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NECESSARY AND SUFFICIENT CONDITIONS FOR ADAPTIVE
STABILIZABILITY OF JUMP LINEAR SYSTEMS*

F. XUET AND L. GUO?

Abstract. The adaptive stabilization problem of linear time-varying (LTV) systems with un-
known parameters modeled as a hidden Markov chain is studied in this paper. A necessary and
sufficient condition characterizing the adaptive stabilizability of the system is found, which hinges
on the existence of a set of algebraic coupled Riccati-like equations that are different from those
known for the non-adaptive case. Several equivalent characterizations and a constructive method for
designing stabilizing feedback laws are also provided in this paper. It is worth mentioning that our
results also reveal the capability and limitations of the feedback mechanism, as we have not restricted
ourselves to any special (e.g., linear) class of feedback laws in our study.
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1. Introduction. The primary motivation and the main advantage of adap-
tive control are linked to dynamical systems with uncertain and changing struc-
ture/parameters, and a standard model for the investigation of adaptive systems is
described by finite-dimensional linear time-varying (LTV) systems with parameters
governed by a finite state Markov chain.

In the non-adaptive case where the Markovian jump parameters can be observed
directly, much progress has been made on feedback stabilization and the related linear-
quadratic control problems; see [1],[2], [3], [4], [5] and [6], among many others. The
adaptive case, however, has received less attention in the literature, and a complete
characterization of stabilizability by adaptive feedback is still lacking, see for example,
[7],[8],]9] and [10].

By adaptive feedback we mean the (nonlinear) feedback that captures the uncer-
tain information of the system by properly utilizing the measured on-line system data.
Intuitively, adaptive feedback should at least be able to capture slowly time-varying
structures of a system and, in particular, to stabilize linear systems with hidden but
slowly-jumping Markovian parameters. In a recent work [11], it has been shown in a
rigorous way that adaptive stabilization is possible whenever the rate of transition of
the underlying Markov chain is small enough.

However, to get a comprehensive understanding of the capability of adaptive
feedback, one may naturally be concerned about the following questions: How fast the
rate of parameter changes can be captured by adaptation? Can we find a critical value
of the rate of parameter changes in characterizing the adaptive stabilizability ? What
are the key factors on which the capability of adaptation depends? These are puzzling
questions which are still lack of general theoretical understandings. As a starting
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point towards understanding the above questions, some initial effort has been made
in [12], where a simple first-order linear system with Markovian jump parameters was
considered. It was demonstrated in [12] that the key factor inherent in characterizing
the adaptive stabilizability is the information uncertainty of the underlying Markov
chain, coupled with the model complexity exhibited by the dispersion of the state
values of the system. The rate of parameter changes, however, is found to be not a
key factor in characterizing the capability of adaptation.

In the present paper, we shall study the adaptive stabilization problem of a gen-
eral class of linear time-varying (LTV) systems with hidden Markov jump parameters,
and provide a general necessary and sufficient condition to characterize the adaptive
stabilizability. Such a condition depends on the existence of a set of algebraic coupled
Riccati-like equations that are different from those already known for the non-adaptive
case. Several equivalent characterizations are also provided in this paper, which may
be helpful in either numerical computations or further theoretical investigations. It is
worth mentioning that our results may also give a quantitative evaluation of the capa-
bility and limitations of the feedback mechanism, as we have not restricted ourselves
to any special (e.g., linear) class of feedback laws in our study.

In the next section, we will present the main results and give some discussions.
Section IIT will give some auxiliary results that will be used in the proof of our main
theorems in Section IV. Section V will conclude the paper with some remarks.

2. The Main Results. Consider the following linear time-varying model:
(1) Tl = A(Ht)wt + B(Gt)ut + w1, t2> 1

where z; € R" ,uy € R™ and wy;1 € R™ are the state, input and noise vectors
respectively. We assume that:

Al). {6,} is an unobservable Markov chain which is homogeneous, non-reducible
and non-periodic, and which takes values in a finite set {1,2,--- , N} with transition
matrix denoted by P = (p;j) nxn~, where by definition p;; = P{6; = j|6;—1 = i};

A2). There exists some m x n matrix L such that
(2) det[(Ai — Aj) = (Bi = Bj)L] #0, Vi#j.

where 1 < 4,5 < N, and A; = A(i) € R™", B; 2 B(i) € R™™ are the system
matrices.

A3). {w:} is a martingale difference sequence which is independent of {6}, and
satisfies

(3) ol < Bwyw;, Ewyw; <oy, Vi
where ¢ and o,, are two positive constants.

We remark that Condition Al) implies that each state in {1,2,.....N} can be
visited by {6;} with positive probability when ¢ is suitably large, while Condition A2)
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is a sort of identifiability condition to be used later in the construction of stabilizing
feedback laws. Moreover, the lower bound to the noise covariance in Condition A3)
is assumed for simplicity of derivations, and the case where w; = 0,Vt can be treated
analogously.

