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In this case, neither of the roots of (31) lies on the imaginary axis.
For �k > 0 and �m > 0, because of the second expression in

(32) at least one of two eigenvalues lies in the left half-plane. From
the first expression in (31), the sum of the arguments of�i and�i
has to be2�. Thus other eigenvalues must lie in the left half-plane.
Hence the system is stable. Thus an addition of dissipative force to
the system in (29) does not destabilize the system.

For �k = 0 (static instability), one of the two eigenvalues will
be at the origin.

For �k < 0 (with �m > 0), the sum of the arguments of�i
and �i is �. Hence other eigenvalues must lie in the right-hand
plane in order to satisfy the expressions in (32). Thus (27) stabilized
by gyroscopic forces (29) for�k < 0 can be again destabilized
by the addition of dissipative forces (31). For example, the top is
stabilized by a gyroscopic moment as long as the spin is sufficiently
large. Eventually the spin is decreased by friction (dissipative load)
to make the top unstable.

V. CONCLUSIONS

In this paper, stability issues of matrix second-order dynamical
systems are discussed. The necessary and sufficient conditions of
asymptotic stability for time-invariant systems in matrix second-order
form under various dynamic loadings (conservative/nonconservative)
are derived and a physical interpretation is presented. The stability
conditions in the sense of Lyapunov are also derived and analyzed. As
the conditions are direct in terms of physical parameters of the system,
the effect of different loadings on the system stability is lucid in the
matrix second-order form approach. The conditions are shown to be
useful in the designing controllers for matrix second-order systems.
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Fundamental Limitations of Discrete-Time
Adaptive Nonlinear Control

Liang-Liang Xie and Lei Guo

Abstract—A particular polynomial is introduced in this paper which
can be used to determine under what conditions a typical class of discrete-
time nonlinear systems with uncertainties in both parameters and noises
is not stabilizable by feedback, thus demonstrating the fundamental
limitations of discrete-time adaptive nonlinear control. As a consequence,
it is shown that for nonlinear systems with unknown parameters and
noises, the systems may indeed be nonstabilizable, in general, whenever
the usual linear growth condition is relaxed and the number of unknown
parameters is large, even though the corresponding noise-free systems
are globally stabilizable.

Index Terms—Adaptive control, discrete-time, global stabilizability,
nonlinear dynamics, stochastic systems.

I. INTRODUCTION

Adaptive linear control and the related issues have been the main
focus of adaptive control over the past several decades (see, e.g.,
[1]–[3], [6], [8], [9], and [11]). In recent years, attempts have
been made toward a theory of adaptive nonlinear control. If the
nonlinearity is only involved in the input part, or if the output part
of a system is nonlinear but has a linear growth rate, then it is fairly
well known that the existing adaptive control methods can still be
applied as long as the unknown parameters enter the system linearly,
whether the system is described in continuous-time or discrete-time
(see, e.g., [13], [15], and [16]). However, the situation changes
dramatically when one attempts to deal with systems with output
nonlinearities having growth rates faster than linear. Neither of the
existing methods are useful, nor do the similarities between adaptive
control of continuous- and discrete-time systems remain. For a large
class of continuous-time nonlinear systems, nonlinear-damping and/or
back-stepping approaches can be successfully used in adaptive control
design regardless of the growth rate of the nonlinearities (cf., e.g.,
[12]). This is so even in the case where external disturbances exist
(c.f. [4] and [14]). For example, consider the following continuous-
time stochastic control model:

dyt = (�ybt + ut)dt+ dwt; b > 0 (1)

where � is an unknown parameter andwt is a standard Brownian
motion, andyt and ut are the system output and input signals,
respectively. Then it can be shown easily by using the Ito formula that
(1) can be a.s. globally stabilized by the nonlinear damping control
ut = �yt � ytjy

b

t j for any b > 0.
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However, the continuous-time approaches do not work in the
discrete-time case when the nonlinear function has a growth rate
faster than linear, as observed by several authors (see, e.g., [10] and
[16]). Thus a question naturally arises: Can we find a stabilizing
adaptive controller in this case?

