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Abstract: Feedback is used primarily for reducing the effects of uncertainties 
on the performance of control systems, and the understanding of its limitations 
and capabilities is fundamental. This paper will present some preliminary re­
sults in this direction, showing that for a large class of discrete-time uncertain 
nonlinear stochastic systems, the growth rate of nonlinearities (GRN) is criti­
cal: if the GRN is faster than linear, then feedback stabilization is impossible 
in general even for systems with linear uncertain parameters; if, however, the 
GRN is linear, then an asymptotically optimal feedback can be constructed for 
a class of nonparametric uncertain systems. 

1 INTRODUCTION 

The main objective of using feedback in a control system design is to reduce 
the effects of the system uncertainties on the control performance. The un­
certainties of a system usually stem from two sources: structure uncertainties 
and external disturbances (noises). In general, the later is easier to cope with 
than the former. A fundamental question in the area of systems and control is: 
What is the limitations and capabilities of feedback for controlling uncertain 
systems? This is a conundrum which only a few control areas could shed some 
light on. Robust control and adaptive control are two such areas where struc­
ture uncertainties of a system are the main concern in the controller design. 
Robust control usually requires that the true system lies in a small ball centered 
by a known nominal model (cf.[12]), whereas adaptive control does not need 
such a prerequest ( cf. [1] [7]). Although much progress has been made in these 
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two areas over the past two decades, the understanding of the fundamental 
question concerning about capabilities and limitations of feedback is far from 
being complete. 

For linear finite dimensional systems with uncertain parameters, a well­
developed theory of adaptive control exists today, both for stochastic systems 
(cf.[l] [4] [6]) and for deterministic systems with small unmodelled dynamics 
( cf.[7]). This theory can easily be generalized to nonlinear systems with linear 
unknown parameters and with linearly growing nonlinearities (cf.[9]). However, 
the generalization of the existing theory to systems with nonlinearities having 
nonlinear growth rates is possible only for continuous-time system (cf.[8]), not 
for discrete-time systems ( cf. [5]). This is a fundamental difference between 
adaptive feedback control of discrete-time and continuous-time systems. 

All the above mentioned results are concerned with parametric models with 
linear uncertain parameters. This is of course only a special situation. The 
more challenging problem is to control uncertain nonparametric systems. We 
now give it a little more detailed account. Let !(-) be an unknown nonpara­
metric function describing the nonlinear dynamics of a control system. Various 
approximation techniques exist in the literature (e.g. Volterra series, fuzzy and 
neural nets, wavelets, etc.), which basically state that for x in a compact set, 
f ( ·) can be uniformly approximated by parametric functions of the form 

N 

g(O, x) L a;O'(b[ x), 
i=l 

where 0'(·) is a known "basis" function, a;'s and b;'s are unknown parameters 
or weights denoted by (}, and N is an integer reflecting the complexity/ accuracy 
of approximation. 

Thus, one may conceive that the above explicit parametric model g(O, x) 
can be used in adaptive control instead of using the original nonparametric 
model f( ·). This natural idea has indeed attracts considerable attention from 
researches (e.g. [11]). This approach, though attractive and effective in some 
applications, has several fundamental limitations/difficulties. First, in order 
to ensure that x (which usually represents the system state or output signals) 
lies in a compact set for reliable approximation, stability of the system must 
be established first, and the parametric model provides little (if any) help in 
this regard; Second, searching for the optimal parameters a;'s and b/s usually 
involves in global nonlinear optimization, of which a general efficient scheme is 
still lacking by now, and moreover, the on-line combination of the estimation 
and control (adaptive control) will further complicate the problem; Third, no 
matter how large the approximation complexity N is, there always exists an 
approximation error in the model, which will inevitably prevent the parametric­
model-based control to be optimal in general. Hence, it is of advantages to 
consider the nonparametric model f(-) directly, and it is natural to use the 
nonparametric estimation methods which are well-developed in the mathemat­
ical statistics literature ( cf. [2] and the references therein). To the best of 
the authors' knowledge, the first concrete theoretical result on nonparametric 
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adaptive control seems to have been obtained by Oulidi (see [2]), who proved 
that the diminishingly excited certainty equivalence nonparametric adaptive 
control is asymptotically optimal for systems with bounded noises. 

The understanding of the limitations and capabilities of feedback for con­
trolling uncertain systems is inextricably linked to the puzzling question: how 
much of the uncertainties can be predicted and reduced based on the available 
information? Clearly, it is more convenient to answer this "predictability" ques­
tion in the stochastic framework, since the concept of "conditional expectation" 
in probability theory is a natural, suitable and powerful tool. 