For simplicity of presentation, we will denote S 2 {1,2,---, N} throughout the
paper.

Definition 2.1. An input sequence {u;} is said to be an admissible feedback if
ur € 0{z0, 71, ...y} and Ellug||* < oo, Vt, where o{zg,x1,......7;} is the o-algebra
generated by the observed state information {zg, z1, ...... x¢ }. Moreover, the system (1)
is said to be stabilizable by (adaptive) feedback if there exists an admissible feedback
law {u;} such that sup Ellx])? < o0.

>0

The main result of this paper is stated as follows:

Theorem 2.1. Let the above assumptions A1)-A3) hold for the control system
(1). Then the system is stabilizable by feedback if and only if the following cou-
pled algebraic Riccati-like equations have a solution consisting of N positive definite
matrices {M; > 0,i € S}:

> AjpiiMjA; - (ZA;piijBj)(ZB;piijBj)Jr(ZB;piijAj) - M; =1,
i i i i

where i € S and (-)" denotes the Moore-Penrose generalized-inverse of the corre-
sponding matrix.

Remark 2.1. In contrast to most of the previous publications in the literature,
we have neither restricted ourselves to the class of linear feedback laws, nor imposed
any conditions on the rate of parameter changes. Hence, Theorem 2.1 enables us to
explore the full capability and limitations of the feedback mechanism.

To further understand the key equation (4), we denote

(5) L; =

||l>

N
L* (M) (ZB]pUMB) (> BjpiiM;4;), i€S.

=1 j=1

where and hereafter M = [Mi, ..., Mn]'. Then by properties of generalized-inverse, it
is easy to see that (4) can be rewritten in the following form:

N
(6) > (A; = B;L})'pijM;(A; — B;L;) - M; = —I, i€S.

j=1
For the convenience of future discussion, we denote the first term on the left-
hand-side of (6) as v;(M), i.e.,
P
(7) (M) =) (Aj = B;L}) piyMj(A; — B;L7), €S
j=1

Obviously, 1;(+) is a nonlinear mapping from Hiv R™ " to R™>™_ Moreover, we denote
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N

(8) Y(M) = (1 (M), h2 (M), -+ N (M)
which plays a key role in characterizing the properties of the Riccati-like equation (4)
as will be shown shortly.

The following theorem presents several conditions equivalent to the existence of
the solution of the Riccati-like equations (4) used in Theorem 2.1, which may provide
alternative ways for checking the stabilizability of control systems.

Theorem 2.2. The following four facts are equivalent, :

(i). There exists a set of n x n positive definite matrices {M; > 0,7 € S} such
that for any i € S

! ! ! + !
) > AipMjA; — (D" Ajpi;M;B; ) (Y Bjp M;B;) " (> Bjpi; MjA;) — My = —1.
J J J J
(ii). There exists a set of m x n matrices {L;, i € S} such that the following coupled
equations have a solution consisting of positive definite matrices {M; > 0,i € S}:
N
(10) Z(A] - BjLi)’p,'ij(Aj - B]L,) —M;=-I, i€eS.

=1

(iii). tlim Vi = 0, where {V;} is defined recursively by
—o0

(11) Vin =9¢(Vy), Vo=1I

where 1(-) is defined in (8), and I* = (Lnxns- s Inxn)-

(iv). Jlim M < oo, where {M} € R™N*7™ i defined recursively by:
—»00

(12) Mp=¢(Mg  +1%); k>1, Mg =0"
where 9(-) and I* are defined as in (iii) above, and 0* = (O xn, -+ 5 O0nxn)-

Remark 2.2. Tt is interesting to compare equation (6) with the following equa-

tion:

N
(13) (Ai = BiLi)'[>_ piyM;)(A; = BiL;) = M; = -1, i€ S,

j=1
which was used in Ji and Chizeck [6] for the case where the Markov chain {6;} is
assumed to be observable. Obviously, the existence of the solution of equation (6)
derived in the present (adaptive) case should imply the existence of the solution of

(13). This is the content of the following proposition whose proof is given in Appendix
A,

Proposition 2.1. If there exists a set of m x n matrices {L;,i € S} such that
(6) has a solution {M; > 0,i € S}, then so does (13). However, the converse assertion
is not true in general.
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This proposition provides a rigorous comparison to the non-adaptive case, showing
that the uncertainty in the system parameters {6;} does indeed degrade the capability
of the feedback mechanism.