A generally negative answer was recently given in [7], where a
critical stabilizability phenomenon was found for a class of nonlinear
control systems. To be precise, for the following typical control
model:

yt+1 = �ybt + ut + wt+1; b > 0 (2)

where � is an unknown parameter andfwtg is a Gaussian white
noise sequence, it has been shown in [7] that (2) is not a.s. globally
stabilizable if and only ifb � 4, or the following inequality has a
solution:

z2 � bz + b � 0; z 2 (1; b): (3)

The above result clearly demonstrates the limitations of adaptive
control in the discrete-time case and shows that the discrete-time
problems are much more complicated.

This paper is mainly concerned with discrete-time systems. We
shall study nonlinear models with multi-unknown parameters, which
are extensions of the scalar parameter case (2) as studied in [7].
Corresponding to (3), we shall introduce a generalized polynomial
P (z) in the multiparameter case, which will be used to determine
when a nonlinear system is not stabilizable by feedback, thus demon-
strating the fundamental limitations of adaptive nonlinear control in
the discrete-time case. The bottom line of our main result is somewhat
unexpected which shows thatfor discrete-time nonlinear systems with
random uncertainties in both parameters and disturbances, global
adaptive stabilization is impossible, in general, without imposing the
linear growth condition on the nonlinearities of the systems.

II. M AIN RESULTS

Consider the following discrete-time polynomial nonlinear regres-
sion model:

yt+1 = �1y
b
t + �2y

b
t + � � �+ �ny

b
t + ut + wt+1; t � 0 (4)

whereyt andut are the system output and input signals, respectively,
�i(1 � i � n) are unknown parameters, andwt is the noise signal.
Assume the following.

A1) bi(1 � i � n) are nonnegative real numbers making (4)
meaningful and satisfyingb1 > b2 > � � � > bn > 0:

A2) fwtg is a Gaussian white noise sequence with distribution
N(0; 1).

A3) The unknown parameter vector�
�
= [�1; � � � ; �n]� is inde-

pendent offwtg and has a Gaussian distributionN(�; In).

Our objective is to study the global stabilizability of (4) under the
above conditions. First, we give a precise definition of stabilizability.

Definition 1: Let �fyi; 0 � i � tg be the� field generated by
the observationsyi; 0 � i � t. System (4) is said to be a.s. globally
stabilizable, if there exists a feedback controlut 2 Fy

t

�
= �fyi; 0 �

i � tg; t = 0; 1; � � � ; such that for any initial conditiony0 2 R1,
lim supT!1 1=T T

t=1
y2t < 1; a.s.

Remark 1: We remark that the global stabilization of (4) is a trivial
task in either the case where� is known or the case where the noise
is free (i.e.,wt � 0). To be precise, if� were known, we can put
ut � �(�1ybt + �2y

b
t + � � � + �ny

b
t ); which obviously globally

stabilizes the system.
In the case where� is unknown but the noise is free (wt � 0), we

can obtain the true value of the parameter� by solvingn independent
linear equations. For example, if in the first(n+1) steps we choose

fut; 0 � t � ng to be independently identically distributed random
variables with probability density functionp(x), then the true value
of the parameter� can be obtained easily by solving the following
linear equation:A � � = [y2 � u1; y3 � u2; � � � ; yn+1 � un]

� where
A = (y

b

i )n�n is a nonsingular matrix (cf. [5]). Hence, again, we
can take the control asut = �(�1ybt + �2y

b
t + � � � + �ny

b
t ) for

t > n, which globally stabilizes the noise-free system. For more
general parametric-strict-feedback models with no noise, a related but
more complicated two-phase approach can also be applied to design a
globally stabilizing adaptive controller regardless of the growth rate
of the nonlinearities (cf., [17]).

Unfortunately, the main drawback of the above two-phase approach
is that the resulting adaptive controller is not robust with respect to
noise. In fact, the presence of noise will even change the stabilizability
of discrete-time nonlinear systems dramatically if the growth rate
of the nonlinearities is faster than linear, as will be shown by the
following theorem together with its corollaries.

