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On stability of Random Riccati equations
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Abstract Random Riccati equations (RRE) arise frequently in filtering, estimation and control, but their stability
properties are rarely rigorously explored in the literature. First a suitable stochastic observability (or excitation) condi-
tion is introduced to guarantee both the L,- and exponential stability of RRE. Then the stability of Kalman filter is an-
alyzed with random coefficients, and the L, boundedness of filtering errors is established.
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Random Riccati equations (RRE) have several sources. First, for linear systems with ran-
dom coefficients, the well-known Kalman filter and the LQG controller depend naturally on
RRE. Second, even for linear systems with nonrandom coefficients, if the coefficients are un-
known and adaptively estimated, then again the adaptive filter and the adaptive LQG controller
depend explicitly on RRE. Third, consider nonlinear systems of the form

{ er1 = flxp) + wyays
v = glzy) + v,
where f(+) and g(+) are nonlinear functions, {w,| and {wv;| are white noise processes, and
{23} is the state process to be estimated. The well-known and widely used extended Kalman fil-

ter (EKF)[! is derived based on the following linearization:

fla) ~ fGa) + 5t

e

. (-T/e = -}k)v
=.z'k

- J .
g(l‘k)%g(fk)‘i‘%, __(Ik~.rk),
o J'—.Tk

where z; denotes the estimate of z; at time k. Then, once again, the corresponding EKF de-

- Jf dg
pends on RRE since - and
81 al‘ =

T= Ik

are random matrices. Hence, it is necessary to study

x=%,
RRE in a variety of important situations.
Now, the general form of RRE is as follows: ) :

Py = FWPF — FPHE(HPHY + R) " HPFT + Qs (1)
where Fy, Hy,, Qyand Ry are d Xd, m Xd, d Xd, and m X m random matrices respectively,
and Q=0, R,=0 are nonnegative definite matrices. A primary question concerning RRE is the
stochastic stability (boundedness), i.e. under what kind of conditions on {F,, H,!, the process
{ Py, =1} is bounded in a stochastic sense. The standard results deal exclusively with determin-
istic matrices { F,, H,}, and the earlier results can be found in ref. [2]. For that study, the
commonly used conditions are

k=1
a I < D 0(k,i + 1)QO (k,i+ 1)< anl, Yk, (2)
o

N

i
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and
k
BI< >, 0"(i, k) HIRTH®(i k) < Byl Vi (3)
isE-N
for some deterministic positive constants a;<<ay, 1<, and N >0, where ®(%,i) is the tran-
sition matrix:
&(k,i) = Fp o F;y Ye=i+1; @i, i) =1, &(i, k) = O(k,i) "
Unfortunately, as pointed out in ref.[3], Conditions (2) and (3) are mainly deterministic
hypotheses and are unsuitable for models with random coefficients. In the standard linear regres-
sion framework where “F, =I", Guo'® introduced the following conditional richness condition:
(m+1)h-1 H"{Hk
e 1+ | H 1|2
to ensure the L,-boundedness of P,, where 6§ >0 and A >0 are two constants, and %, -1 =
o{H,, k<<mh —1}. This condition was further relaxed in ref. [4], allowing & to be a random

E ,7,,,;,_112 8l a.s. Ym=0 (4)

process. Later, the same method was used" to investigate the case where F, is a deterministic
matrix F. However, it was required in footnote 1) that F satisfies the following property:

0< € = Amin(FFT) < A FFT) = &, < 1.
Obviously, this property is stronger than the stability of F'. -

To the best of the authors’ knowledge, there are only a few papers which treat RRE with
general matrices {F,, £#=>1} in a rigorous way (cf. refs.[5,6]). However, in all these works,
stationarity of {F,, H,} was required, and only weakly stochastically bounded (WSB) property
was investigated. ‘

In this paper, we are interested in nonstationary matrices { F,, H,!| and are concerned with
the following two questions: (i) Under what conditions do we have the moment boundedness of
RRE? (ii) Under what conditions do we have the exponential stability of RRE? Besides, we will
analyse the stability of time-varying Kalman filter with random coefficients.