3. Some Auxiliary Lemmas. Lemma 3.1. Let M = (M;,--- ,My)' be a
matrix consisting of positive definite matrices {M;,7 € S}, and let {y;(M), i € S}
be defined as in (7). Then for any m x n matrices {L;, i € S}, the following matrix
inequalities hold :

Jj=1

Proof. First of all, by the properties of the generalized-inverse, it is not difficult to
verify that the matrix L} ;i € S defined by (5) satisfies the following matrix identity:

ZBépiijAj - ZBépiijBj -L¥=0, i€S8S.
J J
Then for any matrices L; € R™*" ;i € S, we have with some simple manipula-
tions,
>(Aj — BjLi)'pij M;(A; — B; L)
J

=>(Aj — BjLj + B;(Lj — Li))'pijM;(A; — B;Lj + B;(Lj — Li))
J

=3 (Aj — B;Lj)'pi; M;(A; — B;L}) + > (Li — Li)'Bjpi; M; B; (L — Li)
J

J
+ 3 (L7 = Li)' Bjpij M;(A; — B;Lj) + >3(A;j — B;L})'pij M; Bj (L; — L)
J J

= Z( L7)'pij M;(Aj — B;L7) + 3(Li — Li)' Bjpij M; B (Li — L)
J

- Z)ZB}pqu(Aj—BjLZ)Jr(( L)'T Bips M M;(A; - B;L))

Y (Aj = B L})' piyM;(Aj — B;L7) + > (L7 — Li)'Bjpij M; B (L — Li) + 0+ 0
J

J

~(Aj = B L7) pi Mj (A; — B;L7) = ¢(M;).

J

This completes the proof. 0

Lemma 3.2. Let the Markov chain {;} be given as in the system (1), and let
us define for any 1 < h <t

(15) II,,2 H (Be41-k) = B(Ber1-1) Li(Be-1)],
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where Ly (0;—1) is a 0{6;_} measurable m x n random matrix for 1 <k < h . Then
we have:

(i). There exists a sequence of i x n matrices {Lj ;,k > 1,j € S} such that for
anyt>1,i€ S,

(16 BT 1T o=} < £{IT I1, oo =1}

N

k * . * A *
(A(rr1-k) — B(Brya-r)Li(0i)) with Li(6—4) = D Lj;
i=1

where TT; , 2 H
Iig,_=j1-

.. A * T+ ) A
(ii). If we denote V;; = E{HMHMWO = z}, and set V; = (Vea,--,Vin)',
then for any ¢ > 0,

k=1

V;H-l = @Z}(V;f)a
where Vo = I*, and 9 () is defined as in (8).

Proof. We first recursively define a sequence of matrices {V;} as follows:

A~ A A~ A %
Vigr =9(Ve), k>0, Vo=1I"

By (7) and (8), we know that there exists a sequence of m x n matrices {Lj
such that

i€ S}

’Z’

(17) Vigri = 3 (Aj = BiLi1 ) pi Vi j (A — BiLiyy i)

J

We now proceed to show that {L} ;,j € S,k > 1} satisfies the requirement in (i)
and that V, = Vi, t > 0.
Obviously, the above assertion holds trivially for t = 0. For ¢t = 1, we have

E {H;,1H1,1|90 = Z}
= E{(A(6:) - B(9l)L1(90,))I(A(91) — B(61)L1(60))160 = i}
= E{(A(61) — B(61)L1:) (A(61) — B(6:1)L1,)|00 =i}
=Y (4j = BjL14)'pij(4; — B;L1,)

Hence by lemma 3.1 and the definition for L] ; in (17) we know that the matrices
{L7 ;,j € S} satisty (16) for the case of t =1, and Vi = ¢(Vp) = »(Vo) = Vh.

Now, let us assume that for ¢ = 7, {Lj .,k > 1,j € S} satisfies the following

2J7
inequality hold for any 0 < h <7

* * I
E {Hh,hHh,th - Z} <E {Hh,hHh,th - Z} ’
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and at the same time make Vj, = Vh.
Then fort =7+ 1

E {H’r+1,r+1nr+1,T+1|90 = l}
= E{E{(A(Gl) - B(91)Lr+1,i)'H'T+LTHT+LT (A(91) — 3(91)L7+1,i)|01}|00 = z}
= B{[A(6)) = B(61)Lri1i] B{TT. 41 T1. 1161 }[A(61) — B(61)Lrs1i]|60 = i}

= ZE{[Aj - BjLT‘*‘lﬁi]’E{H’rH,THTH,T|91 = j}[Aj - Ber+1,—;]I[gl=j]|90 = z}

= Z [Aj - BjLT+1,i]’E{H:—+1,-rHT+1,T|91 = j}[Aj - Bqu—+1,i]pij~
J

By the induction assumption and the homogeneous property, it is easy to see that
! . ! .
E{IL 1 Lo 0 = 3} = B{IL, 1. 160 = 7}

> B{ITTE 60 = 5} = E{IT 0 T l60 = )