Theorem 1: Under Assumptions A1)–A3), system (4) isnot a.s.
globally stabilizable whenever the following inequality:

P (z) < 0; z 2 (1; b1) (5)

has a solution, whereP (z) is a polynomial defined by

P (z) = zn+1�b1zn+(b1�b2)zn�1+� � �+(bn�1�bn)z+bn: (6)

The proof is given in the next section.
Remark 2: Obviously, for n = 1, P (z) coincides with the

quadratic polynomial in (3). Note that a trivial necessary condition
for (5) to have a solution isb1 > 1, and whenb1 � 1 (4) is always
a.s. globally stabilizable (see [15]).

To understand the implications of Theorem 1, we now give some
detailed discussions on (5).

Corollary 1: If bi(1 � i � n) satisfiesb1 > 1 and 0 <
bi�bi+1 �

p
b1=2(

p
b1�1)2; 1 � i � n�1; then (5) has a solution

whenevern � 2 log ((
p
b1 +1)=(

p
b1 � 1))= log b1. Consequently,

wheneverb1 > 1 and the number of unknown parametersn is
suitably large, there always exist0 < bn < bn�1 < � � � < b1 such
that (4) is not a.s. globally stabilizable.

The proof of this corollary is given in the next section.
Remark 3: By Corollary 1 we know that the usual linear growth

condition imposed on the nonlinear functionf(�) of the general
control model

yt+1 = ��f(yt; � � � ; yt�p) + ut + wt+1; � 2 Rn (7)

cannot be essentially relaxed in general for global adaptive stabiliza-
tion, unless additional conditions on the numbern and the structure
of f(�) are imposed.

Corollary 2: Let b1 > 2, then for n > 1 + 2 log(2=(b1 �
2))= log(b1=2), (5) has a solution for anyfbig satisfying1 � bn <
bn�1 < � � � < b2 < b1. On the other hand, ifb1 � 2, then for any
n, there always exist1 � bn < bn�1 < � � � < b2 < b1 such that
(5) has no solution.

Corollary 3: For anyn � 1 and anyb1 > b2 > � � � > bn > 0,
we have the following.

1) A necessary condition for (5) to have a solution isn
i=1

bi >
4:

2) A sufficient condition for (5) to have a solution is eitherb1 > 4,
or n

i=1
bi > (n + 1)(1 + (1=n))n:

The proofs of Corollaries 2 and 3 are in [5], due to space
limitations.

III. PROOF OF THEMAIN RESULTS

We first present the proof of Theorem 1, which is prefaced with
two lemmas.
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Lemma 1: Let fci; 1 � i � pg and fdi; 1 � i � qg be two
sequences of positive numbers satisfyingc1 > c2 > � � � > cp �
1; d1 > d2 > � � � > dq > 0; q � p and ci � c1+�

i+1 ; 1 �
i � p� 1; for some� > 0: Also, let fi1; � � � ; ipg andfj1; � � � ; jpg
be two sequences of integers arbitrarily taken fromf1; 2; � � � ; qg,
with ik 6= il and jk 6= jl, for k 6= l. If there exists an integer
m0(1 � m0 � p) such that eitherim 6= m0 or jm 6= m0, then

c
d +d

1 c
d +d

2 � � � c
d +d
p �

c
2d
1 c

2d
2 � � � c

2d
p

c
min(1; �) min (d �d )
p

where by definitiondq+1
�
= 0.

