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In this case, neither of the roots of (31) lies on the imaginary axis[14] E. L. Dowell and H. C. Curtiss, JrA Modern Course in Aeroelasticity
For a;. > 0 anda,, > 0, because of the second expression in _ London, U.K.: Kluwer, 1989.
(32) at least one of two eigenvalues lies in the left half-plane. Frof®! 6 P. Bi’égrl't and L. Cedoligtability of Structures New York: Oxford
the first expression in (31), the sum of the arguments,pfand A;, v '
has to be2w. Thus other eigenvalues must lie in the left half-plane.
Hence the system is stable. Thus an addition of dissipative force to
the system in (29) does not destabilize the system.
For ;. = 0 (static instability), one of the two eigenvalues will
be at the origin. Fundamental Limitations of Discrete-Time
For ax < 0 (with a,, > 0), the sum of the arguments of;, Adaptive Nonlinear Control
and \;, is m. Hence other eigenvalues must lie in the right-hand
plane in order to satisfy the expressions in (32). Thus (27) stabilized Liang-Liang Xie and Lei Guo
by gyroscopic forces (29) forr, < 0 can be again destabilized

by the addition of dissipative forces (31). For example, the top is bstract—A particul | ial is introduced in thi hich
. ; L - strac particular polynomial is introduced in this paper whic
stabilized by a gyroscopic moment as long as the spin is sufflmen%lé; be used to determine under what conditions a typical class of discrete-

large. Eventually the spin is decreased by friction (dissipative l0agthe nonlinear systems with uncertainties in both parameters and noises
to make the top unstable. is not stabilizable by feedback, thus demonstrating the fundamental
limitations of discrete-time adaptive nonlinear control. As a consequence,

it is shown that for nonlinear systems with unknown parameters and
noises, the systems may indeed be nonstabilizable, in general, whenever
In this paper, stability issues of matrix second-order dynamictie usual linear growth condition is relaxed and the number of unknown

systems are discussed. The necessary and sufficient condition®aRmeters is large, even though the corresponding noise-free systems
asymptotic stability for time-invariant systems in matrix second-ord8fe 9lobally stabilizable.

form under various dynamic loadings (conservative/nonconservative)ndex Terms—Adaptive control, discrete-time, global stabilizability,
are derived and a physical interpretation is presented. The stabiligplinear dynamics, stochastic systems.

conditions in the sense of Lyapunov are also derived and analyzed. As

the conditions are direct in terms of physical parameters of the system, |
the effect of different loadings on the system stability is lucid in the o ' . .
matrix second-order form approach. The conditions are shown to pfdaptive linear control and the related issues have been the main

useful in the designing controllers for matrix second-order systemfcus of adaptive control over the past several decades (see, e.g.,
[11-[3], [6]. [8], [9], and [11]). In recent years, attempts have
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However, the continuous-time approaches do not work in tHew:, 0 < ¢ < n} to be independently identically distributed random
discrete-time case when the nonlinear function has a growth ratariables with probability density functiop(z), then the true value
faster than linear, as observed by several authors (see, e.g., [10] ahthe parametef can be obtained easily by solving the following

[16]). Thus a question naturally arises: Can we find a stabilizinmear equationA - 6 = [y2 — wi, ys — uz2, **+, Ynt1 — un| Where
adaptive controller in this case? A= (yfj)nxn is a nonsingular matrix (cf. [5]). Hence, again, we
A generally negative answer was recently given in [7], where @n take the control as, = —(%yfl + szfz + -+ Hnyf”) for

