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with ®,(-) a nonlinear function. Pre-assigning the valuedefresults  [10] J. Swevers, F. Al-Bender, C. Ganseman, and T. Prajogo, “An integrated
in a nonlinear equation which is linear in the unknown paraméférs friction model structure with improved presliding behavior for accu-

These parameters can be determined using a least-squares method [7]. gg_fgggoggfrggggsa“omEEE Trans. Automat. Confvol. 45, pp.

Thelchosen values fo]sl are eqyally spaced within the range of de- [11] M. Versteyhe, “Development of an Ultra-Stiff Piezostepper With
flection of the asperity (the maximum value of The more elements Nanometer Resolution,” Ph.D. dissertation, Division PMA, Dept. of

used, the more accurate the approximation will be, but on the other ~ Mechanical Engineering, Katholieke Universiteit Leuven, Leuven,
hand the computational complexity is proportional to the number of ~ Belgium. 2000.

elements used. The mimimur, -value is limited by the noise on the
measurement results. If th; -value is smaller than the noise level, the
model will create inner loops due to the noise and not to the change in
deflection.

The advantage of the Maxwell slip implementation is the elimina-
tion of the stack overflow problem. Looking at the free response of
a mass-spring system with limited friction from an initial state which
does not correspond to an equilibrium, the position and the state vari-
ablez will have a lightly damped oscillating behavior, resulting in sev-
eral velocity reversals without closing of inner loops, causing the ad- Apstract—Feedback is ubiquitous and is a basic concept in the area of
dition of maximum and minimum values @, (z) on the stacksnin  control, where it is used primarily for reducing internal or external un-
andmax. When the maximum lengths of the stacks are limited this c&grtainties, or both. In this note, we will study the capability of feedback

lead to the problem of stack overflow. The Maxwell slip method usd 36aling with both interal and external uncertainties for a class ofpth
order nonlinear autoregressive control systems. The size of the uncertainty

onlyqfixed number of memory places equal to the number of elemefiQiescribed by the Lipschitz constant (sayL.) of the uncertain nonlinear
used in the implementation. function in consideration. It is shown that if p and L satisfy a certain in-
In the Maxwell slip implementation, the initial curve of the hys-equality, then there exists no globally stabilizing feedback for the corre-

teresis behavior is implicitly taken into account in the equations. Fgponding class of uncertain systems, and thus finding a quantitative limit
. . . . . o tQ the capability of the feedback mechanism in dealing with structural un-

the implementation described in [10], working on the initial curve ang, 1~inties.

reentering the initial curve needs an extra implementation for those two

cases. Index Terms—Feedback, nonlinear, stability, uncertainity.
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This paper briefly discusses the integrated friction model structure,Feedback is ubiquitous and is a basic concept in automatic control.
called the Leuven model, and proposes two improvements to this primary objective is to reduce the effects of the plant uncertainty
model. The first modification reformulates the nonlinear state equation the desired control performance. The uncertainty of a plant includes
in order to obtain always a continuous friction force. The secorubth internal (structure) uncertainty and external (disturbance) uncer-
modification solves the problem of stack overflow, which may occuainty and, in general, the former is harder to cope with than the latter.
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control methods, motivated the extensive research activities in an atieen there exists no globally stabilizing feedback law for the corre-

called control-oriented worst-case identification in the 1990s. Durirgponding class of uncertain systems and thus finding a quantitative limit

the same period, significant progress has also been made [8], [9}drthe capability of the feedback mechanism in dealing with structural

linking the theories of identification, feedback, information and comincertainties.

plexity following the framework and philosophy developed by Zames The remainder of this note is organized as follows. In Section II,

[3], [B]7]- we will present the main results of the note. Two auxiliary lemmas are
Adaptive control is a nonlinear feedback technique which perfornmsesented in Section Ill, which will be used in Section 1V in the proofs

identification (or learning) and feedback control simultaneously in thef the main theorem.