Proof: By the assumptionsd1 > d2 > � � � > dq > 0 and ik 6=
il; jk 6= jl for k 6= l, it is easy to see that

m

k=1

2dk �

m

k=1

(di + dj ) � 0; 8m 2 [1; p]: (8)

Moreover, without loss of generality assume thatm0 = inffm: im 6=
m or jm 6= m; 1 � m � pg: Then

m

k=1

2dk �

m

k=1

(di + dj )

= 2dm � (di + dj ) � dm � dm +1 > 0: (9)

Now, by the assumptionci � c1+�i+1 ; cp � 1 and (8) and (9), we
have

c
2d
1 c

2d
2 � � � c

2d
p

c
d +d

1 c
d +d

2 � � � c
d +d
p

= c
2d �(d +d )

1 c
2d �(d +d )

2 � � � c
2d �(d +d )
p

� c
�(2d �d �d )

2 c
(2d �d �d )

2 � � � c
2d �d �d
p

�

p�1

m=1

c
� (2d �d �d )

m+1 � c
(2d �d �d )

p

�

p�1

m=1

c
� (2d �d �d )
p � c

(2d �d �d )
p

�

p

m=1

c
min(1; �) (2d �d �d )
p

� c
min(1; �) (2d �d �d )
p

� c
min(1; �)(d �d )
p

� c
min(1; �) min (d �d )
p :

Hence Lemma 1 is true.
The following lemma plays a key role in the proof of Theorem 1.
Lemma 2: Assume that for some� > 0 and t � 1, jyij �

jyi�1j
1+�; i = 1; 2; � � � ; t and that the initial conditionjy0j � 1

is sufficiently large, then the determinant of the matrixP�1t+1 satisfies

1
2
y
2b
t y

2b
t�1 � � � y

2b
t�n+1 � jP�1t+1j �

3
2
y
2b
t y

2b
t�1 � � � y

2b
t�n+1 (10)

where by definitionyi
�
= 1 for i < 0, andPt+1 is defined recursively

by

Pt+1 = Pt �
Pt't'

�
t Pt

1 + '�
t Pt't

; P0 = I (11)

with

't = [ybt ; y
b
t ; � � � ; ybt ]� ; b1 > b2 > � � � > bn > 0: (12)

Since the proof of this lemma is rather involved, we give it in the
Appendix.

Proof of Theorem 1:We only need to prove that if (5) has a
solution, then for any feedback controlut 2 Fy

t , there always exists
an initial conditiony0 and a setD0 with positive probability such
that the output signalyt of the closed-loop control system tends to
infinity at a rate faster than exponential onD0.

Now consider the following state space equation(t � 0):

�t+1 = �t; �0 = �;

yt+1 = '�
t �t + ut + wt+1

(13)

where� is the unknown parameter vector defined in Assumption A3)
and 't is defined by (12).

By our Assumptions A2) and A3) and the fact thatut 2 Fy
t ,

we know that (13) is a conditional Gaussian model, and hence
the conditional expectation̂�t = E[�jFy

t ] can be generated by the
Kalman filter and the conditional covariance matrix of the estimation
error (� � �̂t) can be generated by the Riccati equation (11) or

E[~�t~�
�
t jF

y
t ] = Pt (14)

where ~�t
�
= � � �̂t (see, e.g., [3, Sec. 3.2]).

Next, by (13) we know that

yt+1 = '
�
t
~�t + ('�

t �̂t + ut) + wt+1: (15)

Consequently, by the fact thatE[~�tjF
y
t ] = 0 andE[wt+1jF

y
t ] = 0

it follows from (14) and (15) that for anyut 2 Fy
t

E[y2t+1jF
y
t ] = '

�
t Pt't + ('�

t �̂t + ut)
2 + 1 � '

�
t Pt't + 1: (16)

Furthermore, by the matrix inversion formula it follows from (11)
that P�1t+1 = P�1t + 't'

�
t : Then

jP�1t+1j = jP�1t + 't'
�
t j = jP�1t (I + Pt't'

�
t )j

= jP�1t j(1 + '
�
t Pt't):

Hence, it follows from this and (16) that

E[y2t+1jF
y
t ] �

jP�1t+1j

jP�1t j
; 8 t � 0: (17)

Let us define

D0 =

1

t=0

f!: E[y2t+1jF
y
t ] � (t+ 1)5=2y2t+1g:

Then by the conditional Gaussian property of the sequencefytg, a
completely similar argument as that used in [7, Appendix B] shows
that Prob(D0) > 0. Hence, by (17) we have

y
2
t+1 �

1

(t+ 1)5=2
jP�1t+1j

jP�1t j
; t � 0; on D0: (18)