1 L,-stability of RRE

Throughout the sequel, for simplicity of discussions, we assume that there are positive defi-
nite matrices Q >0 and R >0 such that Q,=Q and R,=R. .

Definition 1.1. A random matrix (or vector) sequence {A,, £==>0} defined on the basic
probability space (2, %, P) is called L,-stable (»>0) if sup E || Ay |l "<oo, where the norm

of a matrix X is defined as its maximum singular value, i.e. || X || = {1, (XX) T2

In the sequel, we will refer to || A, ||, defined by ‘

LAl SHENA NP (5)

as the L,-norm of A, .

To analyse the RRE, we need the following assumptions:

Al. For any € >0, there exists 6 >0 such that

Plapin(G(k + h,k)) > 8 1 G} >1-¢, Yk,

where h >0 is an integer, G(k + h,k) is the observability Grammian

1)Wang, G. J., Discrete-time recursive algorithms analysis, Ph. D). Dissertation , Institute of Systems Science, Chinese
Academy of Sciences, June, 1996.
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kth

Gk + h,k) = >, ® i, k) HIH®(i k) (6)

i=k+1
and 9, = o | F;, H;, i<k} is the o-algebra generated by |F;, H;, i<k}.
A2. For some r==1, there exist positive constants M, M,, M3 and e such that
(i) 51;1pE I H, l l()r<1\/11<°"3;

(ii) sup  E | @i, j) || o< M,y<oo, Yk

i<

and
Sl;lpE[ | @k + h,k) 13 1 41 ]< M3 < o0,
where h >0 is defined in Condition Al.
We remark that Al is a form of stochastic observability condition of {Fy, Hyl, and A2 is
automatically satisfied if {F,, H,! is a bounded sequence as usually assumed in the literature.
Theorem 1.1.  Under Conditions A1 and A2, the random Riccati equation defined by
(1) is L,-stable .
Proof. Denote Ag(k)={Aun(G(k+h,k))>8}, >0 and use {Fy, Hy, k=01 to
construct an auxiliary time-varying linear system:
{ Zp+1 = Foxr + weers (7
e = Hexp + s -(8)
where the initial condition x¢ has a Gaussian law with mean Z¢ and covariance matrix Py, {wy,
vg, k=01 is a sequence of independent Gaussian random vectors, independent of {Fy, Hy, k=

0} with the following properties:

E[wkj =0, Elwaw]] = Qu, Eln] =0, Elvw]] = Ry Elwoi] = 0.
Then, the minimum-variance linear estimate of z; is determined by the following equations
2es1 = Fary + RPHI(HPHL + R) ™ (0 — Hew) s
i‘k :E(Ik lfylz—l)a
P, =E(xxf | F-1),

Xp = Xp — Lk

(6,71,

(9)

where { Py} can be generated by (1) and %, = (Gooy yo» Yoo s Wil
For h >0 defined in Condition Al, let us introduce another estimate of x4, denoted by

x4+ 4, which is recursively defined by

*
T k+h
k+h

@k + h, k)G (k+ b, k) 25 @ (L k) Hlyds oy + @k + hok)xi Iy,  (10)

i=k+1

where the initial values x ) (m =1,2,**,h — 1) are defined as

{ i = To» - (11)
Tope1 = L v (12)
with

Ellzg—zs |" =Ellzg—zoll" <, Vn (13)

because x¢ has a Gaussian distribution.

Now, from (7), (11) and (12), we have
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m+1

Zpay — Thar = ®(m +1,0)(zo — z¢ ) + 2, ®(m +1,i)w;, (14)

i=1
so by the C,-inequality,
|zt = zmsr 14 <(m +2) 1 @(m + 1,00 | * | 2o =z I1*

m+1

+(m+2)" 1D o(m +1, i) 14 w14
=1

Thus, by the Schwarz inequality and Condition A2,
Ell zpst — 2o 17 <(m +2)* WE [ ®(m +1,0) |¥E [l 2o — ¢ ¥