In this paper, we shall present some preliminary yet concrete results on the 
limitations and capabilities of feedback in the presence of structure uncertain­
ties of the systems to be controlled. We shall first show that even in the case 
of linear uncertain parameters, feedback control may still not be able to sta­
bilize the system if the nonlinearities have a nonlinear growth rate in general. 
Then we will show that if the linear growth rate constraint is imposed, then a 
feedback controller can be constructed to control a large class of non parametric 
uncertain systems in an asymptotically optimal way, without resorting to any 
external excitations. 

2 LIMITATIONS OF FEEDBACK FOR STABILIZING UNCERTAIN 
NONLINEAR SYSTEMS 

Consider the following typical discrete-time polynomial nonlinear regression 
model 

Ytt=l = + + · · · + + Ut + Wt+l 1 t 0, (1.1) 

where Yt and Ut are the system output and input signals respectively, e, (1 
i n) are unknown parameters and Wt is the noise signal. 

Assume that 
(Al) b, (1 i n) are nonnegative real numbers making (1.1) meaningful and 
satisfying 

(1.2) 

(A2) {wt} is a Gaussian white noise sequence with distribution N(O, 1); 

(A3) The unknown parameter vector () [61. · · ·, enr is independent of { wt} 
and has a Gaussian distribution N(O, In)· 

Our objective is to study the global stabilizability of (1.1) under the above 
conditions. First, we give a precise definition of stabilizability. 
Definition 2.1 Let u{y;, 0 i t} be the u-field generated by the observations 
y;, 0 i t. The system (1.1) is said to be a.s. globally stabilizable, if there 
exists a feedback control 

UtE :Ff u{y;, 0 i t}, t = 0, 1, ... (1.3) 

T 

such that for any initial condition y0 E R1 , lim L < oo, a.s. 
T-+oo t=l 
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Remark 2.1 We remark that the global stabilization of (1.1) is a trivial task in 
either the case where (}is known or the case where the noise is free (i.e. Wt := 0). 

To be precise, if(} were known, we can put Ut =- + + · · · + 
which gives Yt+l := Wt+l, and the system is stabilized since 

1 T 1 T 

lim sup- LY; =lim sup- L w; < oo. 
T-+oo T t=l T-+oo T t=l 

In the case where(} is unknown but the noise is free (wt := 0), we can obtain 
the true value of the parameter (} by solving n linear independent equations. 
For example, if in the first ( n + 1) steps, we choose { Ut, 0 ::; t ::; n} to be 
independently identically distributed random variables with probability density 
function p(x), then it is not difficult to prove the nonsingularity of the following 
matrix: l vt· j bl 

(1.4) 

Hence the true value of the parameter (} can easily be obtained by solving the 
following linear equation derived by rearranging ( 1.1): 

Then again we can take the control as Ut = - (e1Yf 1 + (J2Yf2 + · · · + 
for t > n, which globally stabilizes the noise-free system. For more general 
parametric-strict-feedback models with no noises, a similar approach can also 
be applied to design a globally stabilizing adaptive controller regardless of the 
growth rate of the nonlinearities. 

Unfortunately, the main drawback of the above approach is that the result­
ing adaptive controller is not robust with respect to noises. In fact, the presence 
of noises will change the stabilizability of discrete-time nonlinear systems dra­
matically if the growth rate of the nonlinearities is faster than linear, as will be 
shown by the following theorem together with its corollaries. 
Theorem 2.1 ([10]) Under Assumptions (A1)-(A3), the system (1.1) is not 
a.s. globally stabilizable by feedback whenever the following inequality 

P(z) < 0, z E (1, b!) (1.5) 

has a solution, where P(z) is a polynomial defined by 

To understand the implications of Theorem 2.1, we now give some detailed 
discussions on the inequality ( 1.5). 
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Corollary 2.1 {[10]) Let b; {1 i n) satisfy 

b .Jbl( fl 2 1 > 1 and 0 < b; - bi+l - 2- v b1- 1) , 1 i n -1, 

then {1.5) has a solution whenever n 2: Conse­

quently, whenever b1 > 1 and the number of unknown parameters n is suitably 
large, there always exist 0 < bn < bn_ 1 < · · · < b1 such that {1.1) is not a.s. 
globally stabilizable. 
Remark 2.2 By Corollary 2.1 we know that the usual linear growth condition 
imposed on the nonlinear function/(·) of the general control model 

{1.7) 

cannot be essentially relaxed in general for global adaptive stabilization, unless 
additional conditions on the number n and the structure off(·) are imposed. 
Remark 2.3 Let us consider the following continuous-time counter-part model 

(1.8) 

where BE RP is an unknown parameter vector, and f(x) : R1 -t RP is a contin­
uous function satisfying the local Lipschitz condition, and { wt} is a standard 
Brownian motion. Assume that llf(x)ll £ 1 + L2ixik for some integer k > 0 
and for some constants £ 1, £ 2 > 0. Then it can be shown that the following 
feedback control of nonlinear damping type: 

- 2k+1 0 Ut- -CYt- Yt , c > 

can stabilize the systems regardless of the growth rate of the nonlinearities 
(measured by k). 

