and de�ne
a sequence {�t} recursively as follows:

�t =
{

�t if Tt(�t)¿(1 + �)Tt(�t−1);
�t−1 otherwise;

(13)

with initial value �0 = �0. Let

�̂t = �t + P1=2t �t ; (14)

by which we replace � in Eq. (6), and get the following
certainty-equivalence control:

ut =− [ �̂
�
t f(’t)][�̂�

t g(’t)]

[�̂�
t g(’t)]2 + �

; �̂t = [ �̂�
t ; �̂

�
t ]

�: (15)

Now, we state the main result of this paper.

Theorem 1. For the system (1), let the conditions
(A1)–(A4) be satis�ed, and let the adaptive control
law be de�ned by Eqs. (8)–(15), then the closed-loop
system is globally stable, i.e., for any initial condition,

lim sup
n→∞

1
n

n∑
t=1

(y2t + u2t )¡∞ a:s:

3. Proof of Theorem 1

For simplicity of presentation, we introduce the fol-
lowing notation:

Yt , (yt; : : : ; yt−p1+1)
� ∈Rp1 ;

Y ′
t , (yt; : : : ; yt−p2+1)

� ∈Rp2 ;

Ut , (ut ; : : : ; ut−q+1)� ∈Rq:

Then

’t =

 Yt

Y ′
t−p1

Ut−1

 ;

and we have

f(’t) =f(Yt; Y ′
t−p1 ; Ut−1);

g(’t) = g(Yt; Y ′
t−p1 ; Ut−1):

Remark 1. By Condition (A2), we know that
the boundedness of g(Yt; Y ′

t−p1 ; Ut−1) depends
mainly on Y ′

t−p1 , so from now on we shall write
g(Yt; Y ′

t−p1 ; Ut−1) as g(Y ′
t−p1 ) for simplicity. This

should cause no confusion in the analysis.
Following the proof of Theorem 2 in [5], we have

the following basic result.

Lemma 1. Let Conditions (A3) and (A4) be satis-
�ed. Then for the parameter estimate �̂t de�ned by
Eqs. (8)–(14), we have

(i) lim
t→∞ �̂t = �̂∞ a:s:;

(ii)
n∑

t=1

( �
t �̃t)2 = o(rn) + O(1) a:s:;

(iii) �̂∞ ∈B;
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where �̂∞=(�̂�
∞�̂�

∞)
� is a random vector and

�̃t, � − �̂t ;  t ; rt ;B are de�ned by Eqs. (8), (12)
and (3), respectively.

Lemma 2. Under conditions (A1)–(A4), the predic-
tion errors are dominated by the input=output signals
in the sense that

n∑
t=1

| �
t �̃t |2 = o

(
n∑

t=1

(y2t+1 + u2t )

)
+ o(n):

Proof. By Eqs. (1) and (8) and Conditions (A1)–
(A3), we have

|| t ||2 = ||f(’t)||2 + ||g(’t)ut ||2
= ||f(’t)||2 + {||g(’t)ut ||2}{I(||Y ′

t−p1 ||
¿L(�)) + I(||Y ′

t−p1 ||¡L(�))}
6O(||’t ||2) + O(|��g(’t)ut |2) + O(u2t )
= O(||’t ||2) + O(|yt+1 − ��f(’t)− wt+1|2)
+O(u2t )

6O(|yt+1|2 + ||’t ||2 + w2t+1) + O(u
2
t );

which combined with (ii) in Lemma 1 and Eq. (4)
yields the desired result.

Lemma 3. For x=(x1; x2; x3)∈Rp1+p2+q, there exists
some constant T¿0, such that uniformly for t¿T
and (x1; x3)∈Rp1+q,

|�̂�
t g(x)|→∞ as ||x2||→∞:

Proof. By Condition (A3) and (iii) in Lemma 1, we
know that there exist M1¿0 and M2¿0, such that on
{||x2||¿M1},

||g(x)||6M2|�̂�
∞g(x)|: (16)

From this and (i) in Lemma 1, it follows that on
{||x2||¿M1},

|�̂�
∞g(x)|6 |�̂�

t g(x)|+ |(�̂�
∞ − �̂�

t )g(x)|
= |�̂�

t g(x)|+ o(||g(x)||)
= |�̂�

t g(x)|+ o(|�̂�
∞g(x)|):

Therefore, there exists some constant T¿0 such that
when t¿T and ||x2||¿M1,

||�̂�
∞g(x)||62||�̂�

t g(x)||: (17)

Consequently, the lemma follows easily from Eqs.
(16), (17) and (A2).

Lemma 4. For any ”¿0, there exists M¿0, such
that whenever |yt+1|6M we have

|ut |6O(| �
t �̃t |+ |wt+1|) + ”(||Yt ||+ ||Y ′

t−p1 ||
+||Ut−1||) + O(1):

Proof. By Remark 1, we rewrite Eq. (15) as

ut =− �̂ �
t f(Yt; Y ′

t−p1 ; Ut−1) · �̂�
t g(Y

′
t−p1 )

[�̂�
t g(Y ′

t−p1 )]
2 + �

; (18)

then it can be readily veri�ed that

 �
t �̂t =

��̂ �
t f(Yt; Y ′

t−p1 ; Ut−1)

[�̂�
t g(Y ′

t−p1 )]
2 + �

(19)

and

yt+1 =  �
t �̃t +  �

t �̂t + wt+1: (20)