critical stabilizability phenomenon was found for a class of nonlinear > 1, which globally stabilizes the noise-free system. For more
control systems. To be precise, for the following typical contrajeneral parametric-strict-feedback models with no noise, a related but
model: more complicated two-phase approach can also be applied to design a
, b ] globally stabilizing adaptive controller regardless of the growth rate
Yo = By Wi b>0 @ of the nonlinearities (cf., [17]).
where ¢ is an unknown parameter andv,} is a Gaussian white  Unfortunately, the main drawback of the above two-phase approach
noise sequence, it has been shown in [7] that (2) is not a.s. globa#iythat the resulting adaptive controller is not robust with respect to
stabilizable if and only ifb > 4, or the following inequality has a noise. In fact, the presence of noise will even change the stabilizability
solution: of discrete-time nonlinear systems dramatically if the growth rate
9 ~ ~ of the nonlinearities is faster than linear, as will be shown by the
#—bz+b <0, z€(Lb). (3) following theorem together with its corollaries.

The above result clearly demonstrates the limitations of adaptiveTheorem 1: Under Assumptions A1)-A3), system (4) it a.s.
control in the discrete-time case and shows that the discrete-tiglebally stabilizable whenever the following inequality:
problems are much more complicated. P(z) <0, 2 € (L, by) (5)

This paper is mainly concerned with discrete-time systems. We
shall study nonlinear models with multi-unknown parameters, whidkgs @ solution, wheré(z) is a polynomial defined by
are extensions of the scalar parameter case (2) as studied in [ﬂ(z) — z"“—blz“+(b1—b2):”*1+---+(b,l_1—bn):+bn. (6)
Corresponding to (3), we shall introduce a generalized polynomial . . )
P(=) in the multiparameter case, which will be used to determine 1€ Proof is given in the next section. o ,
when a nonlinear system is not stabilizable by feedback, thus demonR€mark 2: Obviously, forn = 1, P(z) coincides with the
strating the fundamental limitations of adaptive nonlinear control muadratlc polynomial |_n (3)' Note that a trivial necessgry condition
the discrete-time case. The bottom line of our main result is somewt@t (®) t0 have a solution i#, > 1, and wherb, <1 (4) is always
unexpected which shows thiatr discrete-time nonlinear systems with®-S: globally stabilizable (see [15]). _
random uncertainties in both parameters and disturbances, gIobaITo_ unde_rstand_ the implications of Theorem 1, we now give some
adaptive stabilization is impossible, in general, without imposing tfiftailed discussions on (5).

linear growth condition on the nonlinearities of the systems Corollary 1: If b:(1 < i < n) satisfiesb; > 1 and 0 <
bi—biy1 < Vb1/2(v/b1—1)%, 1 < i < n—1, then (5) has a solution

whenevem > 2 log ((v/b1 +1)/(v/b1 — 1))/ log b,. Consequently,
wheneverb; > 1 and the number of unknown parametersis

Consider the following discrete-time polynomial nonlinear regresuitably large, there always exi8t< b, < b,_1 < --- < by such
sion model: that (4) is not a.s. globally stabilizable.

g by ba L. by, The proof of this corollary is given in the next section.

S e A F20@ Remark 3: By Corollary 1 we know that the usual linear growth
wherey; andu. are the system output and input signals, respectivelgondition imposed on the nonlinear functigf(-) of the general
6;(1 < i < n) are unknown parameters, and is the noise signal. control model

Assume the following. . , Yer1 =07 f(ye, -+, yi—p) + ue + wegrs feRrR" (7)
Al) b;(1 < i < n) are nonnegative real numbers making (4)

Il. MAIN RESULTS

meaningful and satisfying; > b2 > -+ > b, > 0. cannot be essentially relaxed in general for global adaptive stabiliza-
A2) {uw;} is a Gaussian white noise sequence with distributioiPn. unless additional conditions on the numbeand the structure
N(0, 1). of f(-) are imposed.
A3) The unknown parameter vectér2 [6,, ---, 6,]” is inde- Corollary 2: Let b; > 2, then forn > 1+ 21log(2/(bi -