=Viji=Vr;
Hence, we have

!
E {HT+1,T+1HT+1,T+1|90 - Z} 2 Z 45 - BjLTH’i]IpijVT’j [4j = BjLrsni
j

By Lemma 3.1 and the definition of {Lz’j, k>1,j € S}, it is evident that if we take
Liy1i=1L7,1€S, then

! "x * N
E {Hr+1,r+1Hr+1,r+1|00 - Z} = {Hr+1,r+1HT+1,T+1|00 - Z} = Vet = Ve,

Hence, the desired result is true by induction . 0

Lemma 3.3. Let £ > 1, and Z be a n X n nonnegative definite random matrix
which is bounded a.s. and is measurable with respect to o(y,0k+1,---). Then the
solution to the following optimization problem

min E[A(6)z, + B(0x)us] Z[AOk)zr + B(O)us]

up €Fp
can be expressed as uy = —L(0x_1)xk, where L(0_1) € 0(0x—1) is an m x n random
. A
matrix and where Fy, = 0(0o, 01, -+ ,0p_1; w1, wa, -+ ,wy).

N
Proof. Let us denote Z; = E(Z|6; = j),j € S, and L*(6p_1) = > Li (B 1 =
=1

1), where for i € S

N N
= > B}piijBj)+(Z Bjpij ZjA;).
Jj=1

=1
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By the properties of the generalized-inverse, it is easy to see that

Zij” (A; — B;L}) = 0.

Hence,
E{B'(6x)Z[A(6x) — B(6x)L* (64-1)]|6k—1 }
; E{B'(01)Z|A(6k) — B(0r)L}]|0k—1 = i} I1(Br—1 = i)

2

2

(18) =Y. BiE[ZI(6k = j)|0k—1 = i](Aj — B;L;)1(0k—1 = 9)
w
= Z B;Z;pij(Aj — B;L})I(0r—1 = i)
i,
=0.
Now, for any uy € Fy, we denote @y, = uyp + L*(0—1)x, then

[A(@k)wk + B(ek)uk]/Z[A(Qk)wk + B(Ok)uk]

= [(A(6r) — B(Ok)L* (By—1))zr, + B(Or)ar] Z[(A6%)
(19) —B(ek)L*(Ok_l))wk + B(ek)ﬂk]
=z} [A(0k) — B(Ox) L™ (0—1)]'Z[A(Or) — B(Ok)L* (Ok—1)] s,

+a;, B(6r)' ZB(0y)uy + 245, B(0r) Z[A(6)) — B(0k)L* (0k—1)]x
By noticing (18), we have

B, B(6k) Z[A(6x) — B(0k)L* (6k—1)]zx
= E{Eu}B(6)' Z(A(6r) — B(Or)L* (Or—1))zr|Fe]}
= E{u}E[B(6r)' Z(A(6r) — B(6r)L* (6r—1))|0k—1]ax }
=0
Hence it follows from (19) that for any uy, € F,
E[A(By)zi + B(O)ur] Z[A(6r)xr, + B(Or)us)
> Exj[A(6x) — B(6x) L (6x—1)]' Z[A(6k) — B(6k) L™ (Or—1)]s-

Therefore the lemma is true and uy = —L*(6j_1 )z}, is the desired minima .

4. The Proof of the Theorems.
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4.1. The proof of Theorem 2.1. Necessity: Let the system (1) be sta-
bilizable by feedback, i.e., there exists an admissible feedback law {u:} such that
lim sup Elz4])* < oo. Then by Theorem 2.2 we need only to show that hm =0

t—

holds true, where V; is defined as in (11).

Throughout the sequel, we denote
A
(20) Fi =0(60,01,- - ,0i 1;wi,wa, -+, wy).

For the system (1), by Lemma 3.3 we have

Ex, w1 = E[A(B)z + B(0)ug) [AB)z: + B0 us] + Ew)y ywisq
Z minut cF: E[A(Ht)a:t + B(Gt)ut]l[A(Ot):rt =+ B(Ot)ut] =+ Ew£+1wt+1

= El’;[A(at) — B(Gt)Ll(Ht,l)]l[A(ﬁt) — B(Ht)Ll (9t,1)]1’t + Ew£+1wt+1

E[A(B—1)zi—1 + B(0i—1)ui—1] [A(6;) — B(8)L1(6,-1)]
[A(at) B(6;)L; (6 1)][14(91‘,71)1}71 + B(etfl)utfl]
+Ew; [él 8;) — B(6:)L1(6:-1)] [A(8:) — B(6:) L1 (61-1)Jwy + Buw)ywepy