m+1

+(m+2)" 1O VEN®(m +1,i) [VE | w; 1%
i=d

oo, X =0 = h =2; (15)
Next, it follows from (7) that
O T 00 ey, Wik, (16)
. jaket
xk+,,=<1>(k+h,k)xk+_kz+h;¢>(k+h,j)wj. AT
Substituting (8) and (16) into (10) yields e
Ziin =@k + h, k)G Wk + h,k)‘i‘:l@T(i,k)H?[Hm + v; a0
B R
=@k + h, k)G (k + h,k)ilde(i,k)Hf Hi[@(i,k)'x,z + Zlé(i,j)ug
oy P
+ v a0 + O(k + h, k)x;IA;(k)
=&k + h,k)ada ey + Pk + h, k)G (k + h ,k)iglcpT(i,k)H}"&IAa(k)
+ @k + h k) xi I, ' (18)
where
Ei=H,-Zi)<P(i,j)wj+v,-. (19)
From (17) and (18), it follows thatlzlHl ‘
Zpan — Thsp =Pk + h k) (xp — x4 )IA;(k) +,-§,(p(k +h,j)w;
~®(k+h,k)G Uk + h ,k)AkZ:]‘,vlcpT(i,k)H,-Te,-IAa(,E). (20)

By taking k= ih, i=1,2,"-, from (20) we have,
I 2o = 2Gonn 127 <R+ DU @G+ Dhyik) 12 1 za = i 12

(i+1)h

+Qh+ DD @G+ Dh,) I g 12

j=ih+1
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+ 2h + DU G+ Dhy,ik) 121 G726+ Dhyik) |12

(i+1)h 2r
G_I/Z((i + l)h 11.h) Z QT("n,ih)H'};ém IA (ih) - (21)
m=ih+1
Let us denote z;+ = 2 | Zson — X+ 12 and ;41 = C | ®((i+1)h,in) | 2’IA (i)

with C,=(2h +1)?" . Also, denote the sum of the last two terms in (21) as 4;, . Then we

have

Zivi S @i % ¥ Bya- (22)
Thus,
(ua,)zwz(na[) " (23)
and
B < E([Ta) B + 2 6( T1a) @D, (24)

Let us define {7;,i==j! recursively by
Ni+l = a%+177i’ g =1

Then
i+1 '
i = ( Il a/) : (25)
l=j+1
and
E(qisr | Y1) = E(a%iim | Gpy) = 1],E(a%+1 | Gip1) - (26)
So,
E(ps1) = E[nE(atf | 9501 : (27)

Now, by the definition of @;;, Condition Al and the Schwarz inequality,
E(a%ﬂ | 'gy,ﬁl) = C,EI: “ (p((l + l)h ’ Zh) ” 4rIA;(ih) | (gih—l]
<CAE[ 10 + Dh, i) 13 1G5 JE[ Tasim | Gn-1]
<C, VMyde =p < 1, i (28)
where the last inequality can be guaranteed by taking e small enough.

Hence, by (27),
E(in) < eE(p) << g7 E(y) = o7, (29)

([ﬂla,) <ptt (30)

In particular,
g2 .
E(J, aj) 1 ' (31)
J=1

Next, by the definition of A; 4, we know that
(itl)h

A2, <@2h + D2 25 oG+ Dh,i) 14wy 1+

j=th+l

+ 2h + D> | &G+ Dk, i) 141 GTV2(G + Dby, dh) 1Y
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(i+1)h B 4r
% 1 GY2((i + Dh, k) Z & (m ,ih )H,I,,f,,, IAa(ih)
m=ih+1

A
=a;41 + Biv1-

For the first term on the right hand side of (32),
(i+1)h

E(au) < @h+ 1% 25 VET @G+ Dh o) IVE Tw; 1% = O(1).
j=ih+1
We now proceed to estimate f3; 1. Note that

I G2+ Dk, ik) 4T <

62’ = 0(1),

and
(it1)h

< >, el

m=1th+l

(it1)h
”G—IQ((Z =8 l)h s Ih) Z (_DT(HI .ih)H;l;zell:

m=ihtl

(it1)h
T
2, ErT

m=iht1

2
<|

where we have used the fact that
WIM(M™) 'MW < WTW
for any matrices M and W with M™M invertible (cf. p. 6 of ref.[8]).
Hence, by the definition of 8+ in (32),