. e 2))/log(b1/2), (5) has a solution for anyb; } satisfyingl < b,, <
pendent of{w,} and has a Gaussian distributidn(¢, I..). b))_/1 (f(' '1'/<) bg )< h,. On the other hari[d }W] < ny tt?en_for any
Our objective is to study the global stabilizability of (4) under the” . always exist < by < bu_1 < -+ < by < b; such that
above conditions. First, we give a precise definition of stabilizabilit)(é) has no solution. " "

Definition 1: Let o{y:, 0 < ¢ < t} be theos field generated by Corollary 3: For anyn > 1 and anyb, > bz > --- > by > 0,

the observationg;, 0 < i < t. System (4) is said to be a.s. globallyWe have the following

stabilizable, if there exists a feedback contwele 7 2 a{yi, 0 <

i <t},t=0,1,---, such that for any initial conditiog, € R',
lim sup,__ 1/T S y? < o0, as.

Remark 1: We remark that the global stabilization of (4) is a trivial
task in either the case whefeis known or the case where the noise
is free (i.e.,w; = 0). To be precise, i¥ were known, we can put
we = —(6iy2t + 02y2 + -+~ + 6,42"), which obviously globally
stabilizes the system.

In the case wheré is unknown but the noise is free/( = 0), we IIl. PROOF OF THEMAIN RESULTS
can obtain the true value of the parametday solvingn independent ~ We first present the proof of Theorem 1, which is prefaced with
linear equations. For example, if in the fifst + 1) steps we choose two lemmas.

1) A necessary condition for (5) to have a solutiordig._, b; >
4.
2) A sufficient condition for (5) to have a solution is eitlber> 4,
or> " ,bi > (n+ 1)1+ (1/n))".
The proofs of Corollaries 2 and 3 are in [5], due to space
limitations.
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Lemma 1: Let {c;, 1 < i < p} and{d;, 1 < i < ¢q} be two
sequences of positive numbers satisfying> ¢ > --- > ¢, >
L di>dy > >dy >0 q>pande; > cff, 1<
i <p—1, for someé > 0. Also, let{iy, ---, i, } and{ji, - -+, jp}
be two sequences of integers arbitrarily taken frém 2, -- -, ¢},
with i, # i, and j, # ji, for k # 1. If there exists an integer

mo(1l < mo < p) such that eithef,,., # mo Or j.., # mo, then

2dy 2ds 2dyp
ity diotdiy p,(lip"'djp €1 "G " Cp
1 2 P — min(1,6) ming<;<p(d;—d;41)

Cp

where by definitiond ;41 20.
Proof: By the assumptiong; > d> > --- > dy > 0 andiy #
i, jr # ju fork # 1, it is easy to see that

S 20, -
k=1

Moreover, without loss of generality assume that = inf{m: i,, #
m orj, #m, 1 < m < p}. Then

mo mo
szk - Z(dik + dik)
k=1 k=1

= 2d7n0

Z(dik + d.ik) >0,

k=1

Vm € [1, pl. (8)

—(di, + djrn,

) 2 dnzo - d777,0+1 > 0. (9)

Now, by the assumption; > ¢!/, ¢, > 1 and (8) and (9), we
have

2dy 2dg 2dp
;e
di +d,. ditd; d;_+d;
P P e

2y —(d;, +d ;)
cp

2d1—(d;  +dj, ) 2do—(d;,+d;,)
Cyq Co -

2 € . — . D — PR .
> Cg(Zdlfdﬁ —dj )C;A»ﬂ(z‘{k*d% 5, . c;dp dip—djp

p—1 m o r
> 6Zk:1(‘)dk7dfk7djk)_ Zk:l(deidikidjk)
Z Cont1 Cp

m=1

PSS (dy—d;, —d P (2dy—d;, —d;, )
> ,’Zk:l( emdig=dg ) Qg Qde—diy —dg,)
-~ Cp * Cp

m=1

p . N ,
> H Cnun(l,&) Z:;l(chk—dik—djk)
- P

m=1

. . mg .

pmln(l,h)Zkzl(zdkfd;kfdjk)
- *p
> Culin(l,ﬁ)(dmo—dm0+1)
Z ~pP
> pnﬁn(l,ﬁ) ming <;<p(di—diyr)
2 Cp .