> Ex)_, ( | Iy (9t+1fk)Lk(9tfk)])l

k=1
2

( | | QRN (0t+17k)Lk(9t7k)])xt71

k=1

+Ew}[A(6:) — B(8:)L1(6:-1)] [A(6:) — B(6:) L1 (6p—1)|ws + Ew)yywei

Continuing this argument, we will get

t
!
(21) Exj w1 > ) wastth th W1 hs

h

where [T, , = [] [ABer1-x) — BBir1-4)Le(Be—s)]-
k=1

Now, it follows from the assumption A1) that there exists some ¢o and € > 0, such
that whenever t > to, P(6; =1i) > € > 0, Vi € S. For the convenience of presentation,
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we may take to = 0. Hence by the Markovian property and Lemma 3.2 we have:

N
szlt—i-l—hH:E,th,hwt'i‘l—h = szlt—i-l—h( ; E(H;,hnt,hwt—h =1)- I[0t_h=z'])wt+1—h
' N ! .
= Ethrlfh( 21 E(Hh,hHh,th =1)- I[et—h:i})wt*Fl*h
1=

N
2 szlt-i-l—h( ; Vi - I[et_hzz'])wtﬂ—h

N

> Y eBwy 3 Vhiwit1
i=1

N
e 2 tr{ E(Vhiwrs1-nwiyy p)}
=1

2

= Z tr{Vs,; - (Bwywy)} > eo itT(Vh,i)-

where o is given in Assumption A3). Hence, it follows from (21) that

t N

Exy x40 > €0 Z Z tr(Vi,i)-

h=1 i=1

Hence we have lim Z tr(Vh,i) < oo, Vi € S. This implies that lim V; = 0. Hence the
proof of the necessmy part of Theorem 2.1 is completed. 0

4.2, Sufficiency. The proof is divided into several steps.

Step 1. We first construct the stabilizing adaptive feedback.

By (6) and Assumption A2), it is not difficult to convince oneself that we may
find a set of n x m matrices {L{,i € S} from a small perturbation of the matrices
{Lj,i € S}, such that

N

(22) > (Aj — B;LY)'piyM;(A; — B;L{) < M;, i€S,
j=1

and that

(23) det[(A; — Aj) — (B; — Bj)LY)| #£0, Vi#j,l€S.

Now, the adaptive feedback law can be defined as
(24) U = —La(ét_l) - Tt
where ;_; is the estimate of 0:—1, defined by

(25) 6, 1 = argmin ||z, — (A;zi—1 + Biui—1)]|,
1<i<N
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Step 2. We then show that
(26) Gii 2 {B—1 # 031} C U {2} 1Dl Dijiwe—1 + 2w Dijiwp—1 <0}
i#j,l
where 6;_; is defined by (25)and Dyj; is defined by
(27) Dij 2 [4; — A; - (B, - B))L],
By(25), O5_1 # 0_1 implies that there exists i € S,i # 6;_1 such that

[:Ck - (Ai - BiLé(ék—Q))xk—l]’[xk - (Ai - BiLé(ék—Q))xk—l]
< [or = (ABr-1) = BOr-1) L (B1—2) )n—1] [2x — (A(Bk—1) — B(Or—1)L° (Br—2) ) wi—1]
= W wg.

Substituting (1) into the above inequality, we see that there exists i € S,i # 0_1
such that

! /
Ik,ID

.~ D A Xp—1+ 2w D A xp_1 < 0.
Or—1,8,0k—2 Or_1,%,60k 2 ket k kol =

Or—1,1,0k 2

Hence, we get

{Bk—1 # 611} C U {m;cle;'leijlwk—l + 2w} Dijizi—1 < 0},
#7551

which is (26).
Step 3. We further show that the set Gy_1 defined by (26) can be estimated by

(28) Gr-1 C {$2+1$k+1 < pllwel* + 2[Jwp1* }-
Obviously, we need only to consider the last term in (26). Note that
0> 2} 1D} Dijiwp—1 + 2w Dijizwp—1 > [|[Dijime—1|” — 2llwg| - | Pijiwe—1ll,
which implies that
IDijizr—1ll < 2llwill, or [[Dijiwe—1|* < 4llwg 1.
From this, it follows that

4
(29) el < 5= llwsl

where A_ is defined by

(30) Min Amin(Dij Diji) = A > 0.
i#],l
and where Apipn(-) denotes the minimum eigenvalue of a matrix. The property (23)
has been used to guarantee that A\_; is positive.
Now, by (1) and (24), we have zj, = [A(6x—1) — B(0x—1) L (05—2)]xp—1 + wy, and
therefore,

iy < 20| A1) = B(0x—1)L° Gr-2)II” - llwx—1|I” + 2lJwi] .
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Consequently, there exists a constant p; > 0, such that

4
lzell* < 20 - —llwill? + 2ljw]* = (
A A

+2)Jw|?