(i+1)/h

Bin <O | @G+ Dh, i) 147 25 18, 1%
m=ih+1
Furthermore, by (19) and Condition A2,

8r
s ||.8f=E] b +
j=ih+1
8r
” H,,, D (m ,j)w,- i
j=ih+l 87

8r
(“H o(m, | + lonls]
j=1h+1

8r

L 8r
<(WHu 16 35 100 e Iy st + 1o 1

j=mrl
=0{1).
Therefore, by (36) and (37),

(it1)h 2
E(Bin) SOMVE [ @G + DA, ik) |l B*M Zz, Il &, “')

m=ih+1

(th .
<o(1)\/ Ie, |g,) - 0(1).

m th+1
Hence by (32), (33) and (38),
E(4%) = O(D).

Consequently, by (13), (31) and (39), it follows from (24) that

i+l

E(z;4) < O) + Z v et o(1) = 0(1).
=1
On the other hand, by the optimality of the Kalman filter,
Pk <E[(Ik — I:)(Ik S .T}: )T | f');k_l].

Hence,

(32)

(33)

(34)

2. (35)

(36)

(37)

(38)

(39)

(40)
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1Pl Str E[(ap —af Waw —20)T 1 Fiy 1= E[ Nl — i 121 Fei ],

and
Pl " <HE[Nze =2 121 B W <E[ Iz = i 171 Fy]. (41)
So,
EIPII"<Elz -y I1%. (42)
Hence, by the definition of 2; and (40),
Ell P, ll"<E(z) = 0Q1), (43)

which means

supE || Py | 7 < oo. (44)

In the same way, by taking & = ih +1, *+-,(i +1)h — 1 respectively in (20), it can be

proved that
supE | P ll 7 < o0, (45)

Hence, Theorem 1.1 is true.
Now, we give an example to show that the key assumption Al is necessary in some cases.

Example 1.1. Consider the one-dimensional case where F,, = f>1, hy= Hk , Q.=q and
R,=r. Then by (1), p = P, can be written as

+-q. (46)

2
Pr+i = fhkp+r

Suppose that {h,} is ani.i.d. sequence. Then by Condition Al we know that for any € >0

there exists & >0 such that
kth

S PRt & a} £ e

i=k+1
Hence by the arbitrariness of €, it is easy to conclude that Condition Al is equivalent to

kth
2, Rt = 0} =0, (47)
i=k+1
which in turn is equivalent to ‘
P{hl = Ol’ = 0.

In fact, if P{h;=0}=0, then
kth

Pl S AURp2 = 0} Plhys = 0] = Plhy = 0} = 0.

i=k+1

kth

Zfz(i—k)hz =

i=k+1

On the other hand, if P =.0, then

kt+h

n(h _O)}_P Zf?.(l k)hZ_O} 0.

i=k+l

Since A, is an i.i.d. sequence,
k+h k+ﬂ
Pl B0 =0 = TIpin =0l = Pla = 0l =0,

i=k+l

So, P{h;=0}=0, and the claimed equivalence is established.
Next, we show that if Condition Al is not satisfied, i.e. P(h;=0)7#0, we can find a se-
quence {h,} and a constant f>1, such that
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supEpy = 0. (48)
Let h; have the following distribution,
Plhy =0} =a >0, Plh =1} =1-a. (49)
They by (46)

" E(prer | Ge-1) :E(f2 :flkzp W}rl) + q

2 Dr 2 TPk 4 _
=firrTat f +p (1-a)+gq

>af’py + q. (50)
Hence, iff:—z—, then

Ja
E(pp+1) =4Ep, + ¢ >,

whenever pg+ ¢70.
2 Exponential stability of RRE

Definition 2.1. A sequence of random matrices {Ay, =0} is called L,-exponentially
stable if there exist constants A E [0,1) and M >0 such that

DA <M, Ye=i=0. (51)

j=it+l

The RRE (1) can be rewritten as the following random Lyapunov equations:

Py = FAT = Lka)Pk(I - Lka)TFZ + Q_k, (52)
where v
Ly = PHT(HPHE + RO, Q= FLRLiFF + Qs. (53)

The objective of this section is to show that the L, -stability of { P} implies L,-exponential stabil-
ity of {Fp(I = LeH)!.

