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An asymptotically optimal nonparametric adaptive controller
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Abstract For discrete-time nonlinear stochastic systems with unknown nonparametric structure, a
kernel estimation-based nonparametric adaptive controller is constructed based on truncated centainty
equivalence principle. Global stability and asymptotic optimality of the closed-loop systems are estab-
lished without resorting to any external excitations.
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The primary reason of using feedback in a control system design is to reduce the effects of
the system uncertainties on the control performance. The uncertainties of a system usually have
two sources: structure uncertainties and external disturbances (noises). In general, the latter is
easier to cope with than the former. Robust control and adaptive control are two existing means to
deal with structure uncertainties of a system in a controller design. Robust control usually requires
that the true system lie in a small ball with a known nominal model as the center, whereas adap-
tive control does not need such a prerequest.

For both stochastic"! and deterministic linear systems with small unmodelled dynarnics[2 I'the
theory of adaptive control has been well-developed. This theory can easily be generalized to non-

[3]

linear systems with linear unknown parameters and with linearly growing nonlinearities'~' . But re-

cently, it has been shown that the generalization of the existing theory to systems with nonlineari-

1[4]

ties having nonlinear growth rates is impossible in general'”* . This is a fundamental difference be-

tween adaptive control of discrete-time and continuous-time systems where no growth constraints
on the nonlinearities are imposedm .

For convenience, let f(*) be an unknown nonparametric function describing the nonlinear
dynamics of a control system. There are various approximation techniques (e.g. Volterra series,
neural nets, wavelets, etc.), to approximate nonparametric functions by parametric ones. To be
precise, for x in a compact set, f(*) can be uniformly approximated by parametric functions of

the form
g(8,x) & D aio(bix),

where o () is a known “basic” function, and a, and b; are unknown parameters .
Thus, instead of the original nonparametric model f(+) the above parametric model g (&,

(6] But this ap-

%) can be used in adaptive control. This has atiracted considerable attention
proach has several limitations and difficulties. First, in order to ensure that x ( which usually

represents the system signals) lies in a compact set for reliable approximation, stability of the
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system must be established first, and the parametric model provides litile (if any) help in this re-
gard. Second, searching for the parameters a; and b; usually involves global nonlinear optimiza-
tions, of which no general efficient way is available up to now, and the on-line combination of the
estimation and control (adaptive control) will further complicate the problem. Third, no matter
how large the approximation complexity N is, there always exists an approximation error in the
model, which will inevitably prevent the parametric-model-based control becoming optimal in
general. Hence, it may be of advantages to consider the nonparametric model f( +) directly, and
to use the nonparametric estimation methods which are well-developed in the mathematical statis-
tics literature (see ref. [7] and the references therein) .

To the best of our knowledge, the first concrete theoretical result on nonparametric adaptive
control seems to be due to Oulidi, who proved that the diminishingly excited certainty equivalence
nonparametric adaptive control is asymptotically optimal for a class of nonlinear systems with
bounded noises!”” .

In this paper, we shall show that for systems with Gaussian white noises, the use of external
excitations in the controller design is not necessary. Our controller is designed based on a trun-
cated certainty equivalence principle, which automatically sets the function estimate to be zero
once it is too large.

1 Main results

Consider the following discrete-time nonlinear control model :

Yiel =f(y1)+ut+51+l’ (1)
where y,, u, and €, are the d-dimensional system output signals, input signals and white noises,
and f(+) is an unknown nonlinear function.

Our objective is to design a feedback control u, based on the observations {y;, i<t at

each step ¢ such that the system output | y,} tracks a known reference signal {y | in an optimal
way. If f(+) were known, it is obvious that such a controller would take the following form:
wo= = fly) + ¥l
Since in the present case, f(*) is unknown, we adopt the nonparametric estimation ap-
proach as in ref. [7].
Let K(*) be a nonnegative kernel function defined on "¢ satisfying the following condi-

tions :

K(0) > 0, deK(s)ds =1,

jNKZ(s)ds < o, J‘H sl K(s)ds < o .

