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Adaptive Continuous-Time Linear
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Abstract—The adaptive linear quadratic Gaussian control control problem are difficult both analytically and compu-
problem, where the linear transformation of the state A and tationally. These difficulties are usually avoided in adaptive
the linear transformation of the control B are unknown, is control by using the certainty equivalence principle, which is

solved assuming only that(A, B) is controllable and (A4, Q1/? ) ; e .
is observable, v?here)ézl d((etermi?wes the quadratic foﬁm ferlthz)e a simple separation principle that determines the control by

state in the integrand of the cost functional. A weighted least the following two steps: 1) construct the optimal control by
squares algorithm is modified by using a random regularization assuming that the true values of the unknown parameters are

to ensure that the family of estimated models is uniformly available and 2) replace the unknown parameters in the control
controllabl_e and observable. A diminishing exc_itation is l_Jsed Wit_h by their current (online) estimates. For the second step in this
the adaptive control to ensure that the family of estimates is . .
strongly consistent. A lagged certainty equivalence control using procedure, the standard Igast gquares-(l._S) algorithm is usually
this family of estimates is shown to be self-optimizing for an used for the parameter estimation and it is natural to expect that
ergodic, quadratic cost functional. the family of LS estimates is strongly consistent and that the
Index Terms— Adaptive control, least-squares, linear-quad- control determined by this procgdure is asymptotically optimal.
ratic-Gaussian, linear stochastic systems, optimality. However, since the system signals that are used in the LS
algorithm are obtained from a complicated nonlinear stochastic
equation, the well-known excitation conditions [11] that are
needed to guarantee the consistency of the LS estimates are
HE LINEAR Gaussian control problem with an ergodicdifficult to verify in general. For this reason the stability and
quadratic cost functional is probably the most wellthe optimality of the adaptive linear-quadratic-Gaussian (LQG)
known ergodic control problem. Since, in the known parametesntrol problem have not been resolved.
case, the optimal control can be easily computed and theOne approach to solving the adaptive LQG control problem
existence of an invariant measure for the optimal systeigito use the weighted least squares (WLS) algorithms instead
follows directly from the stability of the optimal system, itof the standard LS algorithms. By suitably choosing the
is a basic problem to solve for stochastic adaptive contrgkights in the WLS algorithm, it is possible to establish
where the system parameters are assumed to be unknown.dodfie convergence properties that are better than those of the
discrete-time linear systems it has been studied extensiveiandard LS algorithm, without requiring any stability and
especially for autoregressive moving average with exogenasigitation properties of the closed-loop systems. Indeed, for
input (ARMAX) models (cf. [4] for many references) andgiscrete-time ARMAX models, a WLS scheme introduced by
for models with a finite parameter set (cf. [10]). While thiBercu [1] for the identification of the unknown system has
adaptive control problem has been less studied for continuoygen shown to be convergent under no stability and excitation
time linear systems [2], [3], [6], it is nonetheless an importaRissumptions on the closed-loop systems [8], which makes it
problem as a model for physical systems that naturally evolygssible to solve an associated adaptive LQG control problem
in continuous time and as an approximation for discrete-tinjg]. For continuous-time linear stochastic systems, a WLS
sampled systems when the sampling rate is high. scheme motivated by [1] has provided convergence and strong
A stochastic adaptive control problem can be posed ag@nsistency under certain excitation conditions [7]. However,
stochastic optimal control problem with partial observationge associated adaptive LQG control problem is not solved in
where the unknown parameters are considered as unobsegyggeral [14].
states of the stochastic system. However, with this approach ngy, this paper, a complete solution to the continuous-time

specific results have been obtained in general for the eXp“SHIaptive LQG control problem is given, using only the natural
controller design and the stability and the optimality of thgssumptions of controllability and observability. First, the
closed-loop system because the methods to solve the optifials scheme is used to obtain a family of convergent estimates
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models, and a lagged certainty equivalence control is usedt is well known that, under Assumptions Al) and A2),
to obtain the optimality of the quadratic cost functional. Ththe optimal control for the known system in the family of
excitation is sufficient to include the identification of unknowmadmissible controls is a linear feedback expressed as
deterministic linear systems as a special case.

The approach used here eliminates some other assumptions U%t) = —Qy* BYRX (1)
that have been previously used that are either not necessary
for the control problem for a known system (e.g., the opewvhere R is the unique positive, symmetric solution of the

loop stability imposed in [4]) or difficult to verify (e.g., following algebraic (control) Riccati equation
the uniform controllability of the estimated models assumed

in [9]). Furthermore, this approach eliminates the need for ATR+ RA — RBQQ_IBTR—FQ;L =0. (4)
random switchings or resettings which often occur in previous
work such as [3] and [4]. The corresponding minimal cost is

In Section Il the design procedure of the adaptive LQG
control is presented and the main results on stability and J(U®) = inf J(U) = tx(D"RD) a.s. (5)
optimality of the closed-loop systems are stated. In Section Il v

the proof of stability is given, and in Section IV the proof for
the strong consistency and the optimality are given. Finally,
in Section V some concluding remarks are given and
Appendix is in Section VI.