Now, let z0 2 (1; b1) be a solution of (5). We proceed to prove
that onD0

jyij � jyi�1j
z
; i = 1; 2; � � � : (19)
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We adopt the induction argument.
First, we consider the case wherei = 1. SinceP�10 = I, we have

by (11)

jP�11 j = jP�10 + '0'
�
0 j = 1 + k'0k2 > y2b0 :

Therefore, by (18) we have forjy0j � 1, jy1j � jP�11 j=jP�10 j >
jy0jb > jy0jz , on D0. Hence (19) is true fori = 1.

Now let us assume that for somet � 1, jyij � jyi�1jz ; i =
1; 2; � � � ; t; on D0; then by Lemma 2, it follows that

1
2
y2bt � � � y2bt�n+1 � jP�1t+1j � 3

2
y2bt � � � y2bt�n+1

and
1
2
y2bt�1 � � � y2bt�n � jP�1t j � 3

2
y2bt�1 � � � y2bt�n:

Consequently, by (18) we have onD0

jyt+1j � 1

(t+ 1)5=2
� jP

�1
t+1j

jP�1t j

1=2

� 1

3(t+ 1)5=2
� y

2b
t � � � y2bt�n+1
y2bt�1 � � � y2bt�n

1=2

=
1p

3(t+ 1)5=4
� jytj

b � � � jyt�n+1jb
jyt�1jb � � � jyt�njb

=
1p

3(t+ 1)5=4
� jytjb jyt�1jb �b � � �

jyt�n+1jb �b jyt�nj�b : (20)

However, by the induction assumption we havejyt�ij �
jytjz ; 1 � i � t; and so bybi+1 � bi < 0(1 � i � n)

jyt�ijb �b � jytj(b �b )z ; 1 � i � n: (21)

Note that this inequality also holds fori > t, sinceyj
�
= 1 for j < 0

by definition.
Hence, it follows from (20) and (21) that onD0

jyt+1j � 1p
3(t+ 1)5=4

� jytjb +(b �b )z +���+(b �b )z �b z

� 1p
3(t+ 1)5=4

� jytj�z P (z ) � jytjz

� [jy0j�z P (z )]zp
3(t+ 1)5=4

� jytjz � jytjz

where the last inequality holds for sufficiently largejy0j because
�z�n

0 P (z0) > 0.
Hence, by induction, (19) is true. Thus for all large initial condi-

tions jy0j, the output processjytj diverges to infinity at a rate faster
than exponential onD0. This completes the proof of Theorem 1.

Proof of Corollary 1: Takez0 =
p
b1 2 (1; b1). We need only

verify that P (z0) < 0.

By the assumption forn, we havezn0 = (
p
b1)

n � (
p
b1 +

1)=(
p
b1 � 1): Hence by (6) and the conditions onbi, we have

P (z0) <zn0 (z0 � b1) +
b1
2

p
b1 � 1

2

� (zn�10 + � � �+ 1) + b1

= � zn0
p
b1

p
b1 � 1 +

b1
2

p
b1 � 1

2 zn0 � 1

z0 � 1
+ b1

= � zn0
p
b1

p
b1 � 1 +

p
b1
2

p
b1 � 1 zn0

� b1
2

p
b1 � 1 + b1

= �
p
b1
2

p
b1 � 1 zn0 +

p
b1
2

p
b1 + 1

� �
p
b1
2

p
b1 � 1

p
b1 + 1p
b1 � 1

� p
b1 + 1 = 0:

Hence, Corollary 1 holds.

IV. CONCLUDING REMARKS

It is fairly well known that for nonlinear stochastic systems
described by nonlinear regression models with linear unknown pa-
rameters, a globally stabilizing adaptive controller can be designed
whenever the nonlinear function [sayf(x)] involved has a linear
growth rate, i.e.,jf(x)j = O(jxj); as jxj ! 1. However, in
contrast to the continuous-time case, essential difficulties emerge in
the discrete-time case when the nonlinear function has a growth rate
faster than linear. In fact, the nonlinear growth rate has been the crux
in discrete-time adaptive nonlinear control for years. Naturally, one
would ask the following questions: 1) Can we remove the usual linear
growth condition in the discrete-time case? 2) How far can we go
from linear growth to nonlinear growth for global stabilization?

A first step in this direction was recently made in [7], where it
was shown that in the unknown scalar parameter case (n = 1), the
nonlinear control system in question is globally stabilizableif and
only if jf(x)j = O(jxjb) with b < 4. In the present paper, we have
dealt with the general multiparameter case (n � 1) by considering the
polynomial regression model described by (4). By introducing a new
and more general polynomial (6), we have found a criterion about
situations where (4) is not globally stabilizable (Theorem 1). Based on
that, various explicit cases are discussed in Corollaries 1–3. Perhaps
the most remarkable consequence of our main result is the following
implication for general nonlinear regression models.It is impossible
in general to essentially relax the usual linear growth condition for
global stabilization, unless additional conditions are imposed(see
Remark 3).

APPENDIX

Proof of Lemma 2:By the matrix inversion formula it follows
from (11) thatP�1

t+1 = P�1
t + 't'

�
t ; hence, we have (21a) shown

at the bottom of the next page.
Now, let us denote�m(i)

�
= [yb +b

i ; yb +b
i ; � � � ; yb +b

i ]� ,

1 � m � n; 0 � i � t, and let�m(�1) �
= em, i.e., themth column

of the identity matrixIm, then

jP�1
t+1j = det

t

i=�1

�1(i);

t

i=�1

�2(i); � � � ;
t

i=�1

�n(i) :

By the elementary properties of determinants, we have

jP�1
t+1j =

t

i ; i ; ���; i =�1

det(�1(i1); �2(i2); � � � ; �n(in)): (22)
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It is clear that if in the group(i1; i2; � � � ; in) there are at least
two integers having the same value (but different from�1), then
det(�1(i1); � � � ; �n(in)) = 0. So in the discussions below we will
exclude this kind of zero-valued determinant.

We proceed to prove (10) by considering two cases separately.
Case I)t < n� 1: In this case, in order thatdet(�1(i1);

�2(i2); � � � ; �n(in)) 6= 0, the number of(�1)’s in (i1; i2; � � � ; in)
must at least be(n � 1 � t) and the other integers must be
distinct. Then each term in the expansion of the nonzero determinant
det(�1(i1); �2(i2); � � � ; �n(in)) contains at most[n�(n�1�t)] =
(t + 1) different factors, whose general form is

y
b +b

i y
b +b

i � � � y
b +b

i ; p � t+ 1 (23)

where im 6= il; jm 6= jl, and km 6= kl for m 6= l.
Note that one such term isy2bt y2bt�1 � � � y

2b
0 (from the

products of the main diagonal elements of the matrix
[�1(t); � � � ; �t+1(0); �t+2(�1); � � � ; �n(�1)] ), and it is
different from other terms. Now, we proceed to prove that
the absolute value of any other term is not greater than
1=[jy0j

min(1; �)�min (b �b )] y2bt y2bt�1 � � � y
2b
0 :

We divide this proof into two subcases.
Subcase 1):If in the general form (23)p = t + 1, then we

can rewrite (23) asy
b +b

t y
b +b

t�1 � � � y
b +b

0 . By our as-
sumptions, it is easy to see that Lemma 1 is applicable, hence we
have

y
b +b

t y
b +b

t�1 � � � y
b +b

0

�
1

jy0j
min(1; �)�min (b �b )

y2bt y2bt�1 � � � y
2b
0 :