Here in our estimation process, let K(*) have a compact support, i.e.
K(s) =0, for lsl > 4,
where A >0 is a constant.

Let 6j( *,*) be a function shifted from K(-):
8i(x,y) a K(j*(x - y)), Vj>0, (2)

1
where a € (O’Z_d) s d being the dimension of the system signals. Let 84 =0.

The nonparametric estimate of f(y), y€ %, at time ¢ is defined by
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a Nt-l(y)zaj—l(}’j—l’:)f)x(yj- j—l)9ifN1(_'}’)>0;

JACD) (3)

0 otherwise,
where

N(y) a Zaj-l(Yj—l’J’)- (4)

To define the adaptive control, we need to introduce a sequence of truncation bounds denot-
ed by {h,}, which is positive, monotonically diverges to infinity, and satisfies
h, = o(Vlogt), as t— . (5)
Now, by the (truncated) certainty equivalence principle, the nonparametric adaptive control
can be defined as
weo= =Ly Iy en) + ¥ (6)
where I(.) is the indicator function.
With this control, the closed-loop system equation is
Yir) = f(%) - fl(%)l( TR <h) + yt*+l + €41 (7)
which is obviously a nonlinear dynamical system.
In order to analyze the properties of (7), we introduce the following assumptions on the sys-
tem (1):
Al . The nonlinear function f(*) is Lipschitz continuocus, and there exist two constants a €
(0,1) and BE (0, ) such that
) <seallxll +8, vxeEn
A2. le,! is a Gaussian white noise sequence with mean zero and variance 1.
A3. The reference signal |y, | is bounded.
The main result of this paper is stated as follows:
Theorem 1.1.  Consider the control system (1) where the nonlinear function f(+) is
completely unknown. Let the assumptions A1=—A3 be fulfilled. Then the nonparametric adaptive
tracking control defined by (6) is asymptotically optimal in the sense that

RS .
lim =25y -yl -ell?=0, as.
e =\

2 Proof of Theorem 1.1

We preface the proof of Theorem 1.1 with two lemmas.
Lemma 2.1. Under the conditions of Theorem 1.1,

sup l\],(y) I = 0(¢%), a.s., as t > o,

Iyl < S toge
where}:f—f, 66(0,% - ad) and 36(0,min{(%— ad - c) , (1-ad- c)a}).
Proof. We can divide f,(y) into two parts:

y 7 Mt Lt
fiGy) = fi(y) - f(y) = N,g)) + N,((fv))’ (8)

where

M(y) & 2081 (5m5) - &
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and
L(y) 2 Zaj-l(ﬁ’j-l’y)[f(}’j-l) - f(n ]
By the closed-loop system eque_xtion (7), Condition (5) and Assumptions Al and A3, we

have
[yl s ally Il + 0(Vlogt) + OC1) + |l e, Il .
Then it follows from « € (0,1) that

1 J ]
TZ |y, 1% = o(logt). (9)
Define
z A fQy) + u, (10)

KA U{(ej)jsl-l’ ()’j* )j$,}-
Then y, = z,_| + ¢, and by Assumption A2,
ELKG(y; - y)) | 7,]

=const.jdexp(— HxTHZ)K(j“(zj_l +x - y))dx

= const.j"“dj dexp(— % A7 + y - z_ Il 2) K(A)dA

:const.j“‘dexp(— % |l Aej™ + y - z_ I 2)j CK(a)da, (11)

where “const.” stands for a certain positive constant, the last equality follows from the integral
mean value theorem, and ‘/10’ < A since K(1) =0, |/1 ‘ >A.
Now, since
ly+A-sl®<allyll?+4ls]?+242,

by choosing 0 < ¢ < % - ad, for any t =0, we have

. 1 2 :
1nf{exp(— ) ly+A4-sl '); | sl?< ﬁ—logt and. || v || ? < flogt}; const.t “.

Then for | z_, | 2sflogt and || y | 2s%logt, we have, by (11),
ELKG“(y; - ¥))

—ad, - ¢

F 1] = const.j7 "¢ = const. "

ad~-c
= .

Hence, for || % I Zsilogt,

2 ELKG (= )| 74]

)

A

ad-c¢

- 1
=const. - 2
=co t X Lﬁ[( be ,H e Ston)
cad-e L\
Sconst.t """ x — > : o N (12)
t (s 1 <50 )
Now, we prove that
l \"w
d,é tﬁ’[(ﬂlezsilogj)_}l’a'S'
=2 -

Actually,
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W rasmes) * 10000 ) ]
t 1y Mz 02
st—ld""t—lE - . (13)
;=2 _C_1 .
4087
Let
P_LHZ,H >2,85 40.
Then || Zji_y 2= S;—S;.,. By (9) and (10), we have
L 'z 1* = o(logt), i.e., S, = o(tlogt).
Thus,
L N [P LZ‘—) S = S
i logj S legy
SIS Y
2 Iog Jj Iog(j +1) 1052 logt
<L{ l\ 5; Sy S, }
S| AH ]logj Iog2 logt
(14)
On the other hand, apparently d,<!. Hence, by (13) and (14), d,—1, a.s. Consequently,
by (12)

lim infz2¢* <! x inf{ZE[K(j“(yj -y | .Z_J: I yll? < %logt}; const. (15)

e j=1

By the uniform law of large numbers (Theorem 6.4.34 in ref. [7]), we have

SUp{’N(y) - LE K(j*(y; - y)) | F ]‘ Iy Il? —logz}
=0(t’), a.s. forall o > %
Then for 1 d> (ie.0<a<ysand e<o— ad)
enfor 1 -c-ad>— |i.e. 0<a<yzand c<> - ad,
lim inf ¢4+ inf{ N(y): IIyli?< ilogt}; const. (16)

Thus there exists some ¢; >0, when ¢ > ¢, and |l ¥ [ 2s%logt , N,(y)>0. Then noting that

f(*) is Lipschitz continuous and K(*) has a compact support, by the definition of L, (y), we
have

-1

I L{y) |l <const. LK(j (y; =Dy = 7l

J—_

< const. \ ‘“K(j (y; = »))
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<const. + const. 2 K(j*(y; - y))(N(y))°

=g+l

-1

= const. + const..z [Nj+1(y) - Ny (N(y))e
' (17)

<const. + const. (N, (y))'"%/(1 - a).
Again, applying the uniform law of large numbers (Theorem 6.4 .34 in ref. (7)) by the

definition of M,(y), we have
sup | M (y) |l =

0{t°), a.s. forall ¢ > .
Iyl £ log 2

Hence, by (16) and (17), it follows from (8) that
sup{ 1 7,(0) 115 17117 < Sloge | = 0(e7),

—ad—c), (l—ad—c)a}.

for all & < min{(%
Lemma 2.2. Under the conditions of Theorem 1.1, for any m =1, we have

¢
Z Iyl ™ = 0(¢), as., as t > .
j=1

By the closed-loop system equation (7), we have

Proof.
Yis1 = f(yt) - ft(f)’z)l| Hft(y,)ﬂsh,l + yt*+l + &4

= U0 = LI i # SO0 s + 700+ e

For any integer m =1
m

| y“'_” <A “ UG = LD i ang + P g >h|

+ AZ ” yt*+l + €41 ” m’

where A > 1 is suitably chosen to make A 2™ = a, < 1.
Thus, noting that { || /,(y,) Il <h,} and | || Si(y) | > h,} do not intersect, we have

Iy I ™ <all £ = A |l ml'”f,(y,)” <h)
e M GOy + Al v s e
=4 G - Lo | "l PG 1 b iy, 1 < 5loge!
+ 4l - G | sy <h. 1y 17> Slogt!

+ Al “ f(yt) ” m’,“f‘(}'t)ﬂ >h’k + AZ ” }’r*+l + €[+l ” m-

Hence, by Lemma 2.1,

Z “ Yi+1 ” " $0(t) + /\|Z[A3 ”f(yj) || "

J
7 m
Al GG Il H7G) Tk Iy 17> $logl

e 2 G Iy, + 000,
]:l PR J

where, we can choose some A3 > 1 to make A A5 a™ = A3 a; A a3< 1.
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Therefore ,

D lga ™ <as 2y Ly llm
i=t j=1
+ /\1/14?:': I fj(}’j) ™ x I{ 7o)<, yle>§]oy_} + 0(t)

’ SO
<as D) Iy ™+ a2, D b —I— 1 0(0),
j=1

i= c, .\2
(41"5’)

Thus, using (5) again, we have

Sl ™ = 00,

Proof of Theorem 1.1. By the closed-loop system equation (7), we have
1 . >
TZ | Yie1 = Yj+1 — Ejui 2
15 > 2 15 2
T 12 NSARNACN Livzoyran * 75 12, 2 Lizopnsn
15 2
T jZ Iy = S | Lz nan. 15175}

1< , ,
* 7/2 7o) = G N a1 an, 117 £}

1\ 2
¥ T/Z Il I{ 7G>k, 1y, 1 < Slow |

t 7,2 ) | I{nf’]ug AT N (18)
Now, by using Lemma 2.1, we have
1 ‘ 7 2 _
T,ZD I fCy) = £y |l 1{” )1 < bog} = o(1), (19)
and i
IEOD NI, sy < 1A 1+ 0D, (20)

Then by (18) we have

I3 o= a2 < 0D ¢ 230D 1y, )
I fCy) |+ o(1)

S 2
+—Z A T L Ao | .
Iy, 1
A= 2n)
a —log]
To proceed further, by Lemma 2.2 and Assumption Al, we have
s i?

L

= 0(1),

]
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and
: |y 012
216 112 = = otD).
B %logj
Also, by (5),
’ : |y I
| AN 2 I N i B
724 175G | I{H.f(y)ﬂsh. Iy 1> S} = ¢ 4_-3’11 . = o(1).
y=2 A ’ j=2 ~logJ
4
Therefore, it follows from (19) that
1< . 5
7/\_: H Yie! = Yyt — Ejyi H = 0(1)9

y=1
which is just the conclusion of the theorem.

3 Concluding remarks

For discrete-time systems with dynamics described by an unknown nonparametric nonlinear
function and with noises being Gaussian and white, we have shown that the truncated certainty
equivalence nonparametric adaptive control is asymptotically optimal, without resorting to any ex-

ternal excitations. In a recent work'®’ we have shown that the condition « € (0,1) appearing in

Assumption Al cannot be replaced by « ;i + 42 in general. In further investigation, it would

2

be of considerable interest to know whether or not the nonparametric adaptive control defined by

(6) is still globally stable and asymptotically optimal for the case where a € [ 1 ,% + \/E) .

Acknowledgements This work was supported by the National Natural Science Foundation of China ( Grant No.69425003) and
the National Key Project of China.

References

. Chen, H. F., Guo, L.., Identification and Stochastic Adaptive Control, Boston: Birkhiuser, 1991 .

2. loanmon, P. A., Sun, J., Robust Adaptive Control, NJ: Prentice-Hall, 1996.

3. Wei, C., Guo, L., Adaptive control of a class of nonlinear stochastic systems, in Proc. 1996, Chinese Coutrol Conference,
Qingdav, 508—512.

4. Xie, L. L., Guo, L., Fundamental limitations of discrete-time adaptive nonlinear control, IEEE Trans. Automat. Contr.,
1999, 44(9): 1777.

5. Kmtid, M. 1., Kanellakopoulos K., P. V., Nonlinear and Adaptive Control Design, New York: John Wiley & Sons, 1995.
Narendra, K. 5., Parthasarathey, K., Identification and control of dynamical systems using neural networks, IEEE Trans.
Neural Networks, 1990, (1): 4-27.

7. Duflo, M., Random lterative Models, Berlin: Springer-Verlag, 1997.

8. Xie, L. L., Guo, L., How much uncertainty can be dealt with by feedback? 1EEE Trans, Automatic Control., to appear.