The above two remarks demonstrate the fundamental difficulties between 
feedback stabilizability of discrete- and continuous-time uncertain systems. 

Corollary 2.2 Let b1 > 2, then for n > 1 + 2log ( 61 2) /log ( i). (1.5) 

has a solution for any {bi} satisfying 1 bn < bn-1 < · · · < b2 < b1. On the 
other hand, if b1 2, then for any n, there always exist 1 bn < bn-1 < · · · < 
b2 < b1 such that (1.5) has no solution. 

Corollary 2.3 For any n > 1 and any b1 > b2 > · · · > bn > 0, 
(i) A necessary conditio; for (1.5) to have a solution is 2:::7=1 b; > 4; 
(ii) A sufficient condition for (1.5) to have a solution is either b1 > 4, or 

n 1 L.: b; > ( n + 1 )( 1 + - r. 
i=l n 

The above three corollaries give us a picture concerning about situations 
where the nonlinear model (1.1) is not a.s. globally stabilizable by feedback. 
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3 OPTIMAL FEEDBACK CONTROL OF NONPARAMETRIC 
UNCERTAIN SYSTEMS 

In this section, we are going to show that if the nonlinearities have a certain 
linear growth rate, then optimal feedback control can be designed even for the 
following uncertain nonparametric model: 

Yt+l = f(yt) + Ut + E't+l, (1.9) 

where Yt, Ut and E't are the d-dimensional system output signals, input signals 
and white noises, and f(-) is an unknown nonlinear function. 

Our objective is to design a feedback control Ut based on the observations 
{y;, i t} at each step t, such that the system output {yt} tracks a known 
reference signal {y;} in an optimal way. If!(-) were known, it is obvious that 
such a controller would take the following form: 

Since in the present case, f(-) is unknown, we adopt the nonparametric esti­
mation approach as used in [2], but without resorting to the external excitations 
used there. 

Let K ( ·) be a nonnegative kernel function satisfying the following conditions: 

K(O) > 0, J K(s)ds = 1, J K 2(s)ds < oo, J iisJJK(s)ds < oo. 

Here in our estimation process, let K(-) have a compact support, i.e., 

K(s) = 0, for JJsJJ >A. 

Let <5(·, ·) be a function shifted from K(·): 

(1.10) 

where a E (0, 2
1d), dis the dimension of the system signals. 

The nonparametric estimate of f(y), y E m,d at timet is defined by 

if Nt(Y) > 0; 
(1.11) 

otherwise, 

where, 
t 

Nt(Y) l)i-t(Yj-t, Y) (1.12) 
j=l 
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To define the adaptive feedback control, we need to introduce a sequence of 
truncation bounds denoted by { ht}, which is positive, monotonically diverges 
to infinity, and satisfies 

ht = as t -too. (1.13) 

Now, by the (truncated) certainty equivalence principle, the nonparametric 
adaptive control can be defined as 

(1.14) 

where Iu is the indicator function. 
With this control, the closed-loop system equation is 

Yt+l = f(yt)- + Y:+l + ct+I, (1.15) 

which is obviously a nonlinear dynamical system. 
In order to analyze the properties of (1.15), we introduce the following as­

sumptions on the system (1.9): 
(A4) The nonlinear function f(·) is Lipschitz continuous, and there exist two 
constants a E (0, 1) and (3 E (0, oo) such that 

llf(x)ll allxll + (3, Vx E lRd. 

(A5) {ct} is a Gaussian white noise sequence with mean zero and variance 
0'2 > 0. 
(A6) The reference signal {y;} is bounded. 
Theorem 3.1 Consider the control system (1.9) where the nonlinear func­
tion f(·) is completely unknown. Let the assumptions (A4)-(A6) be fulfilled. 
Then the adaptive feedback tracking control defined by (1.14) is asymptotically 
optimal in the sense that 

T 

l. 1 """( *)2 2 1m - 6 Yt - Yt = 0' , 
T--too T 

a.s .. 
t=l 

The proof may be found in (3]. 

4 CONCLUDING REMARKS 

In this paper, we have presented several preliminary results concerning limita­
tions and capabilities of feedback for controlling uncertain nonlinear systems. 
Of course, this is just a standing point towards a more comprehensive theory. 
Many interesting problems still remain open, among which we only mention the 
following two: (i) If in Theorem 2.1 the inequality (1.5) has no solution, can 
we construct a stabilizing feedback? (ii) Is it possible to remove the stringent 
condition a E (0, 1) in Condition (A4) of Theorem 3.1? 
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