However, in the present case the optimal control @)

not implementable because the system parameter pair
A, B) is not available. This is the motivation for constructing
online estimates fo(A, B) below.

[I. CONTROLLER DESIGN AND MAIN RESULTS B. The WLS Estimation

. To describe the estimation problem in a standard form let
A. The Optimal LQG Control

Let (X(¢), ¢t > 0) be the process that satisfies the stochastic 6t =[A B] (6)
differential equation and
X(#)

dX(t) = AX(t)dt + BU(t) dt + DAW () (1) o(t) = U ()
where X(0) = Xo, X(1) € R", U(t) € R"™, g that (1) can be rewritten as a linear regression
(W), Fi;t > 0) is an RP-valued standard Wiener
process, andU(t), F;;t > 0) is a control from a family dX (¢) = 6T p(t)dt + DAW (2). (8)

that is specified subsequently. The random variables are

defined on a fixed complete probability spat®, 7, P)  Now, the family of continuous-ime WLS estimates,

and the filtration(F;, ¢ > 0) is defined on this space and( 8(t), t > 0), is given by
specified subsequently. It is assumed that the matri¢es -7
and B are unknown. -T T
do(t) = a(t)P(t)p(t)[dX t)0(t) dt 9
The objective is to design an admissible control process (8) =a()Pt)e (?)] T( )~ ()8t o] ©
(U(t), Fy; t > 0) so that the following ergodic cost functional dP(t) = —a()P()e()e" ()P(1) dt (10)

for system (1) is minimized: ) _
whered(0) = [Ao, Bo]* andP(0) > 0 are arbitrary determin-

i L [frygr ; T istic values such thatdo, B,) is controllable and 4o, Q1'%
J(U):hmsupf/ [(XTHQX (1) +UT QUM s opservable

T—0o0 0
) 1
“O= 56w -
,
where QF = Q2 > 0 and QT = @; > 0, and a control .
(U(t), t > 0) for system (1) is said to badmissibleif it is r(t) = || P~H0)|| +/ lo(s)|? ds (12)
adapted to(F;, t > 0) and 0
/ 2 and f € F with
|U(s)|* ds
hiﬂi‘,}p X(s)[2 ds <o as. 3) F= {f|f; R, — R4, f is slowly increasing
and / ——— < oo for somec > 0} (13)
The following standard assumptions are made. e xf(x)

Al) (A, B) is controllable.

where a functiory is called slowly increasing if it is increasin
A2) (A, Qi/Q) is observable. v y g g

and satisfies’ > 1 and f(z?) = O(f(z)) asz — oc.
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Remark 1: A necessary condition for a functiofi € F is If (A(t), B(t); t > 0) is convergent, this definition coin-
that f(x) = o(log z) [8]. Some typical functions that are usectides with the traditional definition of uniform controllability
in WLS algorithms ardog'™® = and (log z)(log log z)!*?.  for time-varying linear systems in the literature.
In fact, the family of weightga(t), ¢t > 0) defined by (11) To motivate the regularization of the family of WLS es-
satisfies timates (6(¢), ¢t > 0) given by (9) and (10) to obtain a
1 . uniformly controllable and observable family of estimates, it is
a™>(t) = f(r(t)) = O(log" r(t)) useful to recall the certainty equivalence principle. Since this
principle neglects the uncertainties of the parameter estimates

for somes > 0 ast — . o . o
It is shown in Lemma 1-1) in Section IIl that the converin determining the control, it has the advantage of simplicity

gence rate of the WLS algorithm can be characterize#ity but the disadvantage of using elementary estimates. To refine
that is ' the WLS estimates it is natural to adjust them by accounting

for the level of uncertainty of the estimates. Since by Lemma 1
16(t) — 6> = O(|| P(®)])). the estimation errofé(t) — 6) is characterized asymptotically
by PY/2(t), it is natural to regularize the WLS estimates in

By (10) the explicit solution ofP’(¢) is a direction determined by the information mati¢/2(¢) [8],

t -1 [13].
P(t) = [P_l(()) -l—/ a(s)e(s)p(s)t ds Let (¢, ) be given by
0
0 _ 1/2
which clearly shows thaP’(¢) is positive and nonincreasing 0(t, x) = 6(t) — P/*(t)x (14)
so (P(t), t > 0) converges a.s. als— 0. d denot
It is also worth noting that the standard LS aIgorithn%‘n enote

corresponds to the _choicﬁ(a:) = 1, which is exgluded in §T(t, ©) = [At, ) B(t, 2)] (15)
(13). As explained in [8] (see also Lemma 1 in the next

section), the main reason for using this class of weights is thgherer € M(n+m, n) andM(n+m, n) denotes the family
the corresponding WLS algorithm can be guaranteed to haye(,, + 1) x n real matrices.