Hence Lemma 1 is true. O
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Proof of Theorem 1:We only need to prove that if (5) has a
solution, then for any feedback contrel € 7/, there always exists
an initial conditiony, and a setD, with positive probability such
that the output signaj: of the closed-loop control system tends to
infinity at a rate faster than exponential @h.

Now consider the following state space equatior> 0):

{

wheref is the unknown parameter vector defined in Assumption A3)
and ¢ is defined by (12).

By our Assumptions A2) and A3) and the fact that € F/,
we know that (13) is a conditional Gaussian model, and hence
the conditional expectatio, = E[¢|F7] can be generated by the
Kalman filter and the conditional covariance matrix of the estimation
error (9 — ét) can be generated by the Riccati equation (11) or

9L+1 = 91, 90 = '9,

i 13
Yir1 = (01 +ur + wig (13)

E[6:6]|F/] = P, (14)
whered, 2 ¢ — 4, (see, e.g., [3, Sec. 3.2]).
Next, by (13) we know that
et = @700+ (7 0c+ w) + wigr. (15)

Consequently, by the fact th&[§,|F?] = 0 and E[w,4.|F¢] = 0
it follows from (14) and (15) that for any, € F/

Elyiai|F1 = ol Pipe + (91 6+ u)* + 12> o] Pipe + 1. (16)

Furthermore, by the matrix inversion formula it follows from (11)
that P, = P, ' + ¢ipf. Then

[Pl =P + el | = [P0+ Prprgl)|
=[P (1 + ¢ Pipo).
Hence, it follows from this and (16) that

P

BlvtnlF) 2 (35
t

. Vt>0. (17)

Let us define

The following lemma plays a key role in the proof of Theorem 1.

Lemma 2: Assume that for somé > 0 andt > 1, |y >
lyi—1|'F®, i = 1,2, ---, t and that the initial conditionyo| > 1
is sufficiently large, then the determinant of the matfx satisfies

(10)

1, 2by 2by

2b,,
Y1

2b —1 3 2hy 2b,
Y S |Pt+1| < Yt Y1 Yr—n

2 Jt

Do = ({w: Elyin |72 < (04 17 2yi ).
t=0

Then by the conditional Gaussian property of the sequdnpeg, a

completely similar argument as that used in [7, Appendix B] shows

where by definitiony; 21fori<0, andP, ., is defined recursively that Prob(Dg) > 0. Hence, by (17) we have

by
Ptk'Pt'sJLTPt
P, =P -—"\ PF=1 11
=P T CED
with
“Pfr:[y:‘]lvy;&ﬂ"'ayfn]rﬂ b1 >b2>>b'7>0 (12)

1 P

t >0, onDy. (18)

Yiir >
Yi41 2 7775 To—1 e
(t+1)5/2 |p7"

Now, let zo € (1, b1) be a solution of (5). We proceed to prove

that on Dg

Since the proof of this lemma is rather involved, we give it in the

Appendix.

lyil > lyi—1]™, i=1,2 .. (19)
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We adopt the induction argument.
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By the assumption fom, we havezy = (vV&i)" > (Vb +

First, we consider the case where= 1. SinceP;' = I, we have 1)/(1/b; — 1). Hence by (6) and the conditions op, we have

by (11)

2by

IP7 = 1P + pows| =1+ llooll® > o

Therefore, by (18) we have fdgo| > 1, [yi| > +/|P; '|/IP5 "] >

lyo|"* > |yo|*, on Do. Hence (19) is true foi = 1.
Now let us assume that for some> 1, |yi| > |yi—1]*°,

1,2, ---,t on Dg, then by Lemma 2, it follows that
2b 2b,, —1 2b 2b,,
%Z/t Lo Yi—mg1 < |Pt+1| < %Z/t Lo Yt—n+41
and