Similarly , from this and @441 = [A(6x) — B(6x) L (0r_1)]zx + wiy1 it follows that

Fhamier <2400 ~ BOIL @) el + 2wen?
8
< 2+ (5 4 9)un? + 2w |

Hence, the assertion (28) is true.
Step 4. Finally we estimate the upper bound of Ex}, zy1.
For any ¢ > 4 and for ]ﬁ[t’k defined by (39), we have

Exi x4 = E$2+1$t+1IG§_1 + Bz melg, |
< Ezj[A(6y) — B(04) L (0:-1))'[A(B:) — B(6:) L (61—1)]we+
Ewiywiepr + By wenlg, |
< Ewgﬂ;’lﬂt’lwt + oy + Ewg_,_lthIGt_l
= Em:ﬁﬂ;,lﬂt,lxtl’G§72 + Ex:tﬂ:mﬂmxtIGt,z tow+ Brp g zealg, |
< Em%flﬂ;gﬂt,ﬂt*l + Ewéﬂ;Jﬂmwt + Em%ﬂ;,lﬂt,lxt‘[Gt,Q

+0w + E$£+1xt+1IGt71 .

Iterating this argument, we finally have for any ¢ > 4,

~ 1 ~ t ~ 1 ~
Exi w41 < EméHt,t—lHt,t—lxz + kES Ex;cHt,t—k+1Ht,t—k+1$kIGk72
(31) -

t N .
! !
Bzl |+ kzs Ewi [Ty g1 Ili - pprwn + 0w

Now, denote Fy, = (00,01, ,0k_1;w1, -+ ,wg), k> 1. Then by zy € Fi, G2 €
Fr_1, we have

~ I ~
Em;cHt,t—k-H Ht,t—k+1wkIGk_2
~ I ~
=FE {E[m;cnt,t—k-i-l Ht,t—k+1wkIGk_2 |fk]}
~ ~
= Em;cE[Ht,tfk+1Ht,t7k+1|‘7:k]mkIGk_2

~ ~
= Em;eE[Ht,tfk+1 Ht,t7k+1 |9k—1]mkIGk_2 -
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Hence by Lemma 3.6 ii) in Appendix B and (28)we get

t—k+1

~ A
! !
EmkHt,t7k+1Ht,t7k+1mkIGk_2 < cop -EwkkuGk_Q

< t—k+1 | Ex' T
3 < 0P B o < gl + 2

< cop "1 E(pllwi—1]|* + 2|lw ||?)

=co(p + 2)o,pt~kF1

Moreover, by Lemma A1l in Appendix B again, we have

Al ~ ~ ~
(33) Bwi I s gl pprwe = By, (EHt,t—k—H Ht,t—k+1)wk < cop' Moy,

Combining (32) and (33), it follows from (31) that

S S i
Exj e < Eab[]y 1 Ilie1m2 + 2 colp+2)awp! =1
k=3

tktly 4G

t
+Ez 1 lg, |+ D cop
k=3
Finally, by the assertion in Step 2 and Lemma A.1 in Appendix B we have
Al A
Exj 2py1 < E{E[x’QHt’t_IHt7t_1x2|f2]} +eo(pu+2)oy - 11_1)

+ B (pl|we|? + 2||wes1]]?) + coouql—p + o
3co+ (L+co)p +2

= E{xéE[ﬂ;,t—lﬂt,t—l|‘7:2]$2} + T—p Ow + Oy
< copt™t- Exhzs + 3¢ + (i t ICOO)'U + 20w + oy
< coExhzs + 3co + q t ;O)M * 20w + 0.
This completes the proof of Theorem 2.1. 0

4.3. The proof of Theorem 2.2. (1) We first show that (i) = (ii). However,
this is obvious by (6).

(2) Next we show that (ii) = (iii). By (10), it is obvious that AM; > I, and that
there exists a constant 0 < A\; < 1 such that M; — I < A\ M;, i € S. Hence, by (10)
and the definition of V;, we have

Vi = (") < $(M) < MM,
Vo = (Vi) < (M M) < (M) M,

where M 2 (My,--+,My)". Interating this argument, we can get
Vi< ()M, t>1

which implies the assertion (iii).
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(3). We now prove that (iii) = (iv).

In what follows, for two nN xn matrices P = [Py, ...... ,Py]"and Q = [Q1, ...... , QN
), we will simply denote P < @ if P; < Q; for all 1 < j < N. Thus, by (iii) we may
take K > 0 large enough such that Vi < %I*.

From the definitions of Vj, and % (-) it follows that there exists {Lj
k < K} such that

i€S1<

72’

Z(Aj — BjL; )'pijVi—1,j(A; = BjLy ;) =V i€ S, 1<k< K.
J
Now, for any Q = (Q1, -+ ,@n)" with Q; > 0, and for any 1 < k < K, we define
the following mapping:

D1(Q) = [£1(Q), v, DN (Q)]

where ¢y;(Q) is defined by
A " N .
$ri(Q) =D (Aj — BjL; )'pijQ;(A; — BiLy,), i €S,
J
For the case where k > K + 1, we define ¢, (Q) as follows:

o[ Q), ifk=mK+1, 1<I<K -1
@)= { ox(@Q), if k= mK,

It is quite obvious that these mappings are linear in Q and that the following holds:

(34) ¢KO¢K—1°"'°¢1(I*):VKS%I*.

Next, we prove the following inequality by induction:
t
(35) S prodio-opn(I") > M, t>1.
h=1

In fact, the case where ¢t = 1 is obvious. Now, let us assume that for some ¢t = g
the assertion is true. Then by linearity of ¢ (-), we have

to+1
Y. Ptot10 ¢y 00 pp(I*)
h=1

to

= ¢t0+1(1*) + ¢t0+1(hz ¢to o ¢t0—1 ©--0 ¢h(1*))
=1

> hro41 (1" + M)

> Mg .

where for the last step we have used the optimality of L} |, as established in Lemma
3.1. Hence (35) is true.
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Next, it is easy to see that there is a constant ¢ > 0 such that:
Pry © Pry—1 0 0Py, (I") <c- 1", VI<k <k <K.

Hence, by the definition of ¢y and (34) we have

Grogi_1o-0dp(I*) < (

from which we have ,

t
Y btogs10---0du(I")
h=1

Hence, it follow from (35) that {M;'} is a bounded sequence. However, by induction
and Lemma 3.1 it is esay to see that M is nondecreasing, or My, , > My, Vk > 0.
Hence the assertion (iv) is true. 0

(4). Finally, we show that (iv) = (i). Let the limit of M}, be denoted by M},
and let us set M* 2 (My,---,M5%). Then, it is obvious that ¥(M* + I*) = M*.
Therefore, if we take L},i € S as

(36) Z ' pis (M +T7) Z ' pij (M + %) A;),

Then it follows that

Z ipij (M +I")A; = > Bjpij(M; +I")B; - L} = 0.
J

Hence for any i € S,

i(M* +I7) = 3 2(A;j — B;Ly)'pij (M} + I")(A; — B;Lj)
J

= ZA;])”(MJ* + I*)Aj — ZA;])U(M; + I*)BJL:
J J
—L; - (X Bjpij(Mj + I")A; = 3 Bjpij(M; + I*)B;L})
J J
= ZAJPU(M; + I*)Aj - ZA;pij(M; + I*)_BJL;<
J

= ZA;])”(MJ* + I*)Aj
J

—( 3 Ajpiy (M +I7)B;) (3 Bipij (M7 +I")B )(E 1pij (M + I7) 4;),
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Thus we have

> Alpii (M + I7)A;
J

~( S A5pi; (M +T7)B;) (X Bipiy (M +T7)B;) " (X Blpiy(M; +17)A;) = M; .
J J J

Hence the first assertion (i) follows by setting M; = M +I. This completes the proof
of Theorem 2.2.

5. Concluding Remarks. We have in this paper presented a necessary and
sufficient condition in characterizing the adaptive stabilizability of finite-dimensional
linear systems with complete state information but with unknown time-varying pa-
rameters modeled as a finite state Markov chain. Such a characterization provides a
quantitative assessment of the capability and limitations of adaptive feedback, which
depend, in a complicated way, on both the information uncertainty described by the
transition probability {p;;} of the Markov chain and the model complexity described
by the (dispersion of) system matrices {4;,B;,1 < j < N}. Obviously, there are
many directions in which the results of the present paper can be generalized, and
which require further investigation.

Appendix A: The proof of Proposition 2.1. (i). We first show that if the
Riccati-like equation (4) has a solution {M; > 0, € S}, then so does the equation
(13).

Let {M},t > 0} be the nondecreasing sequence on nonnegative matrices defined
recursively as in (12). Then , by Theorem 2.2 we know that M;* has a finite limit
M* 2 (Mur,-- , Moo n).

Now, let us introduce another sequence of matrices {Uy, ¢t > 0}:

Uy = 0%,
(37) Uty1, = . Q%QM > (A - BiLi)’pz’j(Ut,j +1)(A; - BiLi)I;
: j
U1 = Uis1,1,Upgr,2,- - , U1 N)'-

Similar to the proof of Lemma 3.1, it is easy to see that U;,t > 0 exist. Moreover, it
can also be shown by induction that U, ¢t > 0 is nondecreasing

We now proceed to show that for any ¢ € S and ¢ > 0,

(38) > pijUs; < M;,.
j

The case where ¢t = 0 is obvious. Now let us assume that for ¢t = 7 we have
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> pijUr; < M, Vi€ S. Then for t = 7 + 1 we have

T,4°

J

;pijUrﬂ,f = %:pij Wyjn; (4; = B;L;) pju(Urs + I)(4; - B;L;)
= %)pz'j “min (4; = B;L;) ( Xl:PﬂUr,l +1)(4; - B;L;)
< 2o pij “min (4) = BiL,) (M7, + 1) (4; - B;L;)
< T:}m %:pij(Aj — BjLi) (M;; +1I)(4; - B; L)

— *
- MT+1,i‘

Hence (38) is true.
For further derivation, we assume (without loss of generality) that ) p;; > 0,Vj €
i
S. Then, by letting ¢ — oc in (38), we get > pijUc,; < M3, ;, i € S. Hence we must
J

have Uy j < 00,j € S. Furthermore, let t — oo in (37) we get

Use.s = min Z (A; = B;L;) pij(Uso; + D) (A; — BiL;)'.
J

Therefore {Us; + 1,7 € S} is the solution for (13).

(ii). We now give an example showing that the converse assertion of (i) is not
true in general. Consider the scalar case where the Markov chain has two states only:
a; = —1 and a9 = 1 with P11 = P12 = P21 = P22 = %

In this case the equation (13) takes the following form:
(=1 = 0)2(EM; + $M) = My = -1,
(1= 1) (3My + $Mp) — My = 1.
Obviously, I; = =1, Il = 1, My = M, = 1 satisfy this equation. However, we will
shall that the Riccati-like equation (4) which takes the following form
(~1—u)2dan + (10— 1)?d My — by = -1,
(~1 =240 + (1 - 1) d My — 2y = -1

has no solution.

In fact, if {l1,l,} together with {A; > 0, M> > 0} were a solution to the above
equation, then
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0> (-1-0)2dan + (1 -1, -0y

> L((-1-0) + 1 - 1)) min{My, My} — M,y

v

% -2 min{Ml,Mg} — M1

= min{My, My} — M.

Hence we have My > min{M,, M>}. Similarly, we can get My > min{M;, M>}. This
is certainly impossible, and the proof is completed. 0

Appendix B: Lemma A.1 and its Proof Lemma A.1. Let {L¢,i € S}
be defined as in (22) and (23), and let

o =1,
I, 2 [A(6) — BO)L B1)] -+ [ABe—r 1) — BBr—pp1) L (Be-s)],
1< k<t

~ 1 ~
Vi 2 B[, T, J0 =il ies

(39)

Then, we have the following two assertions:

i). For any ¢ > 0 and ¢ € S, we have Vo,i =T and

N
(40) Vieri = Y (4 — B;LY) iV (A; — B;LY).

j=1

ii). There exist two constants ¢g > 0 and 0 < p < 1 such that for any 1 <k <t
A~ ! ~ k
=1 < ¢ ) .
(41) E[Ht,knt,kwt*k i| <coptl, i€ S

Proof.
i). Note that

‘A/;Jrlai = E{ﬂ1+l,t+lﬂt+1,t+1|90 = Z}
= E{[A®6) - B(el)ﬁ(90)]’ﬂ;+11tf{t+11t[A(el) — B(61)L%(60)]|60 = i }

- E{E{[A(Gl) — B(81)L°(60)] T2 T 1,4 . [A(61) — B(61)L° (60)] 160, 61 }6o = z}
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Then by the homogeneous and the strong Markovian properties, we get

Vieri = B{[A(62) = BODL 00)] [T 41, IT,41.100.6:][A(6:) = B(6:)L9 (60)]160 = i}
— E{[A(Hl) — B(6:1) L (80)) B[40 I1,s1.161][A(6:1) — B(61) L% (60)] |60 = z}

E{[AJ' - Bng]lE[ﬂ;+1,tﬂt+1,t|91 = j] [Aj - Bng]I[(h:j]wO = Z}

I
M=

.
Il
=

> [4; = B3] Ve [A; = B L] - Bl10,=5)/60 = i
J

=Y [4; - B8] pi;Vi s[4, - BiLY].
J

ii). By the strong Markovian property of {6}, we have

HtkHtk|tk Hkkak 0l

Al A A
Hence we need only to show that: E[[], ], 160 = i] < cop'Tor Vi; < cop'l.
Since {L¢,i € S} satisfies (22), there exists a constant 0 < p < 1 such that

N
(42) > (A = BiLY)'pizMj(A; = B;L}) < pM;, i€ S.
j=1
Moreover, there exist constants ¢; > 0 and ¢ > 0 such that ¢11 < M; < oI, Vi € S.
Hence, by (i) we have

Vi =30 (4 = BiL2) pil (4 — BiLY) < 2 ¥ (4 — By L) piy M (4; — By L?)
] J
~ - clpM“ ’ N
Vi =3 (4; = B;LY) piVi; (4 - BiLY) < &p 3 (4 L) piyM; (A; — B;LY)
] J
< CIP *M;, i€8S.

Similarly, we have
. 1, ,
V;E,i S —p Mi: i€S.
C1
Hence, we have
Vi< 201, ies.
C1
and the proof of Lemma A.1 is completed. 0
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