better asymptotic properties than the standard LS algorithm,gjnce for any fixeds € M(n+m, n), the matrix sequence
which is used in adaptive control. The most notable advanta 8(t, x), B(t, z), C, ¢t > 0} with C = 1/2

: ) ; 17 is bounded,
of the WLS algorithm over the standard LS algorithm is thg{s niform controllability and observability is equivalent to

the WLS algorithm has a self-convergence property, wheregs, \niform positivity of the familiegF'(t, ), ¢ > 0) and
the traditional LS algorithm does not. The terminology “self G(t, ), t > 0) where -

convergence” is used here to describe the fact that the WLS

algorithm converges almost surely to a finite random matrix nol ‘

(not necessarily the true system parameter), regardless of tHe(t, x) = det <Z Al(t, 2)B(t, ©)BY(t, ) A" (¢, a:)).
excitation properties of the data used in the algorithm, which i=0

are usually needed for other algorithms. (16)
Even though the WLS is self-convergent, there is still nand

guarantee that the family of estimated models provided by n-l ‘

the WLS method is controllable. This is another difficulty in G(¢, z) = det <Z A, 2)CTOA(E, 37))- 17)

the adaptive LQG problem, which is overcome by using the i=0

method of random regularization. Note that if z could be chosen as

C. Random Regularization x = P Y2()[6(t) — 6]

In this section a random regularization method is used tr(]) 3 Id incid ih th
modify the family of WLS estimates to ensure that this nef'en (t, #) would coinci e with the true system pa-
rameter ¢, and by Assumptions Al) and A2) the family

family is uniformly controllable and observable. Initially the
1y 1S Lhtigrmy v MY At @), B(t, x), C, ¢ > 0) would be trivially uniformly

notions of uniform controllability and uniform observabilit ;
Y ycontrollable and observable. Unfortunately, such a choice of

are defined. . . .
Definition 1: A family of linear system models z is not feasible becausé is unknown, so other methods
must be used.

A(t), B(t);t > 0) is said to be uniformly controllable
(AQt), B(); = 0) | ! un y Using a method in [8], am € M(n + m, n) is chosen

it there is ac > 0 such that that approximately maximizeg(t, =) = F(t, z)G(¢, x). This
approximate maximization is achieved by a simple recursive
random maximization procedure.

Let (m, k € IN) be a sequence of independent, identically
for all t € [0, o). distributed M(n + m, n)-valued random variables that is

A family of models (A(¢), C(t); ¢ > 0) is said to be independent of W(¢), ¢ > 0) so that for eacht € IN the
uniformly observable if( AT (¢), CT(t); t > 0) is uniformly random variabley, is uniformly distributed on the unit ball
controllable. for a norm of the matrices. The maximization procedure is

nf AN B()BY (AT (1) 2 e
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recursively defined as follows: Theorem 1: The procesg X (), ¢t > 0) that is the solution
B0 =0 of (1) with the adaptive control (22) is stable in the sense that
0 =
T
L SR ) = (AR, f) s 7 [ X(@P G <x as @3
= {l as) mow 7 [ XS <00 @)

The proof is given in Section Ill.

To obtain the optimality of the quadratic cost functional, it
is necessary to obtain the strong consistency for the family
estimates(é(t), t > 0) [10], [12]. For this, a diminishing

Xcitation is added to the adaptive control (22), that is

where v € (0,v2 — 1) is fixed and f(k,z) =
Pk, ©)G(k, ©).

Since at each iteratioh only four determinants are required
to be computed, the procedure is simpler than others [1
The random sequend@;, k € IN) in the procedure provides

an approximate maximization of so that the sequence of U*(t) = La X (t) + m[V(8) — V(F)]
estimates(f, k € IN) given by or
O = 6(k) — P2(k) By, (19) dU*(t) = L, dX (t) + v, dV (1) (24)

has the desired uniform controllability and observability prog®" ¢ € (k; k + 1] andk € IN where U*(0) € R™ is an
erties whered(k) and P(k) are given by the WLS algorithm &bitrary deterministic vector,

(9) and (10). ) Ly = — Q' BT (k)R(F) (25)
Finally, the family of continuous-time estimaté&(t), ¢ >
0) to be used for the adaptive control problem is simply a , logk
piecewise constant function induced by (19) W= (26)
0(t) =6, te(k, k+1] (20) for k > 1. The procesgV (¢), t > 0) is anIR™-valued stan-

dard Wiener process that is independentiéf(t), ¢ > 0) and
(nx, & € IN). Without loss of generality, the sub-algebra?;
is defined as thé&-completion ofo(Xo, W(s), n;, V(s); s <

wherek € IN and 6, is given by (19).