1,,2by o 2b —1 3 2bp 2b
sYi—i Y < [P < 5Y+—1 " Yi—n-

Consequently, by (18) we have dny

1,y /2
[ye+1] > _r | P
{ el (t+1)5/2 |Pfl|
2b 2b,, 1/2
> 1 .yfl...y;7n+1
R EC IR
_ 1 . |?/1%|b1 T |yf,—n+1 |b”
\/3(1’—1— 1)5/4 |yt*1|b1 |yt7n|b”

1 b bo—b
= iy el

|yl_n+l|bn*bn71 |’yL_n|7b”. (20)
However, by the induction assumption we hayeg,—;| <
ly?o . 1<i<t and sobybiyi —bi < 0(1<i<n)

lye [P > [y Bt

1<i<n. (21)

Note that this inequality also holds for> ¢, sincey; 2 1 for <0
by definition.
Hence, it follows from (20) and (21) that abg

1
T [P p———
el 2 ey

—by)r e _ =1y -
‘|Z}L|bl+(b2 bi)zg At (bn—byu_1)z, bazg

1 —27 " P(2q) z
> e 20 20) . |,,,|%0
2 s el

|—20777'P(20)]zé

5 [lyo

e —— 200> Jy,]70
2 Bl 2l

where the last inequality holds for sufficiently largg| because

—z5 "P(z0) > 0.

Plz0) <220 —b1) + \/g(\/a— )

(T e D) D

= - iV 1)+ (v 1)

20—1

S ) PR N R

2

—\/g(ﬁ—l)m

- @(\/E—l)ZS—i— \/E(\/a+1>

2 2
vbr Vo +1 B
<= G (-1t - (Vi) =0
Hence, Corollary 1 holds. O

IV. CONCLUDING REMARKS

It is fairly well known that for nonlinear stochastic systems
described by nonlinear regression models with linear unknown pa-
rameters, a globally stabilizing adaptive controller can be designed
whenever the nonlinear function [sa¥(x)] involved has a linear
growth rate, i.e.|f(x)| = O(|x|), as|#| — oo. However, in
contrast to the continuous-time case, essential difficulties emerge in
the discrete-time case when the nonlinear function has a growth rate
faster than linear. In fact, the nonlinear growth rate has been the crux
in discrete-time adaptive nonlinear control for years. Naturally, one
would ask the following questions: 1) Can we remove the usual linear
growth condition in the discrete-time case? 2) How far can we go
from linear growth to nonlinear growth for global stabilization?

A first step in this direction was recently made in [7], where it
was shown that in the unknown scalar parameter case (), the
nonlinear control system in question is globally stabilizaifland
only if [f(2)] = O(J«|®) with b < 4. In the present paper, we have
dealt with the general multiparameter caseX 1) by considering the
polynomial regression model described by (4). By introducing a new
and more general polynomial (6), we have found a criterion about
situations where (4) is not globally stabilizable (Theorem 1). Based on
that, various explicit cases are discussed in Corollaries 1-3. Perhaps
the most remarkable consequence of our main result is the following
implication for general nonlinear regression modétiss impossible
in general to essentially relax the usual linear growth condition for
global stabilization, unless additional conditions are impogede
Remark 3).

APPENDIX

Proof of Lemma 2:By the matrix inversion formula it follows
from (11) thatPJ| = P7' + ¢up]; hence, we have (21a) shown
at the bottom of the next page.

Now, let us denotey,, (i) = [y"1+0m, yPathm ... ybutbem]m
1<m<n, 0<:<t, and lety,,(—1) 2 .., i.e., themth column
of the identity matrixZ,,, then

P3| = det(Z ar(i), D asli), o, Y an(i)>.

i=—1 1 =—1 1 =—1

Hence, by induction, (19) is true. Thus for all large initial condi- ] ]
tions |yo|, the output procesy.| diverges to infinity at a rate faster BY the elementary properties of determinants, we have

than exponential o,. This completes the proof of Theorem M

Proof of Corollary 1: Take zo = /b1 € (1, b1). We need only

verify that P(z0) < 0.