For this, let us introduce the following additional assumption:

Bl. There exist constants N; and N, such that

su [“H|I8|/k1:|<N1<°° Yk

k<i<<kth
and

sup E[ Il ®(i,j) |8 1 Gy 1< N2< o, Yk,

PG<i<k+h

where h >0 is defined in Condition Al. )

Theorem 2.1. Under Conditions A1, A2 and B1, the sequence {F,(I - LH,), k=01
is L,-exponentially stable , where r is defined in Condition A2.

We preface the proof of the theorem with several lemmas.:

Lemma 2.1831.  Let {ay, 91 be an adapted process such that ay=1, Eag<> and

Elay | 1)< aqp + B, V=1,
where 0<a <1, 0< <00, Then there exists A €10,1) such that {1/a, L€ S%A), where
SO%(Q) is defined by
k
S%) ={a:a, € [0,1], E] ] (1 - q)) < MA*™,

j=itl
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Vek=i, Vi>=0, forsomeM > 0. (54)

Lemma 2.2, Let | Ful be a sequence of d X d random matrices, and {Qy} be a se-

quence of positive definite random matrices. Then for { Py} recursively defined by (52), we
have , for all n>m,

lek(I - LH,)

k=m

n=1

<lI{1

] —1
et m( 1 % ” Q’:lplﬁ-l ” ) “ P,, ” ” Pm ” . (55)

Lemma 2.3. Let {a,: a,€[0,1], k=01 be a scalar sequence. If there exist h >0, ¢>
0 and AE[0,1), such that

k+th—-1

Ell(-a)<a”, Ye=0, Y:=>o0,

then {ak}GSO(A)
Proof. Let n==m=0 and n=m + th +s with 0<<s<h. Then,

n=1 m+th—1

El]a-a)=E]] (1-a) D =

i=m i=m J=m+tth

m+th—1

<E Il (1-a;) <cA”

i=m

:%(Ath;\s)

n=m - n—m
<Ah/\ =M s

where M =—-. Therefore, {a,} € S°(1).

Lemma 2.4. Consider the Lyapunov equation (52), and let Conditions Al and B1 be
satisfied . Then , the scalar sequence appearing on the RHS of (55) belongs to SA1), i.e.
1
= — sk =10 DAY,
W e L
where S°(1) is defined by (54), and A€[0,1).
Proof. We adopt the notations introduced in the proof of Theorem 1.1. Let

N el W
D =G> D = 0{9/;’ o woy"',wkhnfa

2 =N Ziger — Ty 2o 0 S1+4dl Q! E[Zk |2 ].
We proceed to show that {a,,%, | satisfies the conditions of Lemma 2. 1.
First, it is obvious that a,=>1, and ‘
Elagl =1+d | Q' | E{E[ 'zy — 2 121 4]}
=1+d Il Q' INE[lzy -z |12] < oo. (56)
Next, by (34) and (35), it follows from (21) that

Elz, 1 92,,]<C, F[ | ®(kh +1, (k= 1)k +1)||? LA (k-Dne1) Za- 1‘% 1]
kht1

+C >y E[ I ok +1,5) 121w 12| 2, ]

j=(k=1)h+2
kh+1

+C, gizh[ loCkh +1, (k= Dh+1) 12 > g, |2

m=(k=1)h+2

9 |
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A
=apet t Burt + Vst (57)
where C;=2h + 1.
For the first term on the RHS of (57),

Gt :CIE{E[ | ®(kh +1, (B —1)h +1) || 21/\;((#1)“1)2/@—1 ’9’2—1“9‘)&*1!
=C1E{E[ '-}Zk—l (f-}- (58)

Note that zg, wg,* ", wy, + are independent of (F;, H;, i==0). By the Schwarz inequality and
Conditions Al, Bl and (58), we have