same feedback loop, which is known to be a powerful tool in dealing

with systems with large uncertainties. A well-developed theory is now II. MAIN RESULTS

available for the adaptive control of both continuous- and discrete-time ) ) ) ) )

linear systems since the end of the 1970s in [10]-[12]. Much progres_SConS|derthefoIIowmgzth-orderdlscrete-tlme nonlinear autoregres-

has also been made for adaptive control of nonlinear continuous-tif{$e control model:

systems with linear unknown parameters [13]. However, essential dif-

ficulties emerge for adaptive control of discrete-time nonlinear systems

when the nonlinearities have a nonlinear growth rate [14], [15]. where {y:}, {u;} and {w,} are the system output, input and noise

The above analyzes show that, to study the limits of the feedbas%quences respectively,> 1 is an integer and the function(-) :

mechanism, we have to place ourselves in a framework that is SO _, R! is assumed to be completely unknown, but belongs to the
what beyond those of the classical robust control and adaptive Com'f8y|lowing'class of functions: '

First, the system structural uncertainty may be nonlinear and nonpara-

Yerr =9 (Y, Ye—14- -, Ye—pr1) F s Fwerr, >0 (1)

metric and a useful or reliable ball containing the true plant and cen- G(L) é{g(.) R? — RY g (X1) = g (X))
tered at a known nominal model, may not be availaijeiori; Second, -
we need to study the limits of the full feedback mechanism which in- < LX: — X2, VX1, Xs € IRJ’} )

cludes all (nonlinear and time-varying) causal mappings, rather than
confined to a fixed feedback law or a set of specific (e.g., linear) feeghere|| x| £ P |ail, VX = (21, 29,...,2,) € R” andL > 0
back laws. We shall also work with discrete-time control models, g a constant. Obviously, the larger the constanthe larger the un-
they can reflect the limitations of actuator and sensor in a certain seggetainty of the clasg (L) is. Hence,L may be regarded as a mea-
when implemented with digital computers. It is fairly well-known thakyre of the “size” of uncertainty for clagk ). It is well known that
in the present case, the high gain and nonlinear damping approadhgsy “common” practical nonlinear phenomena, e.g., saturation and
which are so powerful in the continuous-time case are no longer effegsad-zone etc., are included in the class of functions satisfying the Lip-
tive now. schitz condition.

This note is a continuation of a series of studies on the limits of the | this note, we are primarily interested in the following question:

feedback mechanism started in [14], where it was found and rigorougiyhat are the limits of feedback in dealing with uncertain systems (1)
proved that for a typical class of nonlinear discrete-time systems wWighy any ¢(-) € G(L)?

(even) scalar unknown parameters, the design of the globally stabiin order to give a rigorous answer to the above question, we need to
lizing feedback is impossible when the growth rate of the nonlineagive a precise definition of feedback first.
ities is greater thaw(x*). This result has been extended to a class of pefinition: A sequencéu, } is called a feedback control law if at

uncertain nonlinear systems with unknown vector parameters in [1ghch step > 0, u, is a causal function of the observatiofg }, i.e.,
For the more complicated nonparametric case, a natural way of con-

structing the adaptive control law is to use nonparametric estimation wy = he (yi,1 < t) (3)
methods [18] which, however, can only be proven to be able to deal

with open-loop stable nonlinear systems [19]. Recently, [16] madendereh(-) : R'™? — IR' can be an arbitrary(nonlinear and time-
significant step in this direction, investigated the capability and limitgarying) mapping at each step

of feedback in controlling a class of first-order discrete-time dynam- The main result of this note is stated in the following theorem, which
ical control systems with nonparametric uncertainties. By introduciggjovides a limit to the capability of feedback in terms of the Lipschitz
asuitable norni-|| (called the generalized Lipschitz norm) in the spaceonstantZ and the system order.

of all nonlinear functions, the authors have given a complete characterTheorem 1: IfL > 0 andp > 1 satisfy

ization of the capability and limits of the feedback mechanism. To be

precise, it was shown in [16] that the maximum uncertainty that can be L+ 1 > 1+</ﬁ <1 + l) , pL>1 (4)
dealt with by feedback is a ball with radigg2 + +/2 in this normed 2 b

function space. Analogously, for sampled-data control systems men there exists an unbounded doma&inC IR such that for any

uncertain nonparametric nonlinearities, it has been shown that if tﬂﬂ?tial values (yo,y—1.-...y—p+1) € D and any feedback control
sampling period is larger than a certain value, then globally stabilizirpgN (), t > (’)} in/(3) 7thepre always exists somee G(L) such

samplgd-data feedback does not existin general even if the nonlineafity; o corresponding closed-loop system (1) with (3) is unstable, i.e.,
has a linear growth rate [17]. sup, || = o0
. . . . > t>0 - '
The purpose of this noteis to generalize some results in [16] to moreg S ark 1: Obviously, the “negative” result established in the above
general high order nonlinear control systems. We shall show that {ﬂ'éorem holds also true for any model classes, as long as the model

a class opth order nonlinear autoregressive control systems with thg,sq (1) is included as a subclass. We remark that for the case where
size of the uncertainty described by the Lipschitz constant [9agf » = 1, the inequality (4) becomeB > 3/2 + /2, which has been

the un_certam rjonlln_eelir function in consideration, &ndLL satisfy the - g6\ to be a critical case for feedback stabilization [16],i.e.,itis also
following relationship: a necessary condition for nonstabilizability. However, in the case where
1 i+ 1 p > 1, whether or not the condition (4) is necessary for nonstabiliz-
L+ 2 z vl <1 + ;) - pL>1 ability is still an open question.
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lll. Two AUXILIARY LEMMAS

In this section, we present two auxiliary lemmas which will be

needed in the proofs of the main theorem stated in the last section.
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Substitute the firsp equations into the last one, we then have

gt — <L + %) A4+ L=0. 7

Lemma 1: IfL > 0, then the inequality (4) is the necessary and
sufficient condition for the following equation to have a real root in (1By Lemma 1, we know that the above equation has a real root in (1,

+o00):
p+1 1 P
2T — L+§ 2P+ L =0. (5)
Proof: Sufficiency:
By (4), we have
1 1 1
L+§Z”\/p[/ 14-]—7 >1+2_? (6)
and
p+1 , p+1
<L + l) > M (7)
2 pP
Now, denote
b(x) £ 27T — <L + %) a’ + L (8)
then
V(z)=(p+ 12" — P <L + %) Pt
_ 1 p
— 2P - P
=(p+ 1)z <J, <L+2)p+1>. 9)
Letz, £ (L + 1/2)p/p + 1, then from (6) and (7) we have
zp >1 and b(xp) <0. (20)

Then from the fact thali(1) = 1/2 > 0 and thath() is continuous,
we know that there must exist € (1, z,] which satisfied(zo) = 0.
Hence, the sufficiency of Lemma 1 is true.

Necessity: Suppose that (5) has a real root i, oc), then
ming>1 b(z) < 0. By (9), We know thatb(x) must reach the
minimum in (1, +o¢) at the pointz,. Hence, (10) holds. Substituting
the value ofr,, into (10), we have (4). O

Lemma2: Under the assumption of (4), if a sequengg satisfies

Toppt =T—pto = o =w0 =0, 21 >0 (12)
and

Tyt 2> <L + %) @k — Lag—p, k2> 1 (12)
then

Tp+1 —xp >0, Yk > 0 and klim T = 00 (13)
Moreover,

1
<L - 5) vr — Lap_p >0, Vk > 1. (14)

Proof: We can rewrite (12) as

Trr1 — Poxr > P (e — Bowk—1) + -+ Bp (Xhept1 — Bor—p)

(15)
wherego, 31,. .., 3, satisfy the following equations:
Bo+ 581 =L+ %
B2 = (3150
: (16)
31) = 81)—1,80

3])/30 = L

+00). Let 3y be the smallest root of (17) in (3;00), then by (16), we
have

Bo>1 and 3 >0, i=12,....p. (18)
Denotez, £ x — Bowr—1, Vk > —p + 2. By (11), we have
Zept2 =F—pyg = =2z0=0, z1 =21 >0 (29)
Zhg1 2Bk 4 Bozko1 4o+ Bpzkpi1s VE > 1. (20)
By (18)—(20), it is easy to see that > 0, Vk > 1. Hence
Thp1 > Boxk > Bowr_1 > - > fBoxr > 0. (21)

So, bys, > 1 andz; > 0, we have
Tp41 — 2k > 0,VE >0 and klim T = 00.
Hence, (13) holds. Moreover, from (12) and (15), it follows that:

<L — %) xx — Lag—p = (8o — 1) i,

+h1ze + Bazi—r + -+ Bpzr—pr1. (22)

From this, (14) holds. O

IV. THE PROOF OF THEMAIN THEOREM

Proof of Theorem 1:We first introduce some notations. Note that

Yo, Y—1,--.,Y—p+1 are initial values and, is the output at step.
Define
7oA . a .
R @3
and
Bi21b.b], t>-p+1 and AB_,11 £ B_,4,
AB 2B, — B,_,, t>—-p+2, (24)
and
|Bl| égl b t>-p+1 and |AB—p+l| = 0,
|AB| £|Bi| = |Biea|, t>-p+2. (25)
By (23)
by >bi—y, b, <b,_, and (Et _Et—l) (bt - Qt71) =0

we know that the interval sequengB;, ¢t > —p+1} is nondecreasing
and thatA B, is also an interval (can be a null $8t Note that

t
B,= |J ABi, and ABi()AB; =0, i#j.

t=—p+1

(26)
For any pointe € IR' and any setB C IR', define a distance
functiond(-,-) as

d(a,B) 2 inf la — b 27
beER

and if B = {b}, we rewrited(a, B) asd(a,b) £ |a — b|.
Then, itis clear thatAB;| = d(y:, Bi—1),t > —p + 2.
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According to the above notations, we now introduce the domain
for the value of the initial conditions, shown in (28) at the bottom of

the page. It is easy to see tHatis an unbounded domain @&”. Now,
we will introduce a class of functions dR'. For a givenL, define

F@)2{f R = RIf (1) = f (22)]

< L|wr — x2|,Yar, 22 € R } (29)

Itis obvious that iff; € F(L),: = 1,2,...,p and

cxp) = fi(z) + falae) + 0+ fp (2p)
theng € G(L), whereG(L) is defined by (2).
In the following, we will construcyf; € F(L),i = 1,2,...,p,such

that for any initial valugyo, y—1,...,y—p+1) € D and any feedback
law us = he(yq, i < t), the following closed-loop system:

Yer1r = fr(ye) + fo (Ye—1) + -+ fo (Ye—p+1) +us + wigr, £ >0
is unstable.

We divide our analysis into three steps.
Step 1) For any{yo,y—1,...,4—p+1) € D, we can choose;; €

R to define the values of;(y;).i = 1,2,...,p — 1.j =
—i,—i —1,...,—p + 1, under the condition of; € F(L),

g(z1,22,...

fily;) =aij,i=1,2,...,p—1,
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By (26), we know tha{B:| = 3°;__ ., |AB;|. Since
(Y0, Y=1,-.-,Y—p+1) € D, by the definition ofD and the
above equality, we have

1 .
|AB-p+i|z<L—§) Bopricil, i=34,....0. (32

From (4), we know thaf. > 1/2, so|AB_,+:| > 0, i.e.,
Y—pti € B_p+i_1, t=2,3,...,p. Define
bopre 1 2 {E—P-H—h it y—pri > bpyivi
il =

. 33
ify—pri <O_piioy 33)

b

Z—pti—1>2

wherei = 2,3,...,p. By the definition of 7_,, we know
that f;(b—;), ¢« = 1,2,...,p — 1 are constants for all

(.f11f2a"'1fll) € ‘7_'—1'
Sincef; € F(L), fi(y—i+1) can be any value in the in-
terval

[fi (b—i) = LIAB—it1]. fi (b—i) + L|AB_i1]],

i=1.2....p—1

Define (34) and (35) as shown at the bottom of the page. Then,
forany (fi, f2,.... fp) € Fo.(fi'. f5..... f;) € F¢ and
anyuo = ho(yo,y—1,-..,y—p+1), w1 € IR, we have

fi(yo) + fo (y—1) + -+ fo (Yy—pt1) + w0 + wr

J=—des=p+ L fp(ypt1) = ap—pr1. (30) 7 1
Also, define = (f o)+ £ (y—1)+---
+fy (Y—pg1) + uo + w
Fou :{(fl....,fp)‘fief(m, v (=p1) 0+ )
o —2L(|ABo| + |ABi[+- -+ |AB_ o))
i=1,2,...,p,and satlsfleSSO)}. (31) =2L|Bo|. (36)
Obviously,]-"_l_ #0, Whgrew deno_te the null set. From this, it is obvious that
In the following, we will determine:
. . by + b
{y1,fi (o) sy fom1 (y—p+2)} max {d <f1’ (yo) + -+ [ (Yps1) + uo + wy, = ; 0) ;
{?lz-,fl(?/1)5----,fp(?/7p+2)}>---= b +50
. . 11 11 i
{Yns 1 (Yn-1)seees o (Yn—p)}-.. d <f1 (yo) + -+ fp (ypt1) + w0 + wi, = 5 )}
successively. >L|Bql. (37)
|AB_pi2] >0
R NIAB i3] 2 LIAB 12| = 5 |B—pi2]
D =< (yo,y—15---, y—pt1) € RY | (28)
|ABo| > LIAB-i|+ -4+ L|AB_pi2| — 3 |B-i|
f1(yo) = f1 (b—1)+ L|ABg|
A f2(y=1) = fa(b—2) + L|AB_|
f(J: (flny,---:fp)Ef—l . #@ (34)
o1 (Y—py2) = fp—1 (h—py1) + L|AB_po| )
and
f1(yo) = f (b—1) — L |ABo|
" oA foly—1) = fo(b—2)— L|AB 4]
fU = (fl‘/.fza""/fp)Ef—l : #@ (35)
fpfl (y7p+2) = fpfl (b7p+1) - L |AB,p+2| )
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Thus
max {d (f1 (yo) + -+ f (yp+1) + o + w1, Bo)
d(fi" (o) + -+ f, (Ypr1) +vo + w1, Bo) }

1
> (L-3) 1m0l (39)

Define (39) as shown at the bottom of the page. Ob-

# 0 and for any (f1, fo.....f,) €

viously, Fo

Fo, y1, fi{yo), ..., fo(y—p+1) are all uniquely deter-

mined values. Moreover
|B1| =d (y1, Bo)
=d (f1 (yo) + -+ fp (y—pr1) + wo + w1, Bo)

> <L - %) |Bo| > 0. (40)
Hence,y: ¢ By. Define
Eo» if y1 > Eo

bo £ 7 . 41
0 {bov ifyl <Qo ( )
By now we can se€(bo), f2(b—1),..., fo(b—pt+1) are all

constants for all f1, f2, ..., f,) € Fo.
Step2) Suppose thd;. f1(yj—1).- .- fo(yj—p). j < b, k > 1)
has been determined, th¢n(b,_;), ¢ = 1,2,...,p are all

constants for anyfi, f2, ..., f») € Fr—1. Now, we will de-
termine{yrr1, f1(yx), fo(yr—1)s-- s fp(Yo—ps1)}. Define
(42) and (43) as shown at the bottom of the page.
Then, similar to Step 1), for anyfi, f5..... f,) € Fi,
(fi' f5,.... f)) € Fi, we can obtain
max {d (f{ (ye) + -+ f{; (Yr—pr1) + ur + Wi, Bk) ,
d(f1 (k) + -+ Fp Wr—pr1) + ur + wiyr, Bi) }

1
>L(|ABi| +[ABy—i| 4+ + |ABi—ps1]) = 5 | Bil

_ <L - %) |Bel = L|Buey|. (44)

691

Define (45) as shown at the bottom of the page. Then,
for any (fi, fo,..., fp) € Fi, the valuesyii1, fi(yx),
F2(yr=1)s- ., fo(yx—p+1) have all been determined. More-
over,|ABy41| is constant and

|[ABkt1| =d (f1 (yr) + -+ fo (Ye—pt+1) + tk + witr, B)

1
> <L - 5) |Bi| = L|Bi_p| >0 (46)

where the last inequality follows from Lemma 2. Hence,
ye+1 & B, and we can define

b 2 {bk, ?f Y+t > bi _ (47)
b, ifyryr < by

Step 3) Finally, we prove thafim;—..|y:] = oo. Since
(Yo, Y=1,---,Yy—p+1) € D, by the definition of D, we
have

|B—pt2| = [AB py2| >0
|B—pts| > (L+ 3) |B—pio
. . (48)
|Bol > (L + 3) |B-il
From Steps 1) and 2), we have
|Bi] > (L + 3) |Bol
: (49)

|Bis1| > (L4 5) |Bil = L|Bi—y|. k2>1

For convenience of analysis, we denof_,,,, =
B_2p+3 = e = B—T’ = B_,)+1 = 0, so that (48)
and (49) can be rewritten as