+

>

B0, i =1

|PZal = det(ai(i1), az(iz), -+, an(in)). (22)
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It is clear that if in the groufi, iz, -, i,) there are at least Now, rewrite (22) as|P;\| = Re + v 22 g5 t+,

two integers having the same value (but different frerh), then where R: denotes the summation of all the terms different

det(a1(i1), -+, an(in)) = 0. So in the discussions below we will from y;"1y7"2 ---yg "1 It is obvious thatR, has at most

exclude this kind of zero-valued determinant. [+ 2)" - n! = 1] < (»"-n! —1) terms. Hence, by the results
We proceed to prove (10) by considering two cases separately.proved above, we obtain

Case I)t <n —1: In this case, in order thatdet(a;(iy),

as(iz), -+, an(in)) # 0, the number of —1)'sin (i1, 2, -+, in IR,| < n"-nl—1 Y21 L2

must at least begn — 1 — t) and the other integers must be = Jyo|min( & ming <icny(bi—biy1) 0

distinct. Then each term in the expansion of the nonzero determinant

det(a(i1), az(iz), -+, an(in.)) contains at mogn—(n—1—t)] = Therefore, by choosing the initial valqeo| large enough, we can

(t + 1) different factors, whose general form is make |R:| less than(1/2)y>"'y>"2 ,..y b1 Consequently (10)
bjtbey bigtbe, tjp+bkp, p<ttl (23) follows.

11 ig ip

Case Il)t > n—1: First of all, any nonzero determinant

where im  # i, jm £ ji, and km # ki for m # 1. det(ai(in), a2(iz), oo, an(in)), =1 < dr,cee, i <t ocCAN

2b .
Note that one such term isy>ly2’2 ...,°>"*% (from the be expandeldH) asbztme_ sumntitlton of terms whose general
J1 32 'm0

products of the main diagonal elements of the matriform is y, 'y, "'!/Z'n . where (ji, -, jn) €
[ar (£), -y a1 (0), arpa(=1), -+, an(=1)]), and it is T(1,---,n);ix € {~=1,0,---,¢},1 < k < n, and as noted
different from other terms Now we proceed to prove the{zefore any twoi,’s cannot have the same value different from
b 2
the absolute value of any other term is not greater thdn1). Obviously one such term ig Lyt -yt L [one term in
1/[|yo|min (s ) mini<ign—1(bi=bip1)] 201 2b2 ...yf)”“rl_ det(ai(t), - -+, o (t — n + 1))]. We now show that for any other
bi+bj;, botb; b
We divide this proof into two subcases. termsuZ1 yij 2y, 1* In (i, # k or jp # k, for somel <
Subcase 1):If in the general form (23)p = t + 1, then we k < n), the following inequallty holds:
b by, b, by
can rewrite (23) ag, ""F1y, 2 Ly e TR By our as-
b1+bj, h2+bj2 bn+b;
sumptions, it is easy to see that Lemma 1 is appllcable hence wgy;, Yi, sy
have 1
< Uzbl U2b7; 24
y§j1+bklyfj_2+b"2 ..-ysj"ﬂ%t»tﬂ T |yt [/ O minicicn (bi=bita) t = (24)
< i i 1 i 1,3’711/[21:21 yjbm We proceed to prove this by considering three subcases.
|yo [min(1: &) ming<ocn 1 (b5 —bit1) Subcase 1):If (i1, is, *++, in) € T(t, t—1, -+, t—n+1), then
Subcase 2):If in the general form (23)p < t + 1, then We can directly apply Lemma 1 to get
we can’ aotd some(tpﬂ, <o, di41) to (41,---,1p) SO that bthy, bathy, bt
(]’1'/ Tty Ips Iptls "'-,7't+1) € T(f»f - 15 '\0) Here and |UL1 ,712 YL, |
hereafter, we usé’(t,t — 1,-.-, 0) to denote the class of all 1 26, 2.,
permutations of the integer sequeri¢et — 1, ---, 0). Then byt + = e [ i i (i) Yo = Y
1 < n, we can choose suitablg+1, -, jet1s kpr1, -+, ke € 1 o o
. . . 1 aePn
{1,2,---,n}withj, Zj, bk ZRiform#£1L,1<m, [ <t+1 < i |5/(1+5) i ienbi—bipn) Ut “Yr—nt1-
such that the term -
yi’ljﬁ’?n ...y?jp Ty yfjﬁﬁbkpﬂ cenq fjt+1+b"t+1 Subcase 2):If in the group(iy, is, ---, in) there are at least two
- - - 1 141 . . . , ,