- =C1E{E[ | @(kh +1, (k- 1)k + 1) | 21A;((k—1)h+1)‘Q>k—l:|zk~1l-@k—ll

<C1E’«/E[ | @(kh +1, (. = 1)h + 1) [|* [IA;((k—l)hﬂ)l @k‘l}qu Dp1
<C 8+V€N% VeE[zi-1 | Do-1]= p1E[2e-1 | Dot ], (59)

where p; 2c 1 8:; N3/e can be made less than one by taking ¢ small enough.
For the second term on the RHS of (57), by the Schwarz inequality and Condition Bl, we

have
kh+1

B <C1 >, VE[N@®kh +1,)) 1% 12 JVE[ T w; I1*1 %]
j=(k=1)h+2
<Cih WNRO(1) = 0(1). (60)

For the last term in (57), by the Schwarz inequality and Condition B1,

lz}H—l 2
Y1 <Cy 82 V Zﬂ/_\/F I &, ||2)

m (k 1)h+2

<C 52 «/_Zf\/(hﬂ) > E[ Il & 11| 2 ]. (61)

m=(k=1)h+2

By the C,-inequality, Holder inequality and Condition Bl, it follows from (19) that
4
E[I&1*1 %)= E[ H, 2 d?(m,J)w + U | %—1]

j=(k=1)h+2

De-1 ]

” H., z D(m,j)w,

j=(k=1)h+2

%-1% SE[ Il v, 1* 1 Dy ]

8

m

Z O(m,j)w;

<8VE[IIH,II*1 9. 1]\/15[

J=(k=1)h4+2

9},2,1} +0(1)

m

28
<S/FL[W 33 NFOW) + o)

jlb-Dhe2
=0(1). S (62)
Hence, by (61) and (62),
Y1 = O(1). (63)
Finally, substituting (59), (60), and (63) into (57) yields
Elz | 9o ] < piE[2ze-1 | Dy ]+ O(1).
Moreover,
Elap | @y ]=1+d | Q"I E[z | 9]
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<14 d l Q‘l I {PIE[zk—l | @k—l] + O(1)}

= p1ag-1 t o(1). (64)
Thus, by Lemma 2.1, there exist some M>0, A€1[0,1) such that
E[]Q-1/a) < MA"™ !, ¥Yn=m=0. (65)
» Furthermore,
a,=1+d1 Q7! | E{ | 21 — Tahsa 121 G ]
>1+d Q' IE[ I Puer Il 1 %0 ]
=1+4d| Q~1 Il Py Il . (66)
Then, since || Qz' I << Q 'l , we have for N= [—hk_]
k+th—1 l ktth—1 1
P—— |
ELT (- e )<E Lo ama TTEm
N+t-1 1
<e ] (1- — )
<ELl =15 am@ T 1 Panl
N+1-1 1
<E (1 - = -~ * ¢ >
,lNlH 1+d1Q l||E[||Im+1_Iih+1”2|9,';.]
1\’+th
=E[] -1/a) <M. (67)
i=N+1
Let C=M/A, A;=A""*. Then
k+th—-1 1 .
S T Y
EI,% ( 1+ 1 QP |l (i
Thus, by Lemma 2.3, we know that
1
1 = = 5 B >0} 0
1+ | Q¢'Pess | =0j€ $°(A),

and hence the proof of Lemma 2.4 is completed.
Proof of Theorem 2.1. By Lemma 2.2 and the fact that P,,,1<Q we have

TR rﬂ]

r/2

:gEi*,e[,l,;(l_l*' | Q¢'Pest |l )l
<te 1 el fi(1 - e )| VETRT
<lQ!l ’/2\/7E kfln(l T @1;1})“1 I )‘ JETP, "

Therefore, by Theorem 1.1 and Lemma 2.4, it is easy to see that Theorem 2.1 holds.

lek(I - L)

k=m

3 Applications to Kalman filter
Theorem 2. 1 can be used to analyse the L,-stability of Kalman filter with random coeffi-
cients.
Consider the time-varying linear system:
{ pr1 = Fpxp + wesrs (68)
e = Hexr + vs (69)
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where {wy, v, £#==01 is an independent noise process and satisfies
Elw] =0, Elwwi]l = Q. =Q > 0;
and
Elvw] =0, Elyovl] = Ry=al >0; E[wwi] = 0.
The initial condition xy is a random vector with mean z( and covariance matrix Py. Then the
Kalman filtering equation of the above system is