D. The Main Results

,J < ).
For notational simplicity let the estimates given by (20) be Since the sequence of random proceg$&g) — V(k), k €
expressed as IN,t € [k, k + 1)) are independent and have the same
éT(t) —[A(H) B(@). probability law and the sequende;, & € IN) converges

to zero at a suitable rate, it is feasible that the diminishing
In the next section (see Lemma 2), it is verified that thexcitation(v[V(¢) — V(k)], k € N, ¢ € [k, k + 1)) provides
family (A(t), B(t), 1/2; t > 0) is uniformly controllable sufficient excitation for identification and is sufficiently small
and observable. Hence, the following stochastic algebraoough not to affect the optimality of the cost. The following
(control) Riccati equation: theorem shows that the family of regularized WLS estimates
_ is strongly consistent using the lagged certainty equivalence
AT@R() + REA®) - R(OB(1Q; BT (HR() + Qs control with diminishing excitation. The proof is given in
=0 (21) section IV.
Theorem 2: Let (4(¢), ¢+ > 0) be the family of estimates
given by (19) and (20) using the control (24) in (1). If A1)
émd A2) are satisfied, then

has a unique, adapted, symmetric, positive solufit§n) for
eacht € [0, oo) a.s.
Using R(t), define a lagged certainty equivalence LQ

control by lim 6(t)=6 a.s. (27)
U(t) = Q3 BT () R(t) X (). (22) whered is the true system parameter defined by (6).

. o Y . Remark 2: It should be noted that the conditions of The-
It is called “lagged” because a delay is present from (20), that PR . .
. orem 2 are satisfied i) = 0 so that the identification of
is, by (20) and (21)

deterministic systems is included in this result.
(B(t), R(t)) = (B(0), R(0)) Since the family of estimategd(t), ¢+ > 0) is strongly
consistent, the self-optimality of the diminishingly excited
for ¢t € [0, 1], and lagged certainty equivalence control (24) can be verified as
(B(t), R(t)) = (B, Ry) in [6], so the details are omitted.

_ o Theorem 3: Let Al) and A2) be satisfied for the stochastic
fort € (k, k+1] wheref, = [Ay, Bi]* is given by (19). This system (1) with the cost functional (2) where and B are
approach simplifies the task of computations of the controllghknown. Then the adaptive control defined by (24)—(26) is
(22) because the solution of the Riccati equation (21) is needgdhissible and optimal, that is

only at discrete-time instants= 1, 2, 3, ---. T
The first theorem below states that using the above lagged lim sup 1 (XTHQL X () + U*T(t)QQU*(t)] dt
certainty equivalence control (22), the solution of (1) is stable T—eo 0

in the averaging sense. =tr(DTRD) as.
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where R is defined by (4). distributed. Property 2) follows from the fact that the elements
xz € K where (16) and (17) are strictly positive are open and
dense. Property 3) is the approximate maximization property
. . of the algorithm (18).

To prove Theorem 1, some basic properties of the WLS 14 verify 2) it suffices from (20) to show that the sequence
algorithm are used that are stated in Le_mma 1 below. (A1, By, Q; k € N) is uniformly controllable and observable

Lemma 1: Let_ (0(), P(t)f t = 0) s_at_|sfy (9) and (10). where (A, By) = ?f. By the definition of f(k, =) it
Then the followtliqmpro?ertl;as are satls.ﬂed. suffices to show thatuf, J_”(k, /3k)_ > 0 as., which by

1) sups [P A0 < 0 as; the algorithm (18) and the inequality for the approximate

I1l. PROOF OF THEOREM 1

2) fo a@®)eT()e@)Pdt < 0o as; maximization follows by verifying

3) limyoo 6(¢) = 0 a.s;
where 6(t) = 6(t) — 6 and 6 is a matrix-valued random max [lim f(k, x)} >0 as.
variable. PER koo

The proof of this lemma is given in the Appendix. If ¢ is given by

Remark 3: The standard LS algorithm does not have the
three properties stated in Lemma 1 for the WLS algorithm, g(a) = lim f(k, )

which is explained in [8] for the discrete-time case. These
properties are the primary advantage to introducing the cld§&ng(x) is a polynomial inz so it suffices to show that Z 0.
of weights defined by (11)=(13) in constructing the WLS If zx = P7Y/2(k)(6(k) — 6) then by Lemma 1-1)zx, k €
identification algorithm. IfD = 0, then Lemma 1 holds surely, N) is (almost surely) bounded artd= 6(k) + P*/2(k)x;.
that is, the “a.s.” can be removed in the statement of LemmaBY Al) and A2) and the definition off (k, =), it follows
Remark 4: For discrete-time ARMAX models the proper-that f(k, zx) = ¢ > 0 for all & € IN. If (23,1 € N) is
ties 1) and 2) in Lemma 1 are given by Bercu [1] and properysubsequence @£, k& € IN) that converges to some' then
3) is given by Guo [8], and in continuous-time they are givesi(z*) = ¢ > 0 so g # 0. This verifies 2).
by Gao [7]. The properties are verified here in the Appendix To prove assertion 3), first note thatif¢) is bounded, then
because the family of functiond;, given by (13) [8], is 3) clearly holds by the boundedness(éft), t > 0) and the
somewhat different from the family in [1] that is used in [7]definition of »(¢). Hence, it is only necessary to consider the
and the verification is somewnhat different from [7]. case wheréim; ... 7(t) = oc. In this case, by Lemma 1-2),
Using Lemma 1, the following key result on the propertieie Kronecker lemma, and Remark 1, it follows that
of the regularized estimates is verified. b
Lemma 2: Let A1) and A2) be satisfied for system (1) / 6% (s)p(s)[> ds = o( f(r(t)) = o(r(t)) a.s.
with the quadratic cost (2). Then for any admissible control 0
(U(t),t = 0), the family of regularized WLS estimatesConsequently, by Lemma 1-3) and the definition¢f) it
(6(t), t > 0) defined by (18)—(20) has the following prop-follows that
erties. :
1) Self-convergence, that ié(t) converges a.s. to a finite / (6 — 6) (s)]?ds = o(r(t)) a.s. (28)
random matrix ag — oo. 0
2) The family (A(+), B(t), QV/*;t > 0) is uniformly  Next, by (65) and (66) in the Appendix it follows that
controllable and observable wheffel(t) B(¢)] =

20 / " a()p(s)" Pls)p(s) ds

3) Semiconsistency, that is, as— oo
=log |P ()| = O(log r(t)).

1
/0 |(6(s) = ) p()]” ds = o(r()) +0(1)  ass. Hence by denoting?(oc) = lim,_.., P(t), it follows from
(11) and Remark 1 that
wherer(t) is defined by (12). .
Proof: To verify 1) it is clear from Lemma 1-3) that only / () P(c0)p(s) ds

the convergence offx, & € IN) is necessary to verify. Since 0
f(k, z) is a polynomial inz it is continuous and therefore
f(k, ) is bounded on a compact set. This boundedness of
f/ implies that the recursion in (18) terminates in a finite t -
random number of iterations. In the proof of [8, Th. 2] Sf(T(t))/O a(s)p(s)” P(s)e(s)ds
an algorithm of the form (18) is used and the following 41
are given: 1) the finite termination ofg,, & € IN) and = Olog™" r(1)) = o(r(®)). (29)
thereby the convergence almost surely(gf, k € IN); 2)  Finally, denotingf(cc) = limy—.. 8(#), it follows by (19)
lllfde f(k, ﬁk) > 0 a.s.; and 3)limg— f(k, ﬁk) > Lemma 1-3) that
(1/(1 + 7)) max,cx [limp—oo f(k, )] a.s., wherey is
given in (18) andX is the unit ball wherey, is uniformly 0(c0) = 0 — PY?(00)fne.

< / ()" Ps)p(s) ds
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Hence the following inequalities hold:

/ 0(s) - 617 ()] s
- / (50) — 6+ 0(s) — B(z0)| ()] ds
<2/ |(@ ()|2ds
+2/ 1(8(s) — B(c0))Fo(s)|* ds
<4/ 1(6 — )T p(s)]? ds

+4 / 8L P12 (00)p(s) 2 ds
0

+2 /0 1((s) -
= o(r(t))

20)) p(s)[* ds

where for the last step (12), (28), and (29) are used. Hence,

the proof of Lemma 2 is completed. O

Proof of Theorem 1:By Lemma 2 there are random ma-

trices A(c0) and B(cc) such that

tlim A(t) = A(x) a.s. (30)
and

tlim B(t) =B(x) a.s. (31)

Furthermore, the triplé A(co), B(c0), Q/?) is controllable

and observable a.s.

Since the solution of the stochastic algebraic Riccati equa-
tion (21) is a smooth function of the parameters of the equation

[5], there is a symmetric, positiveC(IR™)-valued random
variable R(>0) such that

th_glo R(t) = R(o0) as.
If ®(¢) is given by
®(t) = A(t) - B(H)Qz ' B () R(t)
and
B(00) = A(20) — B(00)Q3 BT (c0)R(0)
then
thjgo O(t) = ¢(o0)

and it is well known that bot®(¢) and ®(cc) are stable a.s.
By the stability of®(¢), there is anC(IR™)-valued random
matrix P(¢t) > 0 a.s. such that

P(t)e(t) + @M ()P(t) = -1 as.

Furthermore,{ P(t )
stability of {®(t), 0
Note that

dX (#)

0} is bounded a.s. by the uniform

>
t < oo}

t
<
=[A(t)X(t) + B(t)U(t) + 6(1)] dt + DAW (t)
[®()X (¢) + 6(¢)] dt + DAW (t).

follows from (37).
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Then, applying s formula to (P(¥)X(¢), X(¢)), and
noting that P(¢) is actually constant in any interval €
(k, £+ 1], £ € N, it follows that

d@(t)X (), X(#))

<P(t) (#), 2(H) X
(P

+ 8(t)) dt
tr(P(t)DDT) dt (

(t)
+2(P(t)X(t), DAW (t)) (34)

whered(t) = [0 — 6(t)]Te(t).
Now, by Theorem 2-3)
T - T ~
/ 18(t)2 dt = / 16— 6] ()
0 0
=o(r(T)) +0(1)

Furthermore, by the law of the iterated logarithm for Brown-
ian motion and a time change of the stochastic integral [4,
Lemma 12.3] it follows that

a.s. (35)

T
/0 (X(0), P(c)DdW (o))

. (1/2)4=
:o</0 |X(s)|2ds] )

for eache € (0, 1/2).
Integrating (34) and using (33), (35), and (36) it follows that

(36)

(P(1)X(T), X(T)) - (P(0)X(0), X(0)) +/0 | X () ds

T (1/2)+¢
| 1xe)Pes
0

Since the control is given by (22), the desired inequality (23)
O

<o(r(T)+0(1)+ o(

+ / ) tr[P(t)DD7T] dt.

37

IV. PROOF OF THEOREM 2
Augment the staté((¢) with the controlU/(t) as follows:

ot =30 (39)
Fi = :LfA LfB} (39)
= :LfD WSI} (40)

(1) = :VVV((f))} - (41)

(32) The stochastic differential equation for the augmented state
process(¢(t), t > 0) is

do(t) = Frp(t) dt + Gy, de(t) (42)

for t € (k, k + 1].

The following result provides an inequality for a process that

(33) plays a central role in the verification of strong consistency.
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Lemma 3: Let (H(t) — H(k), t € (k, k+ 1]) be given by For s € [k, k + 1] it follows that

‘ /k S dg(7)

1)~ HE) = [ o6 ()0 43 g

2
|J-"k] <2|Gi|’E

/ " o(r) deT ()
k

2
|7:k]

<26 [ " Ello(n)P1F ] dr
=O(|X(k)]* + 1).

Then
H(k+1)— H(k)

k41 S S
> efh (k1) {G Gy / dr +/ dg(r }
- /k Mk k k 9(7) It is elementary from (46) that
LFR =9 gs g, (44) K+l .8 2
MG 1) = MEE < [ jer ey [yt s
where k k
dg(s) = () deT(s)GE + Gy de(s)p T (s) (45) The last two inequalities verify the inequality (47). O
* Lemma 5: Let (X(¢), t > 0) be the solution of (1) with the
for s € (k, k +1]. lagged certainty equivalence control (24). Then
Proof: Apply 1td’'s formula to (¢(t)*(t), t > 0) and .
integrate this result to obtain fare [k, k + 1] litn sup % / (X +|U*(s))ds < o0 ass. (48)
t—oo 0
p(t)p™(t) and
t k
= o0 )+ [ o) (s) P fmsup + SX(E <0 as (49)
t =1
+ Fy /k o(s)pT(s)ds + GG (t — k) + g(t) — g(k). Proof: Since
Thus EN /’““ RV - VEP
dH (¢ VE log® k
WO _ ((s) ~ HONEL + F(H() — H) =
(kIO () + GhGE(E — k) + 9(0) — 9(k). <Y [ EVO - VP
iz R log™ ki
Integrating this differential equation and deleting the term that o 1 k+1
containse(k) T (k) gives (44). O = Z P / (t—k)dt < o0
The second integral on the right-hand side of (44) forms a k=2 08 k

martingale difference sequence.
Lemma 4: The processM (k + 1) — M(k), k € IN) given

by 1 Jj+1
limsup — Z / VIVE)-V(Pdt=0 as. (50)
Mk +1) — M(k) koo KT

it follows by the Kronecker lemma that

k+1 s
:/ Fe(ht1—s) / dg(7) cFr (H1-5) gs (46) It is elementary to extend the stability result of Theorem 1
k k to the control given by (24). Using this extended Theorem 1,

is a martingale difference sequence and there is a randéif) is verified. To prove (49), first note that similar to (33)

variable M such that using the control (24)
E[|M(k+1) - M(F)2|F] < MIX(E) +1) as. (47) dX (t) = [@(t) X (£)+6(t)] dt + DAW, +7 B(V () — V (k) dt
for all k € IN. for ¢ € (k, k +1].
Proof: By interchanging the order of integration in (46) Consequently
it follows immediately tha(M/(k + 1) — M(k), k € N) is a X(k+1)
martingale difference sequence. Solving (42)#ffe [k, k +1] ht 1
it follows that — 65kX(k) +/ c(kH1=t) Pk
t k
) = PR oy / FLt=R) ) de(s), ~ KL _
o) =Tkt e e 0e(s) [+ BV (E) = V()] d + / =% Dy,
Thus _ *
" where &, denotes®(¢) for ¢ € (k, k + 1]. B
E[le®)]2|Fx] = ™R (k) +/ |l = 2 ds Note that®; converges a.s. and the famifg®, & > 0}
) k is a.s. uniformly stable. It is easy to conclude (49) by using
=0(|p(k)]" +1) (35), (48), (50), and the martingale difference property of the

=0(|X(k)* +1). stochastic integral in the above equation.
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Lemma 6: Let Gy, for k € IN be given by is conjugate ta[5* ], [ 1) In this latter form it is clear

that(F, G) is controllable if( A, B) is controllable and) can

— D 0 :

Gy = {L D I} (51) be arbitrary. O

k Proof of Theorem 2:By (10) it follows that
and0 < v, < 1 for & € IN. Then dP‘l(t) _ a(t)<p(t)<pT(t) ot
— —=T

GGy 2 7 GiGy, (52)  Since the weight procega(t), ¢t > 0) is decreasing it follows

that

for £ € N where G}, is given by (40).

Proof: It follows directly from the definitions ot~ and _ k
_‘ )\min(P l(k)) 2 CL(k))\min <P(3)<PT(3) ds |. (57)
Gy that 0
T
T_ 27 AT o L oD 0 By Lemmas 3, 4, and 7 it easily follows that
GrGr = m:GkG + (1 'Vk)[LkD 0} [LkD 0} :

H(k+1)— H(k)> N(k+1)— N(k)+ M(k+1) — M(k)
Since the family of positive semidefinite matrices is a proper
positive cone in the family of square matrices, it follows that®

k
GkGE > ’Vfﬁk@f Amin </ ‘P(S)‘PT(S) ds)
0
D = )‘min(H(k))
The following result provides an asymptotic property of the > Amin(N (k) + M(K))

other term in (44) that uses controllability. 1
Lemma 7: Let (N(k+ 1) — N(k), k € N) be given by > And NG +1) = NG} = [M(K)|. (58)
Nk +1)— N(k) 7=0
kel s ™ By Lemma 7 there are two positive random varia and
— [ PnIGGE [T (63) [gueh tha i e
k k
Then Ve Amin(N(k+1) = N(k)) =T

lim inf Yo Amin(N(k+1) = N(k)) > ¢ as.  (54) forall k> Koy so

k k
r
where A\, (M) is the smallest eigenvalue aff = MT Z Amin(N({E+1) = N@)) >T Z > Ex/E log k.
1 i=Kg i=Kg
€ = Amin </ eFt@T(l —t) cFrt dt) (55) (59)
and ’ By this inequality and
A B 1
F= li M(k)=0 as. 60
[LA LB} liisolip k(log k)(1/2)+e (k) (60)
G= { D 0} for eache € (0, (1/2)) that is obtained from the law of the
LD 1 iterated logarithm for Brownian motion it follows from (57)

where L is a matrix-valued random variable such tha@nd (58) that

limg_,oo e = L a.s. k r
Proof: By Lemma 6 it follows that Amin </ o(s)p"(s) ds) > 5\@ log k. a.s. (61)
.
N(k+1) - N(k)

kb1 . By the stability of the closed-loop system given in Lemma 5
> 2 / T heh / dr P (k1—5) g it follows that
» » r(k)=O(k) a.s.

1
_ 2 Futrmy 7wl oy Rt
=k /0 e GGy (1 —t) el Tt (56) a5k — 0. By Remark 1, (57), (58), and (61) it follows that
if &> K, th
Sincelimy_, .. L = L a.s. it follows thatlim_,.. Fi, = F ! = o then
a.s. andimy_.. G = G a.s. By (56) it follows that |1 P(R)]| = Apia(PH(K))
-1
lim inf Y P Amin(N(k +1) — N(k)) < :‘ (k)
L — T )\Inin / pLs SOT S dS
2)\mm</ eFtGGT(l—t)eF tdt). < 0 (5)o ()

. . ° . L o . longlk
The right-hand side of this inequality is positive if and only if =0 N a.s. (62)
(F, G) is controllable. By elementary row operation$; G) k
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ask — oo. By Lemma 1-1) it follows that By applying the law of the iterated logarithm for Brownian
S 12 y motion and a time change of the stochastic integrals [4, Lemma
6(&))> <[P - 1P 2(R)ER)? = O(|P(k)I]) 12.3] and using the decreasing property(eft), ¢ > 0), the
log" ! & sum of the integrals of the first two terms is negative§or T’
=0 N a.s whereT is a random time. Thus to prove the boundedness of

Y (t) ast — oo, it suffices to prove the boundedness of the
as k — oo. This inequality shows that integral of the third term on the right-hand side of (63).
From (10) it follows that

lim 6(¢t) =6 a.s.
tmeo P lt4+A) =P L)I +at)P()e(t)et) A) + o(A).

By (19) and (20) it is clear that (64)
L (k) =6 as. Let|A| = det A for notational simplicity. From (64) it follows
that

because P(k) — 0 and (8(k), k € IN) is uniformly
bounded. O [P+ D) =PI+ a(t) PO e(H)e() T A +0o(A)
=PI+ at)e™ ()P (H)e(t)A) +o(A).

V. CONCLUDING REMARKS
Thus

The continuous-time adaptive LQG control problem is a
basic one in adaptive control. The major technical questions as- dP=t ()]
sociated with this problem are: 1) finding a strongly consistent |P=1(8)]
family of estimates of the unknown pajd, B) so that this
family is uniformly controllable and observable; 2) ensurin&;§

= a(t)p" (P () (t) dt. (65)

Since by Remark 1, the maximum eigenvalue fof ! (t)
.bounded byr(¢) defined by (12), it is easy to verify the

a strong solution of the closed-loop adaptive control syste L ;
8’]Iowmg inequality:

and 3) determining a suitable continuous-time diminishin
excitation for the system. In this paper, a complete solution is IP7L()| < A () < )] (66)
provided for this adaptive control problem. For question 1), a

WLS method with random regularization is used; for questionhere Ap.x(t) = Amax(P71(#)). Now using (65) and the
2), a lagged certainty equivalence control is used; and felowly increasing property of (-) given in (13) it follows that
question 3), a diminishing family of increments of Brownian .

motion is used. No random switchings of the control are used, / t2(a®(s) Dy (s)P(s)p(s)DT) ds

and since no condition is imposed on the linear transformation ¢

D, of the noise, the deterministic adaptive linear quadratic o~ [f s T
control problem is included as a special case. = w(DD7) /c a(s)p” (s)P(s)p(s) ds
A natural important generalization of this adaptive control T 1
. . X diP—(s)|
problem is the problem where the state is only partially <K BT T T
[P~ ()| f(r(s))

observed with noise. For discrete-time systems, some results

for special partial observations are given in [8]. However, even K, /Oo dr=(s)|

in discrete time, the general partially observed adaptive LQG e NPTHSIIP(s)D)

control problem has not been solved and further investigations K / < dx < (67)
are needed. Another important direction for generalization is Y wf(x) o

the case where the unknown system parameter(phif3) is ]
time-varying. Thus it follows that forf ¢ F
=~ 2 T T
APPENDIX E/ tr(a”(s)De ™ (s)P(s)¢(s)D" ) ds < 00. (68)
Proof of Lemma L:Let Y(¢) = t B (&) PH(D8(1)] for  Thus by (63), assertions 1) and 2) are verified. To verify 3),
El%)o and apply 18's formula to(Y'(t), ¢ > 0) using (9) and recall the stochastic differential equation f@(), ¢ > 0)

do(t) = a() P [dX T () — o T(£)6(t) dt
dy() (t) =a(t)P(t)p()[dX " () <)p()()]

; ; =a(t)P(t)p()[—o T (1)6(t) dt + (DAW ()] (69)
+ te[a®(£) Dt (1) P(t)o(t) DT dt so that

-~ -~ T -~
6(t) = 6(0) - / a()P(s)p(5)¢ ™ (5)0(s) ds

( TCL S S S S T
+ te[a® (1) D™ (£) P(t)p(t)DT] dt. (63) +/0 ()P(s)e(s)(DAW ()" (70)
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Integrating the differential equation (10) and applying tha
trace, it follows that
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A a()¢T($)P(s) ds < w(P(0) < 00, (71)

From this inequality and assertion 2) it easily follows that

Ama@P@w@WH@a@m

. [ /0 - a(s)|P(s)<p(s)|2ds} Y @

Furthermore, by (71) it follows that L. Guo (M'88—F'99) was born in Shandong, China,

in November 1961. He received the B.S. degree in
mathematics from Shandong University in 1982 and
the M.S. and Ph.D. degrees in control theory from
the Chinese Academy of Sciences in 1984 and 1987,
respectively.

He was a Postdoctoral Fellow at the Australian
National University from 1987 to 1989. Since 1992

E /OOO a(s)|o (5)P(s)| ds < oo,

Thus by the martingale convergence theorem, the stocha:
integral in (70) converges a.s. as— oo to a real-valued

random variable. Thus 3) is verified. O he has been a Professor with the Institute of Systems
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