1
|Bk+1|z<1:+ 5) Bil = LIBi |, k>-p+2  (50)

Then, by Lemma 2, we have

|Bk+1| > |Bk

, k>-p+1 and klim |Bi| = <.  (51)

F 2 {féa if d(f1 (yo) 4+ fp (y=p+1) + w0 + w1, Bo) > (L — 1) |Bol (39)

F§, otherwise.

[l

—/Fl/\ (flva‘/"'v.fp)Efkfl

and

fl:/é (fl;fZ-/---;fp)Efk—l

fi(ye) = f1 (be—1) + L |AB|
fo (Yr—1) = fo (be—2) + L |ABk_1|

Ip (y/cprrl) =fp (bk—p)+ L |ABk7p+l| J

fi(yr) = fi (be—1) — L|ABy|
o (yk—1) = fo (bx—2) — L|ABj_1|

f]) ('Zlkprrl) = fp (bkfp) - L |ABk7p+1| 7

#0 (42)

# 0. (43)

F, otherwise

F 2 {ﬂ, if d (£i (yi) + -+ fo (We—pt1) + ke + wetr, Bi) 2 (L = 5) |Bi| = L|Bi—y| (45)
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oo linear interpolation ofyx, 57 1 (y1)), = < bse
£ () A {’_'OO p (Zlk f (Zlk)) Z N 5 . (57)
e e . i TS be (58)
: linear interpolation ofyx. /7' ~" (yx)). = > b,

So, by the definition of By.|, we haveim; ... |y:| = oo.
Define

Foo é{(fl,fz,...,fp) € Fi | fi(Yr—it1)
= pemisn)s (FE S £)) € Fisk 20} (82)

which is well defined sincgr+1 ¢ Bk, Vk > —p + 1 and
(FE(yr)s £ (yr=1)s - s FE(yr—pt1)) is independent of the
particular choice of ff', f¥,.... f¥) € Fu.

Denote

b 2 klim [ 2 klimn by (53)

o0

Then, from (51), we know there are three possible cases.
Case 1)b,, = —oc, boo < oo. First, if there exists? > 0
suchthay, = boo, thendenote™® £ £~ (yy),
the value of which is given itFr4;—1 or F_;.
Otherwise, there must exist a subsequefige }
of {y;} such that

|AB]>I\'+1| = Y1 — Yiko and klEIolo Yj = Zoc (54)

Hence,{y,, } is a Cauchy sequencém > n, we
have

o ti—1 i1 e i —1
T ) = T ) =TT ()

Jmti—1
— T ) |

<Llyj,, = ¥jn

(55)

where the value off/*™*'(y,,) is given in
Fj.+i—1. Hence, the sequem{ef{’““*l(yjk)} is
also a Cauchy sequence. Denote

FEN (56)

oc A g
7. = lim Y, )-
k—oo

Then, fori = 1, 2,. .., p, define (57) as shown at the
top of the page.

Case )b, > —oo, b.. = oo. Similar to Case 1), we can
definez’_ and (58) shown at the top of the page.

Case3)b, = —o¢ by = 0. Define

£:° () £linear interpolation O(yk, flAist (yk)> )

b, <z < boo. (59)

Obviously,(f‘f°, 5,0, f,j”) € F.. for any case.
Hence Foo # 0.V (. f5°,.... ;") € Fuo de-
fine

g (@i w2, cwy) 2 (00) 4 f57 (w2) 4 4 £ () (60)

(1]
[2
(3]
(4]
(5]

(6]

(71
(8]

[9]
[10]
[11]
[12]
[13]
[14]

(15]

(16]
(17]

(18]

(19]

theng € G(L). So, there actually exists somee
G(L) such that the following closed-loop system:

Y1 = 9 (Ytr Ye—10- -5 Yt—pr1) + s + wega (61)

is unstable. Hence, the proof of the theorem is com-
pleted.
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