Tpe1 = Frrg + FPHL(HPHE + Ry) 7' — Hia) (70)
where {P,} is defined by the RRE
Py = FPFE — FPHL(HPH] + R) ' HPFL + Q. (71)

We assume that:
Cl. For some r==1, there exist positive constants c|,c,,c3 and € such that

(i) supE | Hy | 327 < c; < o0
(i) su hE||<15(i,j)||32’+‘<c2<00,Vlz

R<i<hk+
and
sxsz[ I @k + h, k) 117 1 G ]< c5 < o0,

where h >0 is defined in Condition Al.
C2. E| Xy | 2r<oo, SlklpE[ | gy |l o v || e,

Note that here we do not assume that {F,, H,! is independent of {wy, v |, which allows
us to include the adaptive case where F, and H} are measurable functions of the observations {0,
i smls Tk

Theorem 3.1.  Under Conditions A1, Bl, C1 and C2, the estimate error xy = 4 — Tj
produced by (68) and (70) satisfies

w2, < oo,
Proof. By (68) an~d (70) )
o1 = Fp(I = LiHp ) 2y + wyrq — Filgog, (72)
where L, is defined by (53). : s :

Denote A+ = wy+1 — FiLyu,. Then (72) gives

k+l R

i = L IF(I = LH)zo + 25 1 [(F;(1 - LH))A,. (73)
i=0

=l =i :

By Theorem 2.1, Condition C2 and the Holder inequality,

k i Et1

TI(F(r=LH)| Nzl et D5

i=0 2r =i
k1

SMALO(1) + D MAR || A |l 5,

i=1

k

Iz I, < [1(F;(r-LH))

I4; I 2,
2r

k
:O(l) e MZ/\’ ” Alz—Hl || Dy

i=0
Note that

I Li 12 = 2 ae | PEHECHRPH] + Ry) 2HPy |
Ltr| PBHF (HPHT + R, ) 2H,P |
L PO HPHE(HPHE + Ry)
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< Py | e(HPHE + R)™
<N Pl (R < | Pyl ma™
Hence, by Conditions Al, Bl, Cl and C2 we get
| A ll 2, = O(1).
So .

k
| Zgar I, = O(1) + O(1) 2 4" = O(1).
i=0
This completes the proof of Theorem 3.1.
4 Conclusions

Random Riccati equations play an important role in many problems of systems and control.
In this paper, the L,-stability of the Random Riccati equation is established under a very general
excitation condition. The form of this excitation condition can be regarded as an extension of that
introduced in ref. [3] for the case where F = I, and is shown to be necessary in a special case.
Since in the present case F} is random and time-varying, the analytic methods we have used here
are different from that in references [3,4].

Comparing this paper with refs. [5,6], we do not need the stationary assumption on the
random matrices | Fy, Hy| and our L,-stability results are much stronger than the weak stability
(i.e. bounded in probability) established there. The results of this paper are expected to have
more applications in adaptive systems where nonstationarity of signals is a key feature.

References

Anderson, B. D. O., Moore, J. B., Optimal Filtering , Englewood Cliffs: Prentice-Hall, 1979.

2 Deyst, J. J., Price, C. F., Conditions of asymptotic stability of the discrete minimum-variance linear estimator, IEEE
Trans. Automat. Contr., 1968, 13: 702.

3 Guo, L., Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence, IEEE Trans.
Automat . Contr., 1990, 35(2): 141.

4 Guo, L., Stability of recursive stochastic tracking algorithms, SIAM ] . Control and Op[zmzzatzon , 1994, 32(5): 1195.

5 Solo, V., Stability of the Kalman filter with stochastic time-varying parameters, Proc. of the 35th IEEE-CDC, Kobe,
Japan, Decembu, 1996.

6 Bougerol, P., Kalman filtering with random coefficients and contractions, SIAM ] Control and Optimization , July 1993,
31(4): 942.
Chen, H. F., Guo, L., Identification and Stochastic Adaptive Control, Boston: Birkhauser, 1991.
Guo, L., Time-Varying Stochastic Systems : Stability , Estimation and Control (in Chinese), Changchun: Jilin Science and
Technology Press, 1991.



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg

