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1. Introduction

Adaptive control is usually regarded as a control method that can deal with
systems with unknown or changing dynamics. However, since ordinary feedback
control also has the same objective of reducing the effects of the system uncertainties
on the control performance, “a meaningful definition of adaptive control, which
would make it possible to look at a controller hardware and software and decide
whether or not it is adaptive, is still lacking” (see [1, p.1]). In this paper, we do not
intend to distinguish adaptive control from nonlinear feedback control, and instead,
place our focus on controller design of systems with uncertainties.

The uncertainties of a system usually stem from two sources: structure uncer-
tainties and external disturbances (noises). In general, the later is easier to cope
with than the former. A fundamental question in the area of systems and control
is: What are the limitations and capabilities of feedback for controlling uncertain
systems? This is a conundrum, on which only a few control areas could shed some
light. Robust control and adaptive control are two such areas where structure un-
certainties of a system are the main concern in the controller design. Robust control
usually requires that the true system lies in a small ball centered at a known nom-
inal model (cf. [20]), whereas adaptive control does not need such a prerequest
(cf. [1] [13]). Although much progress has been made in these two areas over the
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50 LIANG-LIANG XIE and LEI GUO

past two decades, the understanding of the fundamental question concerning about
capabilities and limitations of feedback is far from being complete.

For linear finite dimensional systems with uncertain parameters, a well-develop-
ed theory of adaptive control exists today, both for stochastic systems (cf. [4] [9]
[11]) and for deterministic systems with small unmodelled dynamics (cf. [13]). The
three fundamental problems, i.e., least-square-based adaptive tracking, adaptive
pole-placement and linear-quadratic-Gaussian control for finite-dimensional linear
stochastic systems with time-invariant unknown parameters have been extensively
studied and solved by now (see, e.g. [11] [9]).

In recent years, attempts have been made towards a theory of adaptive non-
linear control. Because of the difficulties involved in estimating general parametric
models, almost all of the existing works concern with models where the unknown
parameters appear linearly. If the nonlinearity is only involved in the input part,
or if the output part of a system is nonlinear but has a linear growth rate, then the
adaptive linear methods for both design and analysis can still be applied (see, e.g.,
[17], [18]). We will briefly delineate this in Chapter II.

However, the situation changes dramatically when one attempts to deal with
discrete-time systems with output nonlinearities having growth rates faster than
linear. Not only the existing methods are no longer useful, but also the stabilizabil-
ity itself will become a problem ([10]). In Chapter 111, we will present a group of
conditions, under which feedback is no longer capable of stabilizing the uncertain
nonlinear systems, which is a phenomenon that does not exist in the linear case. For
the counterpart nonlinear continuous-time systems, however, if one can measure the
output signals continuously and change the control input accordingly at the same
time, then stabilizability is not a problem. Indeed, as will be shown in Remark
3.3.3 of Chapter III, we can always globally stabilize such class of continuous-time
systems by the nonlinear damping control.

Nevertheless, if only sampled data of the outputs of continuous-time systems
are accessible and/or the control inputs cannot follow the design in time, then
stabilizability becomes a problem again. The nonlinear damping methods are no
longer powerful even for deterministic systems as will be shown in Chapter IV. In
fact, in the same chapter we will further show that even the classical Lyapunov-
based adaptive control design methodology for linear systems also loses its ability
when only sampled data of the outputs are accessible.

In the last chapter (Chapter V), instead of considering parameterized models,
we analyze nonparametric models. As a novel direction in adaptive control, some
nonparametric functional estimation methods developed in mathematical statistics
are analyzed for the case where the data are generated by the underlining nonlin-
ear dynamical systems. With these methods combined with the ideas common in
adaptive control, the stability and optimality of a class of nonlinear nonparametric
control systems are established.
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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 51

2. Adaptive Control of Systems with Linearly-Growing Output
Dynamics

2.1. Nonlinear Systems with Linearly-Growing Nonlinearities. Con-
sider the following discrete-time nonlinear stochastic systems:

(1) Yt+1 = ng(yt o Yt—pr1, Ut Ut—q+1) + Wiy

where v; , u; and w; are the system outputs , inputs and noise respectively; § € R?
is an unknown parameter vector; f is a known d-dimensional nonlinear function
vector defined on RPTY,

Denote

(2) Yr = (yt’"yt—p+11ut"'ut—q+1)T;
(3) ft = f(yt"'yt—p+1,ut"'ut—q+1)-

Our objective is to design a feedback control law based on the input-output
measurements to make the system outputs track a deterministic sequence {y; }. In
order to analyze this control problem, we assume that

(A2.1.1) The noises {wy, F;} is a martingale difference sequence ({F;} is a
sequence of non-decreasing sub-o-algebras), and there exists 8 > 2 such that

(4) Slz.pE“wt+1lﬂ|]:t] <00 a.s;

(A2.1.2) (nonlinear minimum phase condition) There exists a constant A €
(0,1) such that

t
2 =0 (z A“"(y?+w?));
1=0

(A2.1.3) {y;} is bounded;
(A2.1.4) There exist some constants K7, Ko > 0 such that

(5) [f (@)l < K1+ Kallz], Vz € RPHI.

Remark 2.1.1. The Assumptions (A2.1.1)-(A2.1.3) correspond to the stan-
dard assumptions in the linear case (cf. e.g. [8]), while Assumption (A2.1.4) is a
condition on the nonlinearity.

If the parameter § were known, then for our control objective, we could choose
uy to be the solution of the equation

yfﬂ =0"f(ys-- “Yt—p+1, Ut - "Ut—q+1)~

But in the present case, € is unknown, so we have to estimate it online. Here
we adopt the recursive weighted least squares (WLS) algorithm ([2] [3] [9]).

Let 0; be the estimated values of 8 at the t-th step, recursively defined by the
following WLS algorithm:

(6) Oiv1 = O+ arPfe(yesr — f70:);
(7) P = Pt_atPtftftTPt;
(8) ae = (a7 "+ fTPf)7,
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where the initial values 6, and Py > 0 can be chosen arbitrarily; {a;} is the weight-
ing sequence defined by

t
1

) re=1+ i2
TR I

with h(z) = log"*® z (§ > 0), or more generally, see [9].
According to the certainty equivalence (CE) principle, we choose the adaptive
control u; to be the solution of the equation

9) ap =

(10) y:+1 =etTf(yt"'yt—p+1aut"‘ut—q+1)~
(Here, for a general result, we assume that the solution exists almost surely.)

It is expected that under the above adaptive control law the tracking error be
asymptotically minimal in the averaging sense, or, equivalently the accumulated
tracking errors defined by

¢

A *
(11) Ry = Z(yz -y —w)?
i=1
satisfies
(12) R, = o(t) a.s..
Let {d;} be a positive non-decreasing deterministic sequence {d;} with d; 4, =
O(d;) and
(13) w? = O(d;) a.s..
It can be shown ([11]) that under Assumption (A2.1.1), d; can be chosen as
2
(14) dy =t \156(5,1),

where g is given by (4).

The following theorem gives the asymptotic minimality and the convergence
rate of the closed-loop tracking error ([17]).

Theorem 2.1.1. Let the system (1) satisfy the Assumptions (A2.1.1)-
(A2.1.4). If the adaptive control law is defined by (6)-(10), then the closed-loop
system is stable and optimal, and has the convergence rate

(15) R; = o(h(t)) + O(et) a.s.,
where,

= i

h(-), Rt,d; are defined by (9), (11) and (13) respectively, and
A
(16) 615 = tl’(Pt —Pt+1).

To prove Theorem 2.1.1, we introduce some notations:

A (f[at)2 g4

(17) J¢; — , 0, =60-10,,
' oy '+ fTP.fe ' ‘
t
N
(18) o= 1+ el
i=1
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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 53
We first present several lemmas.

Lemma 2.1.1.  ([9]) If Assumption (A2.1.1) holds, then the estimate 6,
defined by (6)-(8) satisfies

e} Té; 2
Z L <00, a.s.,
a

-1 TP f.
i=1 ¢ + fz P’Lf’L
where 0; is defined in (17).
Lemma 2.1.2.  Under the conditions of Theorem 2.1.1, there exists some

positive stochastic sequence {L;} such that
yf <L; as.,, Vt

and {L.} satisfies
Liv1 < (A +cBide) Ly + &,
where the constant A € (0,1),c > 0 and

& = O(de) + ooy ).

Proof. By (1) and (10), we have

(19) verr = f{0] + i+ wipn.
Thus, by Lemma 2.1.1, Assumptions (A2.1.2)-(A2.1.4), (13) and (16) -(17), we
know
vl < 26707 +0(d)
< 28{o; " + fTPrfe + JT(Pe = Pig1) fi} + O(dy)
< 2620, + 6| £} + O(dy)

t+1
0B85 Y AT 7'2) + O(dy) + o(a; ),
i=0

(20)

Where we have used the fact that o, f] Pir1fe < 1.
By Lemma 2.1.1, we have §; — 0. Then by (20), we know that there exists
some constant ¢ > 0 such that

t
(21) yt2+1 S cﬂt(St Z/\t_iyf + O(dt) + O(O[?l) = C,BtétLt + O(dt) + o(at'l)
=0

t
where, L; = Z)\t‘iyf , and obviously, y? < L;. By (21) and the definition of L,,
—

we have
(22) Liyr = ALi + vy < A+ ¢Bi6) Lo+ O(de) + o(a; ).
Hence Lemma 2.1.2 is proved. O

Lemma 2.1.3. Under the conditions of Lemma, 2.1.2, we have
gl = Ode) + o(a; ') as., Ve >0,

where o; and d; are defined in (8) and (13) respectively.
Proof. Since A € (0,1), and B; — 0, §; — 0, by (22), we have

Lt_;,_] = O(dt) + o(at'l).
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Hence,
Vi1 = O(dy) + o(a; ).
Then by the minimum phase condition (A2.1.2), we have
ui = O(ds) + o(a; ).
Combining the last two equations and noting the definition of ¢; in (2), we see
that Lemma 2.1.3 holds. O

Proof of Theorem 2.1.1. First, noticing that &, = O(d;), we can get
the optimality by (14) if (15) holds; Further, by the optimality and Assumptions
t

(A2.1.1)-(A2.1.3), we immediately have Z(ZJ? +u?) = O(t), as. and the closed-
i=1
loop system will be stable.
Hence we need only to prove (15).
By (16)-(17), Lemmas 2.1.1 and 2.1.3 and Assumption (A2.1.4), we deduce
from (19) that

Ript = D (o1 — i —wir1)” = D (F70:)°
1=0 =0
t t
= > Bilag '+ fTRS) = olag ) + > BiSll fill® + £ Pia fi)
i=0 i=0

t
= ola; )+ Bibi(KF + K3 lwill*) = o(a; 1) + O( max billil]*)

= o(a; ") + O(max 8id;) = o(h(ry)) + O(max 6,d;)

Hence, it remains to prove that r, = O(t).
By the equation above and Assumptions (A2.1.1) and (A2.1.3), we have

t+1

ny = O(t) + o(h(rr)).

By this and Assumption (A2.1.2), we have

> uf = 0(t) + o(h(r,)).
i=1

Therefore, by the last two equations above and Assumption (A2.1.4), we have

re =1+ |l = O(t) + o(h(r.)).
=0

Finally, by the definition of h(-), we have r, = O(¢). O

Consider the following discrete-time nonlinear stochastic system:

(23) Yer1 = o flor) +B7g(pe)ur + wi
(24) O = (Yt Yempr1rUp—1 - Up—g)”
where y; , u; and w; are the output, input and random noise sequences, respectively;

a € R™ and 3 € R' are unknown parameter vectors; f(-) and g(-) are nonlinear
vector functions defined on RP'Y.
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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 55

In terms of the connections with the input u; in (23), f(-) may be called additive
nonlinearity, while g(-) multiplicative nonlinearity, and the system (23) may be
(formally) regarded as an affine nonlinear input/output model.

To analyze the control problem, we need the following conditions on the system
(23):

(A2.2.1) There exist constants K; and K5 such that

I f(x)]| £ K1+ Kajz]], Yz € RPTY,

(A2.2.2) p > g, and there exists a decomposition p = p; + po with ps >
max(q,p1), p1 > 0 such that the function

g(x) = g(x1,z0,23), 1 € RP',z9 € RP? x5 € R?

is uniformly bounded for bounded z», and uniformly tends to co as ||zz]| — oo,
where the uniformity is w.r.t. (z1,z3) € RP*H9.

(A2.2.3) There exists a nonzero multivariate polynomial function P(y), vy €
R!, such that the set

(25) B2 {y: P(y) #0}.

contains the true system parameter 3 defined in (23), and for any v € B there exist
constants L(y) > 0 and M (vy) > 0, such that for all ||z2| > L(v),

lg(zy, z2,z3)| < M(V) (I g(x1, 22, 23)]),  V(z1,23) € R7*TI.

(A2.2.4) {w, F;} is a martingale difference sequence, where {F;} is a non-
decreasing sequence of sub-o-algebras. Assume also that

sup Eflwiy1|*|Fi] < 00,  as.
t

(26) > w} =0(n).

Obviously, (A2.2.1) and (A2.2.4) are standard conditions. (A2.2.2) mainly
says that ||g(z1,z2,z3)|| grows to oo as ||z2|| — oo, while (A2.2.3) requires that its
growth rate is unchanged when it is multiplied by any ~ defined in (25). Note that
if there exist two constants 0 < a; < s such that a; < 87¢(¢:) < as Vt > 0, then
it will be reduced to the case considered in Section 2.1.

We now give two examples to illustrate (A2.2.2) and (A2.2.3).

Example 2.2.1 Consider the following system with the multiplicative nonlin-
earity being a polynomial of y; :

Y1 = arfi (U, ueo1) + - 4 @ fon (Y, we—1) + (bo + brye + -+ + byl g + w1,

where a = (a1, ,a,)" and 8 = (by,--- ,b;)" are unknown parameters; |f;(z)| <
M(||z||+1),z € R?,1 <i<m,and b; # 0,1l > 1. Set p; =0, p = 1 and ¢ = 1, and
define g(z1,22,23) = (1,22, -+ ,25)7, and P(y) = v for v = (y0,--- , )" € R,
then it is easy to see that (A2.2.2) and (A2.2.3) hold.

It is worth noting that the power [ in the above example can be arbitrarily
large. We next present an example where the multiplicative part also contains the
input sequence u;.
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56 LIANG-LIANG XIE and LEI GUO

Example 2.2.2 Consider the system :

Yt+1 = alfl(yt,yt—hut—l) +ee amfm(ytayt—laut—l)
+[bo + b1 B1(y1) + balye—1]° + b3 Ba(ue—1)]ur + wet1,

where, @ = (a1, -+ ,am)", 8= (bg, -+ ,b3)” are unknown parameters; § > 0 ; By (-)
and By(-) are two bounded functions; |f;(z)| < M(||z| + 1),z € R3,1 < i < m,
and by # 0. To verify (A2.2.2) and (A2.2.3), we just set p; = ps = ¢ = 1,
g(x1, 22, 23) = [1, Bi(x1), |22|°, Ba(x3)]7, and P(y) = 72 for v = (y0,71,72,73)"-

Now, we consider the following weighted one-step-ahead control performance:
(27) J(u) = E{yf, + M| F},  A>0.

Here, to guarantee the finiteness of the control energy, we do not choose the pure
minimum variance cost J; (u¢) = E {y7,,|F; }, since even for simple bilinear systems
the usual minimum phase condition may not be satisfied (cf. [5]).

The optimal nonadaptive control law that minimizes (27) is given by

a7 f(e)][87g(p0)]

[B79(0:)]% + A

For estimating the unknown parameters in this control law, we adopt the ran-
dom regularization method introduced in [9] and the weighted least squares (WLS)

algorithm proposed in [3] and further studied in [2] and [9].
Set

(29) 0 = [o7, 67,
(30) ¢ = [fT(pe): g (pr)ue]™

Let 0, be the estimated values of 8, which are recursively defined by the following
WLS algorithm:

(28) Ut =

(31) Or1 = 0+ aiPidi(yirr — 07 04)
(32) Pt+1 = P - atPtht(ﬁz—Pt
(33) a = (A HOTP)

where, the initial values 6y and Py > 0 can be chosen arbitrarily; {\:} is the
weighting sequence defined by

_ 1 _ —1 : 2
(34) N= e o= 1B u+;u¢zu

with h(z) = log' ™ z (§ > 0), or see [9] for more general choices.

Since the estimate for 8 given by the above WLS may not belong to the set B
defined by (25), we now resort to the random regularization method introduced in
[9] to secure this.

Let {¢;} be an independent sequence of (m + [)—dimensional random vectors
that are uniformly distributed on the unit ball {x € R™*! : ||z|| < 1} and inde-

pendent of {w,}. Define Ty(x) = |P(6; + Pt%a:)|, 22 (21 Tmy1) € R™H, where
P(xy- Tmyl) 2 P(Zpmy1 -+ Timr) is the polynomial function defined in (25). Take
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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 57

a number o € (0,v/2 — 1), and define a sequence {7} recursively as follows:
_ ] & if To(G) = (1 + 0)Te(ne—1);
(35) e = { M—1, otherwise,

with initial value ng = (. Let
—~ 1
(36) 0t = 025 + PtQ Nty
by which we replace 6 in (28), and get the following certainty-equivalence control:

[B7 9(00)]* + A
Now we arrive at a stability result for the affine nonlinear system (23).
Theorem 2.2.1. (see [18]) For the system (23), let the conditions (A2.2.1)-
(A2.2.4) be satisfied, and let the adaptive control law be defined by (30)-(37), then
the closed—loop system is globally stable, i.e., for any initial condition,

1 n
li = P4ui) <
unsupnz(ylt +uy) < oo a.s

n—00 =1
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3. Limitations of Feedback for Controlling Uncertain Nonlinear
Systems

In the last chapter, we have treated the case where the additive output nonlin-
earities have a linear growth rate. A natural question is : What can be said about
the other cases?

We start with a typical system

(38) Yirr =0 f(ye) +ue + wepr, 0 € R,

where we assume that
(A3.1.1) 6 is a Gaussian unknown parameter with distribution N(6,1);
(A3.1.2) {w:} is an i.i.d. noise sequence independent of # and has Gaussian
distribution N(0,02);
(A8.1.3) There exist positive constants b > 0, M > 0 such that

f(z) ~Mzb  as 2 — oco.

Then Guo ([10]) found that b = 4 is a critical case for stabilizability.

Theorem 3.1.1.  ([10]) Let the above three conditions (A3.1)-(A3.3) be
satisfied for the system 38. Then

(i) If b > 4, then the system 38 is not a.s. stabilizable, i.e., for any feedback
control us € o{yo,- - , Yy}, there always exists a set D with P(D) > 0 such that

Zyt-l—ut —oo onD

at a rate faster than exponential.
(ii) If b < 4, then the system 38 can be stabilized and asymptotically optimized
by the LS-based adaptive control

ur = —0; f(yz)

where 0, is the LS estimate for 6 at time t. Furthermore, the rate of tracking is the
best possible, i.e.,

Z(yt y; —w)? =0(logT). as.

This theorem reveals the fundamental limitations of feedback control for sys-
tems with additive output nonlinearities containing only one unknown parameter.
The main purpose of this chapter is to consider more general cases.

3.2. Conditional Cramer-Rao Inequalities for Dynamical Systems.
In the proof of Theorem 2.1 in [19], the Gaussian assumption on 6 played an
important role since the optimality of the Kalman Filter was used. In order to
treat non-Gaussian cases, we first extend the classical Cramer-Rao inequality to

the conditional case for dynamical systems.

Theorem 3.2.1. (Conditional Cramer-Rao Inequality) Let 8 € ID, 2

(0,,0,) x --- x (8,,0,) C IR™ be a random parameter vector with probability
density function (p.d.f.) p(f) (where 0, and 6; may be either infinite or finite),

and x be a given random vector. Denote E,y = {ylz} for any random vector
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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 59

y. Let g(x,0) = [g91(z,0),92(x,0),- -, gm(x,0)]T be any measurable function vec-
tor having partial derivatives of first order with respect to (w.r.t.) 6 and with

og(z,0
E.g(a,0), B, 2250
0, has partial derivatives of second order w.r.t. 6, and that for any fixed x and
0],"' 7912—179i+l>"' 70717

existing. Assume that p(z,0), the joint p.d.f. of xz and

(i) lim _p(z,0)=0 1<i<n;
0:—0, or ;
(ii) lim  g;(z,0)p(z,0)=0 1<i<n, 1<j<my
i—Y, or Gi
Gy nm 2@ ooy oyi<n

0:—0, or 9;  00;
Then,

EI{[g(x70) - Ewg(x,f))][g(x,e) - Egcg(.’b,@)]T}

> \ —_ e = —_

06 ’
and particularly for g(x,0) =6,

E.((0— E.0)(0 - B.0)7] > {—EI [8435“—")} } ,

where we assume that p(6,z) > 0, V0 € ID,,, Vz.

Proof. We first prove the conditional version of an inequality in [12, p.73].
Let £, n be two r-dimensional random vectors and let all the entries of these vectors
possess finite variance. If E,(n — E,n)(n — E;n)T > 0, then

(39)
E.(§ — E:8) (€ — Ex&)T > [Ex(g - E:8)(n— Exn)T]
X[Ez(n - Exn)(n - Exn)T]_l [Ez(n - Ezﬂ)(ﬁ - Exg)T]

In fact, without loss of generality, we can suppose E,n =0, E.¢ = 0. Then we
only need to prove

(40) E 6T > (Eobn” ) (Eann™ ) (Eant™).
For any z € o{z}, E.(£ — zn)(€ — 2n)T >0, i.e.,

E£€" — (Exbn")2" — 2(Eent™) + z(Eznn™)2" > 0.
Let z = (EzénT)(E,nn™) ™1, then we get (40).

Op(x, 0
Now set € = g(z,0), 1 = 20 pp(gpa) & - )"
First, for 1 <i <n,
(41)
o op(z,0)
B = B { 0 (ol
D, i

N ) 00; .
0n Oit1 p0ia 0 0; 9 0
p(z,0)
- I T) 30,d6, - - - dO;_ 1 db;. - - - dO,,.
/Qn /Qi+1 /Qi —1 ‘/21 /Qi 90; ' S
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Inspired by the method used in [16, p.72], by Assumption (i), we have
0; 9
/ —p(x,0)dd; =0 for any fixed z,01, -+ ,0;_1,0;41, - ,0n.
o, 00
Hence, by (41),
(42) Exp=0, 1<i<n.

Next, we have

E1I[(é~ - Ezg)nT]
9" p(z,9)

@) - E, {[g(a:, 0) — Ezg(x,O)]T/P(ml")}

T x
= [ 1ote.0) - Begte.0) =2

By Assumptions (i) (ii), for 1 <i<n,1 < j<m,

/(’i Olgy(x, Op(,0)] /"i O{B.g, (@ O)p@.0)} yy _
0 ' ’ 9,

Hence,
0 = 6{[9(9:,0)—Ezg(z,ﬁ)]p(x,f))}da
D‘n 89
x r x

= [ {2 et 0) + lo0.0) ~ Enate 00 E L o
That is,

(e 9g(z,0) _ 2.0 _ oT'p(z,0)
(44) p@) B2 = [ lo(a,0) ~ Eugte, o) 50

By (43) and (44),
(45) Eo(€ = E&)n" = —p()E;

By the definition of 1, we have

y @0 | yrte 0>]T

dg(z,0)
00

E.m"”
7 P*(0l)
0 d T
(46) log p(z, 0) logp(z,0)| p*(z,9)
a0 a0
=F, >
9log p( Hp) (Gg"}’c)l (z,0)
ogp(z, og p(z,
o, [Lospied stz
For the same reason as getting 42, by Assumption (iii) we have
0*p(z, 0) p(z,9) .
D, 00,00,
AR heh o 0 |[0p(zx,6)
47 =
o /m/_ //ae[ o
ld0]+1
= 0 1 <i,j5 <n.
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On the other hand, since p(z, #) has partial derivatives of second order with respect

to 6,
2
D, 00,00,
_ / 0 [logp(@,6) . )| as
(48) D, ag% | (805)  oeoe) Dlogn(ot
= g oep\T,b) logp(z,0) Ologp(,6)
- /ZD [ a0,00, P@OT 55 50, p(x,f))] d
— p)E d%logp(z,0) ~Ologp(x,0) Ologp(x,0)
-7 : 9000, 90; 00 ’

Combining (47) and (48), we have

g [0logp(z,0) Ologp(z,0)] . [0%logp(z,0)
v 96, 6, | 00,00,

Then, by (46) and (49),

(49)

(50) Eu® = () {—Ez [W] b

At last, by (39), (42), (45) and (50), we have

Ex{[g(x’g) - Eacg(xva)][g(x79) - Elg(‘l"70)]T}

0g(z,0) 0% logp(z,0) -t 70g9(z,0)
> —
> F, 50 { E, ‘: 202 E, ———

a0

which is just the conclusion of this theorem. |
Remark 3.2.1. By the elementary properties of Lebesgue integration, we

d*p(x,0)
002

to hold. That is, there can be a set with zero Lebesgue measure on which

is only needed to exist almost everywhere for Theorem 3.2.1
0%p(, 9)
002

can see that

does not exist.
With only a small modification on the proof of Theorem 3.2.1, we can easily get
the Conditional Cramer-Rao Inequality for general bounded parameters as follows.
Theorem 3.2.2 Let 8§ € © C IR" be a random parameter vector, where
© is closed, bounded and convex. Let x be a given random vector and denote

E.y 2 E{y|z} for any random vector y. Let 80 and ©° denote respectively the
boundary and the interior of ©. Assume that p(x,0) (the joint p.d.f. of x and )
is continuous with respect to (w.r.t.) @ on ©, has continuous partial derivatives of
first order w.r.t. § on ©° and has bounded partial derivatives of second order w.r.t.
6 on ©° — G, where G C ©° with V(G) = 0 (V(-) denotes the Lebesgue measure
on IR™). Furthermore, assume that for any fixed z,

(1) p(z,0) =0,V0 € 00;

(ii) p(z,0) > 0,V0 € OY;

or 1. Op(z,0)
(i) N T
Then for any measurable vector function g(x,0) = [g1(z,0), g2(z,0),--- , gm(x,0)]T

dg(z, )
o0

having partial derivatives of first order w.r.t. 6 and with E,.g(x,0) and E,
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existing, we have

EI{[g(x,O) - Erg(x’ 0)]2[9(1" 0) - Exg(q;,ﬁ)]T}
dg(z,0) 8% logp(z,0)1\ " .7 99(z,0)
=B 5 {“Eﬂ” [ 062 ] } T

and particularly for g(z,0) = 0,

E.[(0 - E.0)(0 — E.0)7] > {—Ez [f’—‘g%@] } .

Now we apply the Conditional Cramer-Rao Inequality to general dynamical
systems.

Theorem 3.2.3. Let 0 be defined as in Theorem 3.2.1 (or Theorem 3.2.2)
with p.d.f. p(0), and let {wy} be an i.i.d. random sequence with p.d.f. q(w) and
independent of §. Let Ewy = 0 and Ew} = 02. For the t + 1 recursive equations:
(yo is deterministic)

Ye+1 = f(0, k) +up + wrr1, k=0,1,--- ¢,

A A A
where P = (yka"' s Yk—p, Uk—1," " 7uk—q), ur € -7'-11: = G{yh”' 7yk}7 let z =

{y1,--* ,y+} and denote g(z,0) 2 f(0, ). If the assumptions for p(x,0) and g(z, 0)
in Theorem 3.2.1 (or Theorem 3.2.2) are satisfied, then

Ez[f(oa <Pt) - El‘f(ev (pt)]Q
 prof.p)
(51) 00

X {—EI

where fr_1 = f(0, o_1). Furthermore, we have

t

Z 0*log q(yr — fe—1 — uk—1) " 9% log p(0)
002 002

—1
af(0790t)
| gt

k=1

(52)
> T y Pt
=P 5 )
) ~
9%1og q(yr — fe—1 —ur—1) , 0?logp(0) of(0,01) |
" {_Ez ; 062 M2 EBe—%g — * 0w

Proof. Directly applying Theorem 3.2.1 (or Theorem 3.2.2), we have

Er[f(01 ‘Pt) - Ezf(ea Sot)]Q L
L prdf.e) {_ 5 [82uogp<x|e> + 1ogp(0>1} | g, 2100

z 00 002 0
where,
p(z]0)
(53) = py1, Y2, wlf)
= p(¥110,90) - p(¥210,v0,y1) - - - P(¥e|0,v0, - -+ s Y1)
= qy1—fo—uo)-qly2—fr—w)----- q(ye — fim1 — ue—1).

Thus, after some simple manipulations, we arrive at (51).
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Furthermore, since u; € o{z}, w41 is independent of  and
Yt+1 = f(ea (pt) - Exf(07 Sot) + EIf(97 <Pt) + us + W41,

we have
(54) EIyt2+1 = Ea:[f(o, Sot) - Ezf(ea 9015)]2 + [Eﬂlf(av ‘Pt) + ut]2 + UZ}
> Ez[f(oa Sot) - Ezf(evﬁot)P + 0120'
Hence (52) follows from (54) and (51). O

Theorem 3.2.4. If in the conditions of Theorem 3.2.3, let p(@), instead of
p(z, 8), satisfy the assumptions for p(x,8) in Theorem 3.2.1 (or Theorem 3.2.2) and
q(w) > 0,Yw € R!, then (51) and (52) still hold.

Proof. By (53) and g(w) > 0,Yw € IR, we know that for any z, p(x|d) > 0.
Hence p(z,0) = p(0)p(x|0) also satisfies the assumptions that p(6) satisfies. Thus
the conditions of Theorem 3.2.3 are satisfies. Hence (51) and (52) hold. O

Theorem 3.2.5. Under the conditions of Theorem 3.2.4, if the parameters

enter the function linearly, i.e., f(0,pr) = 07 g(r) + h(vx) 2 07 1, + h(pr), and
2
w; ~ N(07 07.20)7 j'e.r q(UJ) =

1 w
T exp (—F , then
-1
02 logp(0)
(55) EI{(H_EZH)(G E 0 { w;‘ﬁk 1¢k 1 x—aT 3
and

%1 0
(56) Ezy§+lz¢?{ Zm 10~ B, gﬁf”} i+ 0.

wkl

. 1 1
Proof. Since q(yr — fr—1 — ug—1) = > exp{—ﬂ(yk — froo1 —ur—1)?},
k=1,2,---,t, we have
(57)
8% 1o — o1 — Uk 02
2q(y (%,ék 1o teo) 802{ 20 5 [k — 0" g(0r—1) — h(pr—1) —ur—1]*}
= ¢k 1ty

Then by (53) and Theorem 3.2.1 (or Theorem 3.2.3) with g(z,0) = 6, we get (55).
To prove (56), we can either substitute (55) and f(6, ;) = 07 ¢; + h(yp;) into

(54), or directly apply (52) with f(0,¢;) = 0% ¢; + h(yp:) and (57). d
Remark 3.2.2 If, in addition to the conditions of Theorem 3.2.5,
_ 9*logp(6)

gr~ SMI, Y0eD, ore,

for some M > 0, then

-1
Ez[(H—EIO)(Q—EIO)T]Z{ Z¢k 1k 1+M1} .

wkl

In this remark, the conditions imposed on 6 are fairly general for unbounded
distributions, which includes, for example, the familiar Gaussian and Cauchy dis-
tributions.

For bounded parameters, we can get the following conclusion.
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64 LIANG-LIANG XIE and LEI GUO

Theorem 3.2.6. Consider the following dynamical system:
yk+1:0Tf(90k)+uk+wk+la k=071727"'7

where oy, 2 Wk Ykmps Uk—1, "+ s Uk—q), Uk € Fp 2 af{yi, -+ Uk}, Yo is deter-
ministic and y; = 0, Vi < 0; {wx} is an iid. random sequence with distribution
N(0,02) and independent of the unknown parameter vector 0.
Let 6 € © C IR"™, where © is closed, bounded and convex. Assume that p() is
continuous on ©, has continuous partial derivatives of first order on ©° and bounded
partial derivatives of second order on ©° — G, where G C ©° with V(G) =0 (V ()
denotes the Lebesgue measure on IR") and that
(i) p(0) =0,V0 € 00;
(ii) p(#) > 0,V € O°;
v . OD(O)
(iii) grrze) 8(‘,3 (0—) 0; 1
p p 0 o
(iv) 9, 0 <M, V€0 1<i,j<n;
v) There exist eg > 0, N > 0 and M, > 0 such that for any 0 € © — A;, where
Ay 2 {0 :d(6,00) < ¢ 2 eo/t%,0 € O} (d(0,00) denotes the distance between 6
and 00),

p(0) > ﬁ and © — Ay # ¢ (¢ denotes the null set).

Further assume that || f(¢x)|| #0, a.s., k=0,1,2,---.
Then there exists some Dy C Q with Prob(Dg) > 0 such that fort =1,2,---,

_ -1
E[(0 —8,)(6 — 0,)T|FY] > {—QZ k¢£+Kt”1} on Dy,
Tw k=

where, 0, 2 E{6|F},t =1,2,---; K > 0 is some constant; I denotes the identity

matrix and ¢ 2 f(pr). Furthermore, there exists some Dy C Dy with Prob(D;) >
0 such that fort =0,1,2,---,

Elyf 4| FY] < (Kt + )y + (Kit* +4) (¢t + 1)* + 02, on Dy,

where K, > 0 is some constant.
Proof. Let us denote z = {y;,--- ,u:}, then E.(-) = E[-|F}].
First, since the conditions in Theorem 3.2.5 are satisfied, we have

-1
~ ~ 9% log p(0)
- 1
E.[(0-0,)(0—-06:)"]> { wkz:lfﬁk 101 — I—-EO-Q_-

We can choose some 0y € © — Ag and r > 0, such that B(6y,2r) N (© —
A ) B(6o,2r) (B(bo, 2r) denotes the ball centered at 6y with radius 2r) Define

@0 = B(by,7) and Dy = ﬂ{w Cwk| < k}n{w: 0 € ©p}. Since ZProb
k=1 k=1
|lwk| > k}) < 00, {wi} and O are independent, we have Prob(Dy) > 0.

Now, we only need to prove that
02 log p(0)

B

< Kt"T on Dy,

where K > 0 is some constant.

Licensed to Academia Sinica. Prepared on Wed Aug 12 21:30:29 EDT 2020for download from IP 124.16.148.12.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 65

2 T
Since M and —1—- (M) (8})_@)) are bounded, by some simple ma-

062 p(6) \ 00 00
nipulations we have
Plogp(6) _ 1 (0p(0)\ (op(O)\" 1 9°p(6) M
062 o p2(0) \ 09 00 p(d) 902 — p(6)’
where My > 0 is some constant. Then
92 log p(0) 1
—F,—2 <L _
(58) E, 502 MsI - E, o0
Since p(6) > Ml ~ for 0 € © — A, we have
— —/ L p(0)z)df = — Lp(ac 0)do
e P(19 ( ) Jop(0)
/ . / p(z|0)do + / p(x|0)d6
9 < Jo-4 A,
(59) [ via.0a0 | oo
© O-A,
p(z|0)db +/ p(z|6)db
< MltN e_At At

/ p(x]0)do
©0—A,;

where, p(/f) = H e e (= o (0 = 01 — i )

For any wq E DO, we have G(wo) € @g, |lwi(wo)| < k, k=1,2,---, and

p(z]0) = H \/%U eXP{— [wk(wo) + (0(wo) — 0)" ¢}

We take

&= (o) = (6~ 0(w0)) ;oo

where ¢ > 1 such that o € © — A; for any 0 € A;. (By the convexity of ©, we know
such ¢ > 1 always exists.) Then

/ (x|0)do /t kl_ll \/_ 2;20 [wi (wo) + (B(wo) — 0)" pr—1]°}dO
< [ 1 exp{—Q%[wk(ww +(Olw) — )" s
O-A; - 1 w Tw

CE¢

+Z (0(wo) - a)7‘¢k_112}da (" +fﬂ)"

Next we consider two cases separately.
ce
Case 1. If [wy(wo) + (B(wo) — a)Tdp_1] X [Tt(a(wo) —a)"¢x_1] > 0, then

exp {1 s o) + (6(u0) — @) 61 + 2 (B(wo) ~ @) 651 ]?)

< eXP{—%[wk(u}o) +(0fw0) — )" Bri )
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Case 2. If [wi(wo) + (8(wo) — @)T'dr_1] x [E—i—t(G(wo) —a)T¢_1] <0, then

wi(wo) X (B(wo) —a)Top_1 <0 and |(B(wo) — )T dr_1| < |lwi(wo)| < k.

Thus,
exp {5 [ (0) + (6(w0) — @) By + - (6(u) = @) Br ]}
< wm—jgwuwy+www—a>m41
2L ) + (Oe) — )T ur]- L0 o el
< explf—é-i—g[wk(%) (0(wo) — @) ¢p—1]* + o2y kQ}
= exp{— gy fonen) + (0n) — @) i} -enp { LY.
Combining Case 1 and Case 2, we have
(60) ) .
s () {255

1 1 . ,
/@ At s V2roy, eXp{_m[wk(wO) + (0(wo) — @)” ¢r—1]"}da

< M, / p(z(0)db),
O-A;

where M3 > 0 is some constant.
Hence, by (58), (59) and (60), we have

2] 0
_Ez?—g%f_(_) < Kt"I, K= MM (1+ M) > 0.

To prove the second conclusion of this theorem, we define

A € o(D
At:{aee|0T¢t+ut|§t—2”¢t”}7 O<€<__(_O—o)o—_1_a t=011727"'7

2-S-PY_ 5
t=0
where, P 2 sup p(6), and s& sup V,,_1 Lﬂ@ ) with £ denoting the set of all (n-
0O LeL

1)-dimensional hyperplane and V,,_;(-) denoting the Lebesgue measure on IR"~!.
Since © is bounded, we have S < co.

Recursively define O 2 Oy — Ay, t =0,1,--- . Let Oy 2 tlim O, D, 2
—00

ﬂ{w: |lwg| <k}N{w:0 € O}
k=1

Now we prove that Prob(D;) > 0.

For any 6 € ©, let 6 = 6, + 03, where 0 || ¢¢, 02 L ¢;. since ¢ # 0 a.s. by our
assumption, we have for some a € R,

apy

01=-——, and 03¢, =0
F gl .
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Hence, 07 ¢; +u; = (a + —)|l¢¢|| and

II¢ I

167 ¢ + | < ) “d’t” = |a+

Hence, V(A;) < S- = and Prob({w: 6 € A;}) < P-S-—-. Then by the definition

of &, we have

Prob({w:0 € [ JA}) <D Prob({w:0e€A}) < P-S- Z 3 2 < Prob(Dy).
t=0 t=0 t=0
Hence, we have
Prob(D;)
o0 oo
N{w |wk|§k}ﬂ{w:9690—UAt}>
— t=0

k
00

ﬂ ]wk|§k}ﬂ{w:0e@o}—ﬂ{w:lwklgk}
k=1

k:l

ﬂ{w-eeUAt})

Prob (

—Prob

= Prob

—

= Prob

38

Y

{w: Jwe] <k} {w: 0690}>

fw:lwl K w:0e UAt}>
k t=0

> Prob(Dy) — Prob ({w 10 € [j At})

t=0

< \u
38

Il

>

For any wy € Dy, we have |0(w1)T ¢ + u;| > t%”q&tu and |w¢(wy)| < t. Then by
the boundedness of ©, we have on Dy

E.y?, = E(07¢ + ‘Ut)Q +07,
< 2B, (0(w1)" ¢y + ut)2 +2E,(0(w1)T ¢y — 07 ¢4)? + 02,
< 2(0(wr)” ¢t+ut) + My | + o2,

Myt
2+ 2 ) (0(wi) e + ur)? + 02,

IN

/\/—\/\

Mt4
24 —4

) (Y41 — wepr(w1)]? + 02,

oMy t? 2M,t4
<[4+ —=— )yt+1+<4+ : )(t+1)2+oi
_(K1t4+4)yt+1+(K1t +4)(t+1) + 02,

. 2M .
where, M4 > 0 is some constant and K; = —2§ > ( is a constant. O

Remark 3.2.3. A typical class of distributions that satisfy the conditions of
Theorem 3.2.6 are
c(2'72FR%*E —0|%*)  if0 < [|0]] < R/2;
p(0) =9 c(R—[0I)** if R/2 < 0] < R;
0 otherwise,
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where R > 0,k > 1, ¢ is some constant to make / p(6)d = 1.
lleI<r

3.3. On the Non-Stabilizability of Multi-Parameter Case. Consider
the following discrete-time nonlinear regression model

(61) Yer1 = 07 f(pr) +w +wip, t>0,

(62) Ot =W Yo1s Y] P21,

. . . A
where y; and u, are the system output and input signals respectively, 8 = [61,02, - -,

0,]" is an unknown parameter vector, f 2 (fi, f2, -+, fa]T is a known nonlinear
vector function and wy is the noise signal.

Assume that

(A8.3.1) There exist M > 0,0 < a < 3 < oo and by > by > --- > b, > 0,
such that for |z1| > M, |z;| < |z1],2 < j <p,

(63) alzy 7 < | filzr, 22, ,3p)| < V1<i<m

(A3.3.2) {w,;} is a Gaussian white noise sequence with distribution N (0,02 );

(A3.3.3) The unknown parameter vector 6 = [01,--- ,0,]7 is independent of
{w;} and satisfies the conditions in Theorem 3.2.6.

Our objective is to study the global stabilizability of (61) under the above
conditions. First, we give a precise definition of stabilizability.

Definition 3.3.1. Let o{y;,0 < i < t} be the o-field generated by the
observations {y;, 0 < i < t}. The system (61) is said to be a.s. globally stabilizable,
if there exists a feedback control

A .
(64) u € F =o0{y;,0<i<t}, t=0,1,---
T
such that for any initial condition yy € R, hm sup — Z y; < 00, a.s.
T—o0

Remark 3.3.1. We remark that the global stab111zat1on of (61) is a trivial
task in either the case where 6 is known or the case where the noise is free (i.e.
w; = 0). To be precise, if @ were known, we can put u; = —0% f(;), which gives
Yr+1 = Wiy, and the system is stabilized since

lim sup — Zyt —hmsup Zwt < oo.

T—o0 t 1

In the case where 6 is unknown but the noise is free (w; = 0), we can obtain the true
value of the parameter 6 by solving n independent linear equations. For example, if
in the first (n+ 1) steps, we choose {u;,0 <t < n} to be independently identically
distributed random variables with probability density function p(u), then it is not
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ADAPTIVE CONTROL OF DISCRETE-TIME NONLINEAR SYSTEMS 69

difficult to prove the nonsingularity of the following matrix' (see Section 3.4)

filer)  falwr) - faler)

(65) 48 filp2)  falp2) -+ falp2)

filen)  falen) - fulen)
Hence the true value of the parameter vector 6 can easily be obtained by solving
the linear equation:

A-0= [yQ — UL, Y3 — U2y s Yn+l — un]T'

Then again we can take the control as u; = —07 f(p;) for t > n, which globally
stabilizes the noise-free system. For more general parametric-strict-feedback models
with no noises, similar approaches can also be applied to design a globally stabilizing
adaptive controller regardless of the growth rate of the nonlinearities.

Unfortunately, the main drawback of the above approach is that the resulting
adaptive controller is not robust with respect to noises. In fact, the presence of
noises will even change the stabilizability of discrete-time nonlinear systems dra-
matically if the growth rate of the nonlinearities is faster than linear, as will be
shown by the following theorem together with its corollaries. Their proofs will be
given in Section 3.4.

Theorem 3.3.1. Under Assumptions (A3.3.1)—(A3.3.3), the system (61) is
not a.s. globally stabilizable by feedback whenever the following inequality

(66) P(z) <0, ze€(1,b)
has a solution, where P(z) is a polynomial defined by
(67) P(2) = 2" —by2" 4+ (by —bo)2" 14+ (b1 — bp)z + by,

To understand the implications of Theorem 3.3.1, we now give some detailed
discussions on the inequality (66).

Corollary 3.3.1. ([19]) Let b; (1 <1 < n) satisfy

b
by >1 and O<bi—bi+1§§(\/l;—l)2, 1<i1<n—-1,

Vb + 1)
—_— logb,. Consequently,
\/E 1 / g 01 q Y
whenever b; > 1 and the number of unknown parameters n is suitably large, there
always exist 0 < b, < b,_1 < --- < by such that (61) is not a.s. globally stabiliz-
able.

Remark 3.3.2. By Corollary 3.3.1 we know that the usual linear growth
condition imposed on the nonlinear function f(-) of the general control model

(68) Y1 =07 f(@y) + ug + w1, 0 €R"

cannot be essentially relaxed in general for global adaptive stabilization, unless
additional conditions on the number n and the structure of f(-) are imposed.

then (66) has a solution whenever n > 2log<

!Here, we assume that for any fixed 23, -+ ,zp and any a; € R',1 <i <n with >, |a;| >
n
A
0, g(z1) = Zaifi(zl,:cg,~~ ,Zp) has at most countable zeroes on ;1 € (—oo,+00). By the
i=1

theory of corr_lplex functions, we know this holds for any analytic function f;(z),1 < ¢ < n with

Z?:l azfz(:':) Z0.
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Remark 3.3.3. Let us consider the following counter-part continuous-time
model

(69) dy, = (07 f(y:) + wildt + dw,, t >0,

where § € R™ is an unknown parameter vector, and f(x) : R! — R" is a continuous
function satistying the local Lipschitz condition, and {w;} is a standard Brownian
motion. Assume that ||f(x)|| < Ly + La|x|* for some integer k > 0 and constants
L1, Ly > 0. Then it can be shown (see Section 3.4) that the following feedback
control of nonlinear damping type:

2k+1
t

Ut = —CYt — Y , ¢>0

can stabilize the systems regardless of the growth rate of the nonlinearities (mea-
sured by k).
2 b
Corollary 3.3.2 Let by > 2, then forn > 1+2log <———b 2) /log <§1), (66)
|-
has a solution for any {b;} satisfying 1 < b, < b,_1 < --- < by < by. On the other
hand, if by < 2, then for any n, there always exist 1 < b, < b,_1 < -+ < by < by
such that (66) has no solution.
Corollary 3.3.3 For anyn > 1 and any by > by > -+ > b, > 0,
n

(i) A necessary condition for (66) to have a solution is Z b; > 4;
i=1
(ii) A sufficient condition for (66) to have a solution is either by > 4, or

n 1n
Zbi>(n+l)(1+g).

i=1

The above three corollaries give us a picture concerning about situations where
the nonlinear model (61) is not a.s. globally stabilizable by feedback.

3.4. Proof of the Main Results in Section 3.3

We first present the proof of Theorem 3.3.1, which is prefaced with a lemma.

Lemma 3.4.1 Assume that for some § > 0 and t > 1, |y;| > |y;1|'7°, i =
1,2,---,t, and that the initial condition |yo| > 1 is sufficiently large, then the
determinants of the matrices

t t
(7100 PLERKA+DNI+Y 667 and Qi 2o KNI+ gigT
=0 =0

with ¢y = [f1(p), f2(pe), -+ 5 fu(ipe)] satisty

(M) PR S (KRN + 10 o) i)

(72 Q4] 2 57003 e 1) Filoinn)

where by definition f;(p;) S 1fori < 0,1 <j<n K>0and N > 0 are
constants defined in Theorem 3.2.6. (Here, without contradicting to Theorem 3.2.6,
we assume K > 0 large enough such that c2 K > 1.)
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Proof. By (70), we have

Q] = LK T+ 6i]|
=0
t t t
oL KN+ [l e) Y filedfale) o D filea) fulen)
i=0 =0 =0

t

Y he)f(e)  oZKN D [ 0) Y falwi) fuler)

= i=0 i=0 i=0

t

> (@) fules) Y (e faler) - 0LKN Y f2(p0)
=0

=0 =0

Now, let us denote am(i) = [£1(9:) fm(0), f2(03) Fon (), -+ Fu(0) fm(20)] %

1<m<n,0<i<t, and let a,,(—1) 2 aiKtNem (em denotes the m-th column
of the identity matrix I,,), then
¢ t ¢
Q| = det (Z ai(i), Y asli), -+, an(z’)> :
i=—1 i=—1 i=—1
By the elementary properties of determinants, we have

t

(73) QA= > det(aa(in), an(ia), -+, an(in)).
PR T —
It is clear that if in the group (i1,42,--- ,%,) there are at least two integers
having the same value (but different from —1), then det(ay(41), -+, @n(in)) = 0.

So in the discussions below we will exclude this kind of zero-valued determinants.

We proceed to prove (72) by considering two cases separately:

Case I)t<n-1

In this case, in order that det(w;(i1),aa(iz), -+ ,an(in)) # 0, the number of
(=1)’sin (41,42, - ,i,) must at least be (n —1 —t) and the other integers must be
distinct. Then each term in the expansion of the non-zero determinant

det(ay(i1), az(i2), - ,an(in))
has the general form
(74)
(o2 Kt™)" " f1, (0i) fin (012) - F1a(00) o (032) - - F (00 ) fren (00,), 7 < E+1,

where, i, # i, jm # Ji and k,, # k; for m # [. Note that one of such terms is
(2 KtN)" =1 f2(y) f3(01—1) -+ - f21 (o) (from the products of the main diagonal
elements of the matrix [ (t), -+, ;01(0), as12(—1), -+ ,an(=1)]), and it is differ-

A
ent from other terms. Denote a; = fZ(:)fa(i—1) - f21(p0). Now, we proceed
to prove that the absolute value of any other term of the form (74) is not greater

than )
’ (2) - (ormndy,

|y0|miﬂ(175)'min1gign71(bi—bi+1) o

where «, 8,b;,1 < i < n are defined in Assumption (A3.3.1).
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From the proof of Lemma 3.2 in [19], we know that

bjy by bjp+bky by bk, < 1 2by, 2by 2bt 41
i iz in = |y lmin(176>'min1§i§n NG ‘_bz+1)yt Y1 Y
b, +b bj,+b b b 2b

fOI‘ yllgl klyiéz ko . y ]r+ ky # y2b1 2b2 . yO t+1'

Then by Assumptlon (A3.3.1) and |y1| > |y a|'9,i=1,2,--- ,t, we have for
lyo| > max{M, 1},

|(0'2 KtN)n_rfh (‘pll)fkl ((1011) : sz((piz)sz (CPiQ) T fjr (‘piT)fkr((pir)

b bi,+b ;
< ﬂQn(U KtN) 1]1"‘ k1 i;2+ ka ?:ﬁ‘bkr
1
2n( 2 Ny\n 2b, 2b2 . 2bs 41
(75) S 'B (O’ Kt ) lyolmin(1,5)‘min1§i§n 1(b '_bH—l)yt Yi— Yo

ﬁ 2n a
< ~ 2 Nyn .
= <a) (0, Kn™) [yo ™1 ) mini< <1 (b —bis1)

Now, rewrite (73) as
Q| =R+ (0L Kt")"""a, > Ry + ay,

where R; denotes the summation of all the terms different from (o2 KtV)"~t"1q,.
It is obvious that R; has at most [(t +2)" - n! — 1] < (n™ - n! — 1) terms. Hence, by

(75) we obtain
(n" - n! — Day 5 T e N
'Rtl - Iy ‘mm (1,6) miny <j<n—1(bi=biy1) (UwKn ) '

Therefore, by choosing the initial value |yo| large enough we can make |R;| less than
—a;. Consequently (72) follows.
Case (II) t >n—1
First of all, any nonzero determinant
det(ai(i1), az(iz), - an(in)), =1 iy, -+ ip <t

can be expanded as the summation of n! terms whose general form is

(O-i'KtN)n_rfjl (Soi1)fk1 (@01'1) : sz (‘Piz)sz (Lpiz) T fj‘r'((pir)fkr(soir)? r<n,
where, i,, # i, jm # 71 and k,, # k; for m # [. Obviously one of such terms is

N .
ar = file) f2(pi1) - [3(#i-nt1) (one term in det(ai(t), -, an(t —n+1)) ).
We now show that for any other terms, the following inequality holds:

|(0-121)KtN)n_Tfj1 (Soil)fkl (Soil) : sz (‘giz)sz(@ig) te fjr‘((pir)fkr (901T)|
(76) a . (@) " (o2 Kt

1Yt—n+1] i mimgicn(bi=biv) - \a

where b, 11 = 0.
From the proof of Lemma 3.2 of [19], we know that

bt ey | 1 P
11 12 ir min b;—b t—n+l
|yt n+1| 1+5 1<i<n( it1)
by, +be, bj,+b b +b
for ;72 Ty TR Ly T Y2 - ytn 1. Then similarly as in Case (I), by

Assumption (A3.3.1) we get (76) for |yo| > max{M, 1}.
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Thus, similar to the arguments in Case (I), we rewrite (73) as

Q74| = Re +ay,

where R; denotes the summation of [(t 4+ 2)" - n! — 1] terms in the determinant
expansions, which are different from a;. Then by (76) we know that

n 2n
R <—¢F2Tni-la (é) (o2 KtV)"

T Yo [T mimsisn i) \a

LE TEL Ry

|(1+5 yimml. o nnnl<z<n(b —bit1) \ &

Iy
= 2ata

where the last inequality holds for sufficiently large |yo|. Hence, (72) is proved.
To prove (71), noting the definition (70), we only need to replace o2 KtV by
02 K(t+ 1)V in the proof above. O

Proof of Theorem 3.3.1.

We only need to prove that if the inequality (66) has a solution, then for any
feedback control u; € F7, there always exist an initial condition yo and a set D;
with positive probability such that the output signal y; of the closed-loop control
system tends to infinity at a rate faster than exponential on D;.

Since by Assumption (A3.3.3) Theorem 3.2.6 holds, we choose D; to be defined
as in Theorem 3.2.6. Then on D, we have

_ —1
(77) E[(G—@)(G)—@)Tlfty]z{—QZ k¢}i'+Kt”I} ,ot>1
Tw k

equation and
(78) EBly2 |F)) < (Kot +4)yi, + (Kt +4)(t +1)* + 02, t>0,

where 6, 2 E[0|F}], K > 0 and K; > 0 are constants such that 02 K > 1.
Next, by (61) we know that

(79) Yer1 = 67 0 + (670 + up) + wep,

where aié 0—0, and ¢, = [f1(00), fo(@r), -+, fulpe)]T. Consequently, by the fact
that E[0;|F!] =0 and Elw;4+1|F}] = 0 it follows that for any u; € F7,

Bl |F) = of E6:0] 1716, + (¢T0t +u)? + 02
> ¢l E0.67 |FY1¢: + o2,
Then by (77), we have on Dy,

t—1 -1

Ely? 1| F] 2¢;f{ Z¢k¢k+Kt”I} ¢t + 02,

u’kO

T
(80) = 02,¢! Pipy + 02, %@_'
Py
L
P

where P;, Q; are defined by (70).
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Hence by (78) and (80), we have on Dy,

1 Q|
2 S 2 I%et1l
Y41 2 Kt +4 Oy Ipt_1|

(Kit* 4+ 4)(t+1)? 02|, t>1.

(81)
Now, let zp € (1,b1) be a solution of the inequality (66). We proceed to prove

that on Dy,

(82) lyal 2 lyia®, 1=1,2,---.

We adopt the induction argument.
First, we consider the case where i = 1. Since

E(60 - 80)(0 — 00)" | 7) = E((0 ~ 00)(0 ~ 00)"] > 031,
we have by (3.3) E[y?|F] > 02| /¢o||*> + 02,. Then by (78),

Vi 2 2@l ~ )= % o) -1
Then by Assumption (A3.3.1), we have |y1| > |yo|*® for large |yo| satisfying |yo| > M
and #yébl—%o —y5 2% ) > 1. Hence (82) is true for i = 1.
Now let us assume that for some ¢ > 1,
lyil = lyi—1l®, i=1,2,---,¢, on Dy,
then by Lemma 3.4.1, it follows that

_ o1
P < (o Kn)™ + S1fE(pe1) f3 (0r-2) -+ f(prn)
and
1
IQ;+11| > _f12(<Pt)f22(<Pt—1) T fr%((pt*n—i-l)'
2
Consequently, by (81) and Assumption (A3.3.1) we have for |yo| > max{M, 1},
(83)
1 Qe
2 > 2 1%l 4 2 _ 2
Y1 Z K1t4 +4 Ow lPt_1| (Klt +4)(t+ 1) Ow
1 f(en) - fa(@r-nt1) 4 2 2}
K " — (Kt +4)(t+ 1) — oy,
Rt 4 R 1) fip ) D
1 «a n y 1., y _n
Ko (5) Eap ot a4y + 17 - oi} ,

>
Kyt + 4 Yi—1" Yt—n

o2

L > 0.
2(F Kn¥)" + 3]

However, by the induction assumption we have

A
where Ky =

el <y, 1<i<t,
andsobybi+1—bi<0(1§i§n),

(84) ly_q |0+ b > |yt|(bi+l“bi)z(’_l, 1<i<n.

11>

Note that this inequality also holds for 7 > ¢, since y; = 1 for j < 0 by definition.
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Hence, on Dy,

2b, 2b
A
2b;

>
2b,,
Y¢e—1" " Yt—n

yz[bl+(b2—b1)z(;1+-..+(bn_bn_l)zg<"*” —bnzg "]
t

(85)

—2z5 " P(20) 2
>y ° ’ Y
2 [ _QZO_nP(ZO) 220.

Yo ]Zé "Yr

At last, since —z;"P(20) > 0, by (83) and (85) we have y?, , > y;* for
sufficiently large |yo].

Hence, by induction, (82) is true. Thus for all large initial conditions |yo|, the

output process |y;| diverges to infinity at a rate faster than exponential on D;. This

completes the proof of Theorem 3.3.1. O

Proof of Corollary 3.3.2.
We first consider the inequality
(86) 2 b2 (b — 1)+ 1<0, ze(1,b).

b
By taking z = 51 € (1,b1), we have after some simple manipulations

P S L N (TR B PO o |
2 2 n—1 b?_l
= a4 By

2 e bn-l
- -2 - ar | g <o

b
where the last inequality is guaranteed by the assumption on n. Hence, z = 51 is

a solution of (86).
Next, let z € (1,b1) be any solution of (86). Then by (67) we know that

P(Z) < Zn+1 — blz” + val[(bl — bg) + -4 (bn——l — bn)] 4+ bn
2 b2+ 2" (b — 1) 4+ 2" (1 = by,) + by

2 — b2+ 2N by = 1)+ (1= by) + by

2 b2+ 2" - 1) +1<0

Therefore, (66) has a solution.

For the proof of the second part of the corollary, we use contradiction argument.
For b; < 2, if the second assertion were not true, then there would exist some n
such that (66) would have a solution for any by > by > --- > b, > 1.

For any small ¢ > 0, let z. € (1,b1) be a solution of (66) corresponding to
the following choice (note that by > 1): bo = 14+ (n —2)e, b3 = 1+ (n —
3)e, ---, by, =1. Then we would have from (66)

P(z) =20 b2t 4+ 20 by — 1 — (n—2)e] +e(z" 2+ +2)+1<0.

A I

Let e — 0 and 2 be a limiting point of z., we get z{f“ —bi2§ +zg_1(bl -1)+1<0,
which implies that

20T — b2y + 207 (b — 1) <0,
or z2 —byzg+b —1 <0, o0r (20— 1)(20 + 1 — b;) < 0, which is impossible since
29 > 1 and b; < 2. Hence, the proof of Corollary 3.3.2 is completed. Ol

Proof of Corollary 3.3.3.
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(i) First, we rewrite the polynomial P(z) defined by (67) as
(87) P(z)=2"" — b2 Nz = 1) — - = bp(z —1).

Next, denote b 2 Zbi’ and let zg € (1,b;) be a solution of P(z) < 0. Then (87)
implies =
0> P(Z()) > ZaH-l — Zg-l[bl(Z() — 1) + - +bn(20 - 1)]
= zgfl(zg —bzo +b),

or z2 — bz + b < 0 has a solution zy € (1,b;). This necessarily implies that b > 4.

(ii) If by > 4, then 2" — b12™ + b;2" ! < 0 has a solution 29 € (1,b;). This
combined with (87) easily induces P(zp) < 0.

Moreover, if Y27 | b; > (n+ 1)(1 4+ 1)™, then we have

n b 1/n A n
1, b= b;.
(88) n+1 (n+1> - ;

Let us denote 2o = [b/(n+1)]'/", then (88) implies that zo > 1. Moreover by the fact

that b < nb; we have 1 < zp < [nby/(n+ 1)]1/"b}/" < b}/n < b;. Hence 2y € (1,by).
Furthermore, by (88) it is easy to check zSH — bzg + b < 0. Consequently, by (87)
and the fact that 2o > 1 we have 0 > 20" — bzy + b > P(2). Therefore, Corollary

3.3.3 holds. 0

Proof of the nonsingularity of the matrix A in (65).

We write the k-th main sub-matrix of A as A®) ie., A% is defined in a
similar way as A in (65) but with n replaced by k. Clearly, A = A, We adopt
the induction argument to prove Prob{det(A*)) =0} = 0 for any 1 < k < n.

First, for k = 1, A = [f1(¢1)]. Since ¢(f1(p1) = 0) = 0 by the choice of ug
and the countability of the zeroes of fi(z), we have Prob{det(A()) =0} = 0.

Second, if Prob{det(A®)) = 0} = 0 for some k > 1, then we use the con-
tradiction argument to prove that Prob{det(A®**+1)) = 0} = 0. Suppose that
Prob{det(A%*+1)) = 0} > 0, then noticing Prob{det(A*)) = 0} = 0, we know that

there exist random variables a1, ag, -+ ,a; and a set B with positive probability,
on which

fevi(er) = arfiler) + - +afi(p1)

frv1(p2) = a1 fi(p2) + -+ + ar fe(p2)

fer1(pr+1) = arfi(pr+1) + - + apfe(Prr1)-
Since det(A®)) # 0 a.s., we can solve the first k equations for the values of
ai, az, -+ ,ax. Hence a; € F! = of{yo,y1, - ,yx}, @ = 1,--- , k. Now denote

A .
C ={w: fit1(r+1) = a1 filpr+1) + - + arfr(or+1). By the independence of
ui and F}, the fact that a; € F, i = 1,--- ,k and the properties of conditional
expectation, we have

Prob(C) = E[E[lc|F}]]

E/ I[gk(9T¢k+u):0} x p(u) - du

I

(59) = B T xple - 6700) - ds,
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k
A .
where gk(l') = Z%‘f:‘(%?ﬂc» e ayk—p+2)_fk+l(x7yk> o 7yk~p+2)7 p() is the den-

i=1

sity function of uk, 07 ¢y, = 01 f1(pk) + -+ + On fr (k) and

Ie(w) a1, ifweC,
cW=1 0, otherwise.

Now, since by our assumption, for any fixed x2,- -, xp,
g9(x1) = a1 fi(zy, o, -+ ,xp) + - F arfr(®r, 2, -+, Tp) — frog1(T1, 22, -+, 2p)

has at most countable real zeroes on z; € (—00,00), the integral in (89) must be
zero, or Prob(C) = 0. This contradicts to the fact that Prob(C) > Prob(B) > 0
by our definitions of B and C. Hence Prob{det(A®**+1) = 0} = 0, and the proof of
the nonsingularity of A is completed. O

Proof of Remark 3.3.3.
By Lemma 2.2 of [7] and the fact that

(90) z[07f(x) =] <|0]|- sup |lzf(z)| < M?* sup ||f(z)]l, Vze R,
|z|<M |z| <M

where M 2 max{||0||, L1 + Lo+ 1}, it is easy to know that the closed-loop equation
dy: = [—cy + 07 f(ye) — yfk“ |dt + dw,

has a unique strong solution on [0, 00).
Now, by the Ito formula, we have

dy? = [—2‘3%2 + ZthTf(yt) - 23/,52’C+2 |dt + 2y, dw; + dt.
So, by (90) again we obtain
¢ ¢
O <y -2 [ s+ M swp @)+ D42 [ yedu
0 |lz| <M 0

Since by Lemma 12.3 of [4], we know that for any € > 0,

t t %+s
/ ysdws = 0 {/ yfds} , a.s.,
0 0

we conclude from (91) that
1 [ 1
(92) limsupz/ y2ds < 2—(1+2M2 sup |f(x)]), as..
t—o0 0 ¢ |e|<M

Then we only need to show that the control energy is finite. For this, again
using Ito’s formula, we have

dy?kﬂ = [(2k + 2)y?k+1(0Tf(yt) — CYt — y?kﬂ)
+(k 4 1)(2k + 1)y?*)dt + [(2k + 2)y2* ] dw,.
thus,

t
yB = g /O (2k + 2525167 £ () — cye — 9?5+
t
+(k +1)(2k + 1)y2*]ds + / (2k + 2)y***dw,
0

t
<yt +/ (= My 2 4 Xo)ds
0
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for some A1, A2 > 0. The last inequality follows from our assumption ||f(z)| <
L1 + Lo|z|* and Lemma 12.3 of [4],

¢ ¢ 3+e
/ v dw, = o {/ yglk”ds}
0 0

: L[ ke A2
hmsup—/ ysitids < =,
t—o0 t 0 i )‘1

Hence,

This together with (92) ensure that
t—o0

1 t
lim sup —/ ulds < o0.
0

Hence the system (69) is globally stabilizable regardless of the growth rate of
£ (@)l as |z] — oo.
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4. Hybrid Control Systems

Many practical systems are naturally modelled by continuous-time models via
the classical physical laws. However, the input signals are usually generated by the
digital computers in practical implementations. Hence, it is of considerable interests
to consider hybrid dynamical systems where the process involves in continuous-time,
while the control algorithm is implemented in discrete-time.

Now, consider the continuous-time control system:

d
(93) % =0 f(ye) + s,
where 6 is an unknown parameter. Assume that f(x) is continuous and
(94) If(z)] < Mlz|®, b>1, zeR!

The typical nonlinear damping controller for system (93) is
(95) ue = —sgn(ye) - ye|"*5, Ve > 0.

If the output signal y; can be measured continuously and the control signal
can be updated continuously, then it is not difficult to prove the global stability of
the closed-loop system (93)— (95) (cf. [15]).

However, in many applications, we can only get the sampled data of the output
signals and implement the digital controller. Therefore, we consider the control
input like:

(96) g = —sgn(Ynn) - [Ynn|®TS, t€nh,(n+1)h), n=0,1,2,---,

where h denotes the sampling period. Nevertheless, in this way the hybrid control
system will no longer be globally stable.

Theorem 4.1. The continuous-time system (93) -(94) with the digital control
(96), is not globally stable no matter how small the sampling period h is. That is,
for any h > 0, there always exists some yo with |yo| > 1 large enough such that

lim sup |y;| = 0.
t—+4o0

In order to prove this theorem we first establish an auxiliary result.

Lemma 4.1. Consider the one dimensional autonomous system & = f(x),
where f(z) depends explicitly on x only. If f(x) satisfies the following condition:
On any interval (a,b) € IR, there exists a sub-interval (a’,b') C (a,b), on which
the sign of f(x) does not change, then any solution of the system & = f(x) is
monotonously increasing or decreasing.

proof. We adopt the contradiction argument.

Suppose for a solution z(t), there exist three points ¢; < to < t3, such that
z(ty) < z(t2) and z(t3) < z(t2).

Without loss of the generality, we suppose z(t1) < z(t3).

By the condition of the lemma, there must exist some interval (z1,z2) C
(z(t3), z(t2)), such that

f(x) >0 forany x € (z1,x2)
(97) or f(x) <0 for any z € (z1,x2)
or f(z)=0 for any z € (z1,2).
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It is obvious from the system equation that the solution z(¢) must be continu-
ous. Hence, by

x(ty) < z(ts) < x1 < z9 < 2(t2),
we know that there exist ¢}, ¢ (t1 <t} < t5 < t9), such that

(98) z(t) =1, z(th) =z2, x1 <z(t) <32, VEE (t),15);
and also that there exist t, t5 (to < t5 < t5 < t3), such that
(99) z(th) =zo, z(ty)=z1, z1 <z(t)<z2, VtE (t5,13).

By the system equation, we have

oty —(t) = [ Flat)at,
then by (98),

@y — @ = / * F(x(t))dt.

On the other hand, we have
t
a(ty) —z(ty) = | fl=z(t))dt,
tY
and by (99),
ty
T] — Tp = f(z(t))dt.
t
Thus by (97), we have that zo — 21 and x; — x2 are both positive or negative
or zero, which contradicts our definition of x; and z5. Hence our supposition is
incorrect and any solution must be monotonous. O

Remark 4.1. Any piece-wise continuous function f(z) satisfies the condition
in Lemma 4.1.

Proof of Theorem 4.1.

Let us first assume that for some n € {0,1,2,---}
(i) |ynh| > 1;

(i) lynnl2 > M -|0] +1;

(i) [ynnl"1T273 - h > 2> [ynp| " ® + 1.
Then for all |y| < |yna| T2,

[tnn] =10 F)] = lynnl"* =10 M - [ynn]"T3 > |ynnl"" 3.
Therefore, for all |y| < |y,x|' %,
(100) [0+ F(u) + tun] - [=sE0 (Y] = funn| = sgn(yan) -0 F(4) = lyan | .

Now we prove that there exists some ty € [nh, (n + 1)h), such that |y | >
|Ynn |1t % . We adopt the contradiction argument. Suppose that

(101) [9el < lynnl'TF, Vit € [nh, (n+1)h),
then by (100),

L7

i [—sgn(ynn)] > ynnl®T2, ¥Vt € [nh, (n+ 1)h).
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Hence, Iy(n+1)h - ynhl > |ynhlb+% . h7 then

ly(n+1)h| > |ynh!b+% ’ il _Elynh| . .
= lynn "1 F575 - h = [ynn] =] - [ynn| !
> lynh|l+ﬂa

which contradicts (101) by the continuity of y;.

So the supposition (101) is incorrect and there must exist some tg € [nh, (n +
1)h), such that |ys,| > |ynn|' T . Since the closed-loop system is autonomous in the
time interval ¢ € [nh, (n + 1)h), y; is monotonous on ¢ € [nh, (n + 1)h) by Lemma
4.1. So we have [y(,11)n| > |ynn| T35,

Hence, if the system initial value yo satisfies Conditions (i)-(iii), then |yn| >
lyo|* 7 also satisfies Conditions (i)-(iii); then |yan| > |yn|* T > |yo|(1+%)° also
satisfies Conditions (i)-(iii); ------ .

Thus, we have

lim |yns| > lim |yo| %" = co.
n—oc n—oo

Hence the hybrid control system is not globally stable. O

Actually, even for linear systems, such a phenomenon would happen.
Consider the simplest continuous-time linear control model:

(102) Ut = ays + ug, t >0,

where a is an unknown parameter.
The classical Lyapunov-based adaptive controller design (cf. [15]) is

(103) Ut = —(c+ﬁt)yt,
(104) a = v,
where, ¢ > 0, @; is the estimate of a, v is some constant appearing in the Lyaponov

function candidate

1 1 .
(105) Ve=oui + 5y (@ a)®.
We can easily prove that the closed-loop system (102)-(104) is globally asymptoti-

cally stable since

i

Ve = wilaye + ) + (@~ o)
= ay; — (c+a)y; + (@ — a)y}
= —cy?.
But if only sampled data of the output y; are accessible and we still use the con-
troller (103)-(104) in a approximating manner, i.e., (here,without loss of generality
for linear systems, set the sample period h = 1)

2

(106) Ut —(c+@n)yn, t€n+1l), n=0,1,2,---;

1>

n
(107) ay, ap + Z yy?, ag € R is chosen arbitrarily,
=0
then the situation changes completely as stated in the theorem below.
Theorem 4.2. For the continuous-time linear system (102), if the sampled-
data controller (106)-(107) is used, then the closed-loop system is not globally
stable.
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Proof. Denote b, 2 ¢ + a,. Clearly, b, is non-decreasing. If for some

ne{0,1,2,---},
(108) b, > 4|a|;
(109) by > 6,

then we can prove |yn11| > 2|yn|.
We adopt the contradiction argument. Suppose that

(110) lyn+1l < QIyn'

Then by Lemma 4.1, we have |y;| < 2|y,|, Vt € [n,n+ 1). By this inequality and
(102) (106) (108) (109), we have for t € [n,n + 1),

|yt| = |ayt + Utl = layt - (c+an)yn| = Iayt - bnyn|

b
> bnlyn| = |a lytl > bnlyn| - 2|a| Iynl > Tnlynl > 3[yn-
Using Lemma 4.1 again, we have

n+1 n+1
/ Ydt| = / |9t |dt.

By (111) and (112), |yn+1—¥n| > 3|y.|- Hence, |yni1] > 2|y,|. This contradicts
to our supposition (110). So, if b, > max{4|al, b}, then |yn+1| > 2|yn]-
Therefore, if the initial value |yo| is large enough such that (b,, is nondecreasing)

(111)

(112) |yn+l _yn| =

by, > by = c+dp = c+ag +yyi > max{4|al,6}, n >0,
then we will have that |y,+1| > 2|y, | holds for Vn > 0, and that

lim sup |y| > limsup |y, | > lim sup 2"|yo| = oo.
t—oo n— 00 n—00

In fact, if only there exists some moment n > 0 such that

n
b, =c+ap + 'yZy;z > max{4|al,6},
i=0
then lim sup |y:| = oo. a

t—o0

Of course, it is not difficult to find a stabilizing sampled-data controller for the
linear model (102), but for the nonlinear model (93) it is far more difficult.
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5. Nonparametric Adaptive Control

In this chapter, we are going to show that if the nonlinearities have a certain
linear growth rate, then optimal feedback control can be designed even for the
following uncertain nonparametric model:

(113) Yer1 = f(Yt) +ue + €41,

where y;, u; and &; are the d-dimensional system output, input and white noises,
and f(-) is an unknown nonlinear function.

Our objective is to design a feedback control u, based on the observations
{yi,i < t} at each step t, such that the system output {y; } tracks a known reference
signal {y;} in an optimal way. If f(-) were known, it is obvious that such a controller
would take the following form:

up = —f(ys) + Yii1-

Since in the present case, f(-) is unknown, we adopt the nonparametric esti-
mation approach as used in [6], but without resorting to external excitations in the
controller design.

Let K(-) be a nonnegative kernel function satisfying the following conditions:

K(0) >0, /K(s)ds =1, /Kz(s)ds < 00, /||s||K(s)ds < 0o0.
Here in our estimation process, let K(-) have a compact support, i.e.,
K(s)=0, for|s| > A.
Let 0,(-,-) be a function shifted from K(-):

(114) 5;(x,y) £ K(j*(x —y)), ¥ji>0, & =0,

1
where a € (0, ﬁ)’ d is the dimension of the system signals.

The nonparametric estimate of f(y),y € IR? at time t is defined by

¢
N7 (y) Z(Sj—l(yjélyy)(yj —uj_1), if Ne(y) > 0;
j=1

0 otherwise,

(115) fily) =

where,
t
A
(116) Ni(y) = Z5j—1(yj—1,y)
j=1

To define the adaptive feedback control, we need to introduce a sequence of
truncation bounds denoted by {h;}, which is positive, monotonically diverges to
infinity, and satisfies

(117) hy = o(\/logt), ast — oo.

Now, by the (truncated) certainty equivalence principle, the nonparametric
adaptive control can be defined as

(118) ur = =fe (U7, po1<he T ¥en

where I(.) is the indicator function.
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With this control, the closed-loop system equation is

(119) Yer1 = f(ye) — ft(yt)l(|ﬁ(yt)|§ht) + y:+1 + €141,

which is obviously a nonlinear dynamical system.

In order to analyze the properties of (119), we introduce the following assump-
tions on the system (113):

(A5.1) The nonlinear function f(-) is Lipschitz continuous, and there exist two
constants a € (0,1) and 3 € (0,00) such that

If @)l < allz] + 8, Vee R

(A5.2) {e:} is a Gaussian white noise sequence with mean zero and variance
¥ > O'QId > 0.

(A5.3) The reference signal {y;} is bounded.

The main result of this chapter is stated as follows:

Theorem 5.1. Consider the control system (113) where the nonlinear func-
tion f(-) is completely unknown. Let the assumptions (A5.1)-(A5.3) be fulfilled.
Then the adaptive tracking control defined by (118) is asymptotically optimal in
the sense that

T
lim Z lye —yf —&]2 =0, a.s.

T—o0

We preface the proof of Theorem 5.1 with two lemmas.
Lemma 5.1 Under the conditions of Theorem 5.1,

sup  [|fu()| =o(t™), as, ast— oo,
lyl2< 5 logt
where f = f—f, ce (0,0 2(3 —ad)) and 6 € (0, min{(3 — ad — ¢/5?), (1 — ad —
c/a%)a}).

Proof. We can divide ﬁ(y) into two parts:
Mi(y) | Li(y)

(120) 1) =16 =10 = 50+ N
where, M;(y) Z«x 1(Yj-1,9) €5, and Ly(y 26] WL ) (yi-1) — F))-

By the closed loop system equation (119), condition (117) and Assumptions
(A5.1) and (A5.3), we have

lys+1ll < allyell + o(v/logt) + O(1) + |[e4a -

Then it follows from « € (0,1) that

t
1
(121) 7 Z ly; 11> = o(log t).
Define
A
(122) ze = f(ye) + w,

A .
Fro1=0o{(gj)j<t—1, (7)<t}
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then y, = 21 + &; and by Assumption (A5.2),

EIK(G*(v; )il
> const./ exp(—HI—”Q)K(j“(zj_l +z—y))de
R4 20 1
_ const.j_“d/ exp(— =5 |\~ + 3 — 21 [2) K (A)dA
R4 20

. 1 .
= const.j %4 exp(—m“/\o‘] 4y —zia|?) /]Rd K(\)dA,

where, the last equality follows from the integral mean value theorem, and |Ag] < A
since K(A\) =0, || > A.

Choose 0 < ¢ < 0*(3 — ad). Since |ly + A — s|* < 4[|y[|* + 4||s]|* + 242, we
have for any t > 0,

. 1 c c
mf{exp<—2—02-ny+ A= s sl < Slogt and [ly]” < Zlogt}

> const.t—¢/7,
2 ¢ 2 €
Then for ||z;_1]]* < Zlogt and |ly||* < Zlogt,

B[K(j%(y; — y))|Fj—1] > const.j=adt=c/o"
> const.t—ad—¢/o”,

Hence, for ||y < - logt,

>0

o~ | =

ZE[K(j“(yj — ) Fj-1]

t
i 1
const.t~¢4=¢/7" x ;qusz]-_]n?sslogt)

(123) >
j=1
1 t
—ad—c/o?
> const.t /o7 % 7 222.[(||zj_1||2§£10gj)
Jj=

Now, we prove that

t
Al
=2 Iz p<siony) — 1 as.
j=2

Actually,
1 t
L =777, [I(uzj_lnzsmogj)+I<||Zj_1|12>glogj>]
(124) t =2 e
S1t—1dt+t—1j2::2 %Jlogj'

Licensed to Academia Sinica. Prepared on Wed Aug 12 21:30:29 EDT 2020for download from IP 124.16.148.12.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



86 LIANG-LIANG XIE and LEI GUO

J

Let S; £ |lzi-1]l?, j > 2 and Sy £ 0, then ||z;1[|> = S; — S,-1. By (121) and
=2

(122), we have

1<
n Z lzj-1]* = o(logt), ie., S;=o(tlogt).

Thus,

1§:nzj_1u? ;i&— i1

tj:2_ log j tj:2 log j

__1. t_1<SJ_ SJ >__Sl+St
(125) Tt 5 \logj log(j +1) log2 = logt

=
Sl 832_151+St
t _j:2jlog j log2  logt
—0

On the other hand, apparently d; < 1. Hence, by (124) and (125), d; — 1, a.s..
Consequently, by (123)

t
ER ad+c/02—1' jala, . . 2 E
(126)  lminft inf ;E[K(y (v; — UIFj1l; Iyll® <  logt

> const.

By the uniform law of large numbers (Theorem 6.4.34 in [6]), we have

logt

0o

t—1
sup § Ne(w) = 3 BIK (5°(v; = )| F-1] syl <

=o(t?), a.s. forall > 3
) 1 1 )1
Then for 1 —c¢/o® — ad > 3 (ie. 0<a< 2 and c < o (i—ad))

(127) lim inf /7" inf{ N, (y); [ly))* <

< Zlog t} > const..
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Thus there exists some ¢; > 0, when ¢t > t; and [|y||> < - logt, N;(y) > 0. Then

=1 a

noting that f(-) is Lipschitz continuous and K(-) has a compact support, we have
t—1
L)l < comst. Y K(3*(y; —v))lly; — vl
j=1

t—1
< const. Zj—“K(j“(yj -y))
j=1

t—1

< const. + const. Z K" (y; —y) (N (y) ™
e
= const. + const. | Z [Nj+1(y) = Ni(y)] - (N5 ()~

< const. + const.(N;(y))~%/(1 — a)

Again, applying the uniform law of large numbers (Theorem 6.4.34 in [6]), we
have

1
sup  |M,(y)| = o(t’), as. forall 3> .
lyll2<§ logt 2

Hence, by (120) and (127),
~ Is _
sup{| £e(v)l; [yl|* < 7 log t} = o(t °),

for all § < min{(} — ad — ¢/0?), (1 — ad — ¢/o?)a}. O
Lemma 5.2. Under the conditions of Theorem 5.1, for any m > 1, we have

¢
Z lyj41)™ = O(t), a.s., ast— oc.
i=1

Proof. By the closed-loop system equation (119), we have

Yerr = fly) — J/c;(yt)l{uﬁ(yt)ught} + Y e
= [fe) = LWl 7 i<ng SO 7o he T ¥ + et

For any integer m > 1,

g™ < Aalllf () = Sl g5 gp<nny @Oz 1™
+A2llyiy +eell™,

where, A1 > 1 is suitably c/posen to make that )\Alam =a; < 1.
Thus, noting that {||f:(ye)|| < h:} and {||fe(ye)|| > h:} do not intersect, we
have
lyeral™ < Aallf(ye) — ft(yt)“ml{uﬁ(yt)nght}
M@ Ly 7 im0y
FAallyfs + e ™
= Ml flye) - ft(}/t)“ml{llﬁwt)ilsmuytl[zsg log t}

A ) = FeWI™ L 7w 1<he. huel2> £ 10 1)
FMIF @™ 7 gonsne + Allvin + ™
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Hence, by Lemma 5.1,

t
> lysal™
j=1

t

< ot)+ M Z[)‘Snf(yj)”m + )‘4”fj(yj)”m]I{”f](yj)“ghj, v
j=1

t
21 ) @™ Ly 7 y15myy +O),

j=1

12> ¢ log 7}

A
where, we can choose some A3 > 1 to make A{A3-a™ = A3-a; = a3 < 1.

Therefore,
t
leyj+1llm
=1
< Q3Z”%”m+A1A42”fJ(% L5, )<, s 12> 5 10g 53 O )
] 1
m y
< agzny]n + X\ /\4Zhj (Clllog|])2 +0(t).

Thus, using (117) again, we have

t
D llysal™ = 0(1).
7j=1

Proof of Theorem 5.1. By the closed-loop system equation (119), we have

1 "
n >y — v — gl
=1

t
1 N 2 1 2
= “Z”f(@/a‘) = HOIPLy 7, 12m,y + 7 2 @07 g ism,)
i=1
_ = 2 =
= Z”f U3) = P T 7 ()1 hs s 1255 tog 3}
2
+ Z”f Y3) = WD IPT 7 (), 1255 10g 3}

2
+;Z”f(yj)” L7 >y s 12 5 1og 1)

j=1

1 2
+;lelf(yj)ll L5k s 12> 5 10831
=

Here, using Lemma 5.1, we have
t
1 ~
5 ) = B P T, p<5 1085y = 01,
i=1

and,
£ W) {1y, 12< £ 10g 53 < I1f (i)l + o(1).
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Then
1 t
: > Ny =y — gl
=1
< o(1)

2 ) .
+;lelf(yj)|| Iy, 02> € og j} +;_Zl||fj(yj)|| L0017 o)l <y Ny 12> € log 5}
J= J=

1 £ (yy)ll + o(1)
+ngllf(yj)||2—”hj—

1
Iyv e il
+ ;llf(y])ll <log;

Now, by Lemma 5.2 and Assumption (A1), we have
Ly~ I )l
SN AN
; g O

and

1 ly; 1>
;;uﬂw)n?— o(1).

Tlogy N
Also, by (117),

t
1 ) 2
7 2 MW 712 112> 5 108

j=1
t
1 lly;lI?
t]Z::l 7 Slogj
Therefore,
1 t
n Z lYj+1 = Y51 — ejl® = o(1),
=1
which is just the conclusion of the theorem. a
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