Subcase 2):If in the general form (23)p < t + 1, then
we can add some(ip+1; � � � ; it+1) to (i1; � � � ; ip) so that
(i1; � � � ; ip; ip+1; � � � ; it+1) 2 T (t; t � 1; � � � ; 0): Here and
hereafter, we useT (t; t � 1; � � � ; 0) to denote the class of all
permutations of the integer sequence(t; t� 1; � � � ; 0). Then byt+
1 < n, we can choose suitablejp+1; � � � ; jt+1; kp+1; � � � ; kt+1 2
f1; 2; � � � ; ng with jm 6= jl, km 6= kl for m 6= l; 1 � m; l � t+1
such that the term

y
b +b

i � � � y
b +b

i y
b +b

i � � � y
b +b

i

is different from y2bt y2bt�1 � � � y
2b
0 . Thus by the conclusion of

Subcase 1), we have

y
b +b

i � � � y
b +b

i

� y
b +b

i � � � y
b +b

i y
b +b

i � � � y
b +b

i

�
1

jy0j
min(1; �)�min (b �b )

y2bt � � � y
2b
0 :

Hence, the desired inequality is true.

Now, rewrite (22) as jP�1
t+1j = Rt + y2bt y2bt�1 � � � y

2b
0 ;

where Rt denotes the summation of all the terms different
from y2bt y2bt�1 � � � y

2b
0 . It is obvious that Rt has at most

[(t + 2)n � n! � 1] � (nn � n! � 1) terms. Hence, by the results
proved above, we obtain

jRtj �
nn � n! � 1

jy0j
min(1; �) min (b �b )

y2bt � � � y
2b
0 :

Therefore, by choosing the initial valuejy0j large enough, we can
make jRtj less than(1=2)y2bt y2bt�1 � � � y

2b
0 . Consequently (10)

follows.
Case II)t � n� 1: First of all, any nonzero determinant

det(�1(i1); �2(i2); � � � ; �n(in)); �1 � i1; � � � ; in � t can
be expanded as the summation ofn! terms whose general
form is y

b +b

i y
b +b

i � � � y
b +b

i ; where (j1; � � � ; jn) 2
T (1; � � � ; n); ik 2 f�1; 0; � � � ; tg; 1 � k � n, and as noted
before, any twoik’s cannot have the same value different from
(�1). Obviously one such term isy2bt y2bt�1 � � � y

2b
t�n+1 [one term in

det(�1(t); � � � ; �n(t � n + 1))]. We now show that for any other

termsy
b +b

i y
b +b

i � � � y
b +b

i (ik 6= k or jk 6= k; for some1 �
k � n), the following inequality holds:

jy
b +b

i y
b +b

i � � � y
b +b

i j

�
1

jyt�n+1j
(�=(1+�)) min (b �b )

y2bt � � � y2bt�n+1: (24)

We proceed to prove this by considering three subcases.
Subcase 1):If (i1; i2; � � � ; in) 2 T (t; t�1; � � � ; t�n+1), then

we can directly apply Lemma 1 to get

jy
b +b

i y
b +b

i � � � y
b +b

i j

�
1

jyt�n+1j
min(1; �) min (b �b )

y2bt � � � y2bt�n+1

�
1

jyt�n+1j
�=(1+�) min (b �b )

y2bt � � � y2bt�n+1:

Subcase 2):If in the group(i1; i2; � � � ; in) there are at least two
integers less than(t�n+1), then we may find(i10; i20; � � � ; in0) 2
T (t; t � 1; � � � ; t � n + 1) such thatil � il

0(1 � l � n) and

y
b +b

i
y
b +b

i
� � � y

b +b

i is different from y2bt y2bt�1 � � � y
2b
t�n+1:

Consequently, by the conclusion of Subcase 1), we have

y
b +b

i y
b +b

i � � � y
b +b

i

� y
b +b

i
y
b +b

i
� � � y

b +b

i

�
1

jyt�n+1j
(�=(1+�)) min (b �b )

y2bt � � � y2bt�n+1:

jP�1
t+1j = P�1

0 +

t

i=1

'i'
�
i =

1 +

t

i=0

y2bi

t

i=0

yb +b
i � � �

t

i=0

yb +b
i

t

i=0

yb +b
i 1 +

t

i=0

y2bi � � �

t

i=0

yb +b
i

...
...