? . - integers less tha(t—n—t—l), then we may findii’, i2’, -+, 4,.') €
is different from y2°1y?%2 .- y2"**1. Thus by the conclusion of T'(t. 1 —bl ot 1) such thati; < ¢'(1 <1 < n) and
Subcase 1), we have 71+ g2 th yffrbﬂ is different from y7"1y?’2 .. y2n .

Ubj1+bk1 Ubijrbkp Consequently, by the conclusion of Subcase 1), we have
y; ey,
b1 iy ip iy Pip by FLEPNR Ll 4 butbyy betbis | bntby,
< i ip ip+1 it+1 i 29 Ty
bi+b;, bo+b; bytbj,
1 2bq 2byy1 = yi’ll i y?j R yiﬁl !
B |'.UO|min(1’ 8)ming <i<n1(bi=bit1) vi Yo . < 1 J2b1 ylbn
. . L = 5 B b;—b t t—n41-
Hence, the desired inequality is true. |yt |(F/CFOD mimagicn (Bimbig)
1 t t
2b b1+b b1+by
RPN D D
1=0 1=0 1=0
3 t
b1+b 2b bo+b,,
Zyt-‘rz 1+Zyi2 Zyi2+
|PLal = L+ Zw% = i=0 i=0 (21a)

t

Zybwbﬂ nyzﬂm 1+Zy2bn

1=0
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Subcase 3):If in the group (i1, i2, -++, iy) there is just one [13] W. Lin and J.-M. Yong, “Direct adaptive control of a class of MIMO
integer less that — n + 1), i.e.,i, <t —n, for somel < p < n, (14 ;or:)lmear ZY_T_telfB“SJht- JAdCOH_IF-,VOL 56,”f10-d5, pp. f1103—1k1_20, 19d9§|-_
1/(146) . Pan and T. Basar, “Adaptive controller design for tracking and dis-
then bylye—nl| < lyt—n-al Rl turbance attenuation in parametric-strict-feedback nonlinear systems,”

Iy bkl botbip oot | IEEE Trans. Automat. Contryol. 43, pp. 1066-1083, Aug. 1998.

Yiy Yip Yi, [15] C. Wei and L. Guo, “Adaptive control of a class of nonlinear stochastic
e bitbyy ] bptbyy . brtbj, systems,” inProc. 1996 Chinese Control ConfQingdao, Sept. 15-20,
A Yen 1996, pp. 508-512.
< bi+b;, bptbi, by tby, [16] P.-C. Yeh and P. V. Kokotogj“Adaptive control of a class of nonlinear
= Vi U Yi—nt1 Y, / discrete-time systemsl|ht. J. Contr.,vol. 62, no. 2, pp. 303-324, 1995.