By Eq. (18), the linear growth condition (A1) and
boundedness of the estimates we have

|ut |6
|�̂ �

t f(Yt; Y ′
t−p1 ; Ut−1)|√

[�̂�
t g(Y ′

t−p1 )]
2 + �

(21)

= O

 ||Yt ||+ ||Y ′
t−p1 ||+ ||Ut−1||+ 1√

[�̂�
t g(Y ′

t−p1 )]
2 + �

: (22)

Next, By Eq. (22) and Lemma 3, we know that for
any ”¿0, there exits M¿0, such that whenever
||Y ′

t−p1 ||¿M we have

|ut |6O(1) + ”(||Yt ||+ ||Y ′
t−p1 ||+ ||Ut−1||): (23)

We can choose a large M to make ”¿0 small enough
for later analysis.
Next, combining Eqs. (18)–(20), we get

− �ut =  �
t �̂t · �̂�

t g(Y
′
t−p1 )

= yt+1 · �̂�
t g(Y

′
t−p1 )

−( �
t �̃t + wt+1) · �̂�

t g(Y
′
t−p1 ): (24)

Now, if ||Y ′
t−p1 ||¿M , then by Eq. (23) the lemma

is true. Otherwise, by Eq. (24) and the assumption
|yt+1|6M we have

|ut |6O(| �
t �̃t |+ |wt+1|) + O(1)

and hence the lemma is also true.
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Proof of Theorem 1. By Eq. (22) and Lemma 3 we
have

||Ut ||6 |ut |+ ||Ut−1||
6O(||Yt ||+ ||Ut−1||+ 1) + o(||Y ′

t−p1 ||): (25)
In a similar way, by Eq. (19) we have

| �
t �̂t |6O

(
||Yt ||+ ||Y ′

t−p1 ||+ ||Ut−1||+ 1
[�̂�

t g(Y ′
t−p1 )]

2 + �

)
(26)

6O (||Yt ||+ ||Ut−1||+ 1) + o(||Y ′
t−p1 ||):

(27)

Consequently, by Eq. (20) we have

||Yt+1||6 ||Yt ||+ |yt+1|
6 ||Yt ||+ | �

t �̃t |+ | �
t �̂t |+ |wt+1| (28)

6O(||Yt ||+ ||Ut−1||+ 1)
+o(||Y ′

t−p1 ||) + | �
t �̃t |+ |wt+1|: (29)

Combining Eq. (25) with Eq. (29) we obtain

||Yt+1||+ ||Ut ||6O(||Yt ||+ ||Ut−1||) + O(1)
+o(||Y ′

t−p1 ||) + | �
t �̃t |+ |wt+1|:

Iterating this linear inequality backwards p1 times and
noting that ||Yt−p1 ||6||Y ′

t−p1 || we get

||Yt ||+ ||Ut−1||6O(||Y ′
t−p1 ||+ ||Ut−p1−1||) + O(1)

+o

( p1∑
i=1

||Y ′
t−p1−i||

)

+O

( p1∑
i=1

[| �
t−i�̃t−i|+ |wt+1−i|]

)
:

(30)

By Lemma 4 and the assumption p2¿q, it is easy
to see that if ||Y ′

t−p1 ||6M then

||Ut−p1−1||6O

 p1+q∑
i=p1+1

[| �
t−i�̃t−i|+ |wt+1−i|]


+ ”

p1+q∑
i=p1+1

(||Yt−i||+ ||Y ′
t−p1−i||

+||Ut−1−i||) + O(1): (31)

Substituting this into Eq. (30) we have for ||Y ′
t−p1 ||

6M

||Yt ||+ ||Ut−1||6O

(p1+q∑
i=1

[| �
t−i�̃t−i|+ |wt+1−i|]

)

+O(”)
p1+q∑
i=1

(||Yt−i||+ ||Y ′
t−p1−i||

+ ||Ut−1−i||) + O(1); (32)

which in turn substituted into Eq. (22) shows that for
||Y ′

t−p1 ||6M

|ut |6O

(p1+q∑
i=1

[| �
t−i�̃t−i|+ |wt+1−i|]

)

+O(”)
p1+q∑
i=1

(||Yt−i||+ ||Y ′
t−p1−i||

+||Ut−1−i||) + O(1): (33)

Combining this with Eq. (23) and noticing Lemma 2,
it is easy to see that

n∑
t=0

|ut |2 =O(n) + O(”)
n∑

t=0

[|yt |2 + |ut−1|2]: (34)

Similarly, substituting Eq. (32) into Eq. (26), and
using Lemmas 2 and 3, we see that

n∑
t=0

| �
t �̂t |2 =O(n) + O(”)

n∑
t=0

[|yt |2 + |ut |2] (35)

combining this with Eq. (20) and Lemma 2, we �nally
get

n∑
t=0

|yt+1|2 =O(n) + O(”)
n∑

t=0

[|yt |2 + |ut |2]: (36)

Since, as can be easily checked, O(”) can be made
arbitrarily small, we get the desired stability result by
combining Eqs. (34) and (36).

4. Concluding remarks

In this paper, we have presented a stabilizing adap-
tive controller for a class of a�ne nonlinear stochastic
systems. In contrast to the fundamental limitations on
the additive nonlinearity found in [6,10], the nonlinear
growth rate of the multiplicative part can be arbitrarily
fast. This lends new insights into the adaptive stabi-
lization of discrete-time nonlinear stochastic systems.
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