. . .
...

t

i=0

yb +b
i

t

i=0

yb +b
i � � � 1 +

t

i=0

y2bi

(21a)
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Subcase 3):If in the group (i1; i2; � � � ; in) there is just one
integer less than(t� n+ 1), i.e., ip � t� n; for some1 � p � n,
then by jyt�nj � jyt�n+1j

1=(1+�) we have

jy
b +b

i � � � y
b +b

i � � � y
b +b

i j

� y
b +b

i � � � y
b +b

t�n � � � y
b +b

i

� y
b +b

i � � � y
b +b

t�n+1 � � � y
b +b

i

jyt�n+1j
(�=(1+�))(b +b )

� y
2b
t y

2b
t�1 � � � y

2b
t�n+1 jyt�n+1j

(�=(1+�))(b +b )

� y
2b
t y

2b
t�1 � � � y

2b
t�n+1 jyt�n+1j

(�=(1+�))b

�
1

jyt�n+1j
(�=(1+�)) min (b �b )

y
2b
t y

2b
t � � � y2bt�n+1:

Hence (24) is true.
Thus, similar to the arguments in Case I), we rewrite (22) as

jP�1t+1j = Rt + y
2b
t y

2b
t�1 � � � y

2b
t�n+1; where Rt denotes the sum-

mation of [(t + 2)n � n! � 1] terms in the determinant expansions,
which are different fromy2bt � � � y2bt�n+1. Then by (24) we know that

jRtj �
(t+ 2)n � n!� 1

jyt�n+1j
(�=(1+�)) min (b �b )

y
2b
t y

2b
t�1 � � � y

2b
t�n+1

�
(t+ 2)n � n!� 1

jy0j
(1+�) �(�=(1+�))�min (b �b )

� y2bt y
2b
t�1 � � � y

2b
t�n+1

� 1
2y

2b
t y

2b
t�1 � � � y

2b
t�n+1

where the last inequality holds for sufficiently largejy0j. Hence, the
proof of Lemma 2 is completed.
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[1] K. J. Åström and B. Wittenmark,Adaptive Control,2nd ed. New York:
Addison-Wesley, 1995.

[2] P. E. Caines,Linear Stochastic Systems.New York: Wiley, 1988.
[3] H. F. Chen and L. Guo,Identification and Stochastic Adaptive Control.

Boston, MA: Birkhäuser, 1991.
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Comments on the Computation
of Interval Routh Approximants

Chyi Hwang and Shih-Feng Yang

Abstract—In recent papers [6], [7], the Routh approximation method
was extended to derive reduced-order interval models for linear inter-
val systems. In this paper, the authors show that: 1) interval Routh
approximants to a high-order interval transfer function depend on the
implementation of interval Routh expansion and inversion algorithms;
2) interval Routh expansion algorithms cannot guarantee the success in
generating a full interval Routh array; 3) some interval Routh approxi-
mants may not be robustly stable even if the original interval system is
robustly stable; and 4) an interval Routh approximant is in general not
useful for robust controller design because its dynamic uncertainties (in
terms of robust frequency responses) do not cover those of the original
interval system.

Index Terms— Interval systems, model reduction, Routh approxima-
tion.

I. INTRODUCTION

In the last two decades, the Routh approximation method pioneered
by Hutton and Friedland [1] and its variants [2]–[5] have been
receiving much attention in the field of model reduction. The method
is based on using the Routh stability array to derive reduced-order
models for high-order linear systems. The main advantages of the
Routh approximation method are that it has the ability to yield
stable reduced-order models for stable original high-order systems,
to produce a family of reduced-order models of different orders via
a single set of algebraic computations, and to obtain reduced models
that retain the first several time-moments and/or Markov parameters
of the original systems.

Recently, the Routh approximation method has been extended to
derive reduced-order interval models for high-order interval transfer
functions [6], [7]. The extension is based on using interval arithmetic
to perform Routh�–� or 
–� canonical continued-fraction expansion
and inversion. Surprisingly, it is observed from the literature [7]
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