] |(5/(1+5))(bp +bj,) [17] J.-X. Zhao and |. Kgnellakopoulos, “Adaptive control of d[sprete-time
Yt—n+1 strict-feedback nonlinear systems,” Rroc. IEEE Conf. Decision and
261 2b 26, §/(14+8))(by +b 5 Control, San Diego, CA, Dec. 1997.
S P TP R R /|yt7n+1|( A 2 9
261 26 2b, 8/(146))bs
<y tues - CYi—n41 /|yt7n+1|( /04
1 261 2bo 2b,,
< (gt |70 mimy iz (bi—big) Yo Ve i

Hence (24) is true.
Thus, similar to the arguments in Case 1), we rewrite (22) as

|P

Comments on the Computation
of Interval Routh Approximants

_ o 2b1 2b ...,an _ . .
il = Re+y 'y 3oy, Where Ry denotes the sum Chyi Hwang and Shih-Feng Yang

mation of [(t+ + 2)" - n! — 1] terms in the determinant expansions,
which are different fromy;"* - - - y7* .. Then by (24) we know that

| R

where the last inequality holds for sufficiently largg|. Hence, the

(t+2)"-nl -1 9b1 9b 2 Abstract—In recent papers [6], [7], the Routh approximation method
| < BT et r Ty Yt Vi1 Yisna was extended to derive reduced-order interval models for linear inter-
|yi—ntal ' PeiEn T val systems. In this paper, the authors show that: 1) interval Routh
< (t+2)"-nl—1 approximants to a high-order interval transfer function depend on the
s |u0|(]+5)f—n+1.(5/(1.},—5)).”11111§i§71(bi_{)i+l) implementation of interval Routh expansion and inversion algorithms;
? ‘ ) 2) interval Routh expansion algorithms cannot guarantee the success in
cyptryite Ly generating a full interval Routh array; 3) some interval Routh approxi-

L 26y 2b, 2, mants may not be robustly stable even if the original interval system is
Sy Y robustly stable; and 4) an interval Routh approximant is in general not

useful for robust controller design because its dynamic uncertainties (in
terms of robust frequency responses) do not cover those of the original

proof of Lemma 2 is completed. interval system.

Index Terms— Interval systems, model reduction, Routh approxima-
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In the last two decades, the Routh approximation method pioneered
by Hutton and Friedland [1] and its variants [2]-[5] have been
K. J. Astrom and B. WittenmarkAdaptive Control2nd ed. New York: receiving much attention in the field of model reduction. The method
Addison-Wesley, 1995. is based on using the Routh stability array to derive reduced-order
P. E. CainesLinear Stochastic SystemsNew York: Wiley, 1988. models for high-order linear systems. The main advantages of the
';'OSFt'oﬁ’hfAnA?n;rkﬁiggfefég'f“On and Stochastic Adaptive Control-p o, yh anproximation method are that it has the ability to yield
H. Deng and M. Krsi, “Stochastic nonlinear stabilization—I: A back- Stable reduced-order models for stable original high-order systems,
stepping design,Syst. Contr. Lett.yol. 32, no. 3, pp. 143-150, 1997. to produce a family of reduced-order models of different orders via
L. L. Xie and L. Guo, “Fundamental limitations of adaptive control,"g single set of algebraic computations, and to obtain reduced models

Inst. Systems Science, Chinese Academy of Sciences, Tech. Rep., 1988+ retain the first several time-moments and/or Markov parameters
L. Guo, “Self-convergence of weighted least-squares with appllcanon% .
of the original systems.

to stochastic adaptive control|EEE Trans. Automat. Contryol. 41, ) .
pp. 79-89, Jan. 1996. Recently, the Routh approximation method has been extended to

—___,"On critical stability of discrete-time adaptive nonlinear control,"derive reduced-order interval models for high-order interval transfer
IEEE Trans. Automat. Contryol. 42, pp. 1488-1499, Nov. 1997.  fynctions [6], [7]. The extension is based on using interval arithmetic

L. Guo and H. F. Chen, “Théstrom-Wittenmark self-tuning regulator A Ar : f ) - .
revisited and ELS-based adaptive trackerlEEE Trans. Automat. to perform Routhv—3 or v—6 canonical continued-fraction expansion
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