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ON LIMITATIONS OF THE SAMPLED-DATA
FEEDBACK FOR NONPARAMETRIC DYNAMICAL
SYSTEMS*

XUE Feng GUO Lei
(Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China)

Abstract. In this paper, we study a basic class of first order sampled-data control systems
with unknown nonlinear structure and with sampling rate not necessarily fast enough,
aiming at understanding the capability and limitations of the sampled-data feedback. We
show that if the unknown nonlinear function has a linear growth rate with its “slope”
(denoted by L) being a measure of the “size” of uncertainty, then the sampling rate should
not exceed 1/L multiplied by a constant (= 7.53) for the system to be globally stabilizable
by the sampled-data feedback. If, however, the unknown nonlinear function has a growth
rate faster than linear, and if the system is disturbed by noises modeled as the standard
Brownian motion, then an example is given, showing that the corresponding sampled-data
system is not stabilizable by the sampled-data feedback in general, no matter how fast the

sampling rate is.

Key words. Sampled-data control, adaptive control, uncertain nonlinear systems, Brow-
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1 Introduction

Sampled-data control systems are prevalent in practice due to the wide use of digital com-
puters. However, unlike the linear case (see e.g. [1], [2]), there are only a few papers devoted
to the theoretical investigation of sampled-data nonlinear control systems (see e.g. [3]-[8]), and
most of them are only concerned with the case where the sampling rate is fast enough.

The main difficulties with the theoretical investigation of sampled-data control of nonlinear
systems lie not only in the impossibility of obtaining explicit solutions of nonlinear equations,
but also in the structure complexity of the closed-loop system—a hybrid system consisting of
both continuous-and discrete-time signals. Moreover, just as there is a fundamental difference
between adaptive stabilizability of continuous-and discrete-time nonlinear models (see, [9]), a
sampled-data nonlinear controller derived from a standard continuous-time stabilizing controller

10]

may indeed lose its stability['%, unless the sampling rate is sufficiently fastl®/. However, due

Received March 22, 2002.
*This work is supported by the National Natural Science Foundation of China and the National Key Project

of China.



226 XUE FENG GUO LEI Vol. 15

to physical constraints, sufficiently fast sampling rate is usually not feasible in practice. Thus,
a central problem in sampled-data control is how to properly chose the sampling rate, and
the most difficult part is to quantitatively understand the capability and limitations of the
sampled-data feedback in the case where the sampling period is prescribed.

We will in this paper initiate a study of the above mentioned problem for a typical class of
first order nonlinear control systems with uncertain structure. We will treat deterministic and
stochastic systems separately, and will prove the following main results:

(i) The proper choice of the sampling rate h is closely related to the “slope” L of the
unknown nonlinear function in consideration. To be precise, if h is larger than L~! multiplied
by a constant (7.53), then there exists no sampled-data control which can globally stabilize
the prescribed class of uncertain nonlinear systems; if, however, h is less than L~ multiplied
by log4, then a stabilizing sampled-data feedback for the whole class of uncertain systems can
be constructed.

(ii) In the stochastic case where the random noise is described by the standard Brownian
motion, the unknown system is globally stabilizable whenever the nonlinear function has a linear
growth rate and the sampling rate satisfies h < 0.15L~!. If, however, the unknown nonlinear
function has a growth rate faster than linear, then we give an example showing that even though
the continuous-time stabilizing controller exists, there is no stabilizing sampled-data feedback,
no matter how fast the sampling rate is.

In Section 2, we will formulate the problem considered in the paper and present the main
results. Sections 3 and 4 are devoted to the proofs of the main theorems in deterministic and

stochastic cases respectively. Some concluding remarks will be given in Section 5.

2 The Main Results

2.1 Deterministic Systems

Consider the following basic control system:
i’t :f(xt)+ut; tZO,lL’U ERl (]‘)

The system signals are assumed to be sampled at a constant rate h > 0, and the input is

assumed to be implemented via the familiar zero-order hold device(piecewise constant function):
ug = ugp, kh<t<(k+1)h (2)

where uy, depends on {xo,xp, ..., Trn}-

Definition 2.1 {us,t > 0} is called a sampled-data feedback control if at each step k, upp,
is a causal function of the past and present sampled data {zg,xp,- -, Zkn}, i.€., there exists a
function gy, (+) : R*1 — R! such that ugy = gr (w0, Tn, -, Tkn).

The nonlinear function f in (1) is assumed to be unknown but belongs to the following class

of functions:

GE = {f|f is locally Lipschitz and satisfies | f(x)| < L|z| + ¢,Vz € R} (3)
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where ¢ > 0 and L > 0 are constants. A function f is called locally Lipschitz if, for any M > 0,
there exists a constant K such that |f(z) — f(y)| < K|z —y|,Y(z,y);|z| < M,|y| < M.

In the above definition, L is (the upper bound of ) the “slope” of the function f € G%,
which may be regard as a measure of the size of the uncertainty and plays a crucial role in the
determination of the sampling rate h as will be shown by the following theorems.

Theorem 2.1 Let b > 0 be the unique positive solution of the following equation

%{1_30 + log (Zi_—;) +log(3 + 2b_1)} = g (4)

If Lh > b, then for any ¢ > 0 and any sampled-data control {ugn,k > 0} there always exists
a function f* € G, such that the state signal of (1)~(2) corresponding to f* with initial point
xo = 0 satisfies (k > 1)

|Zkn| > (%)1%1 -chk—> 00.

Remark 2.1

a) Theorem 2.1 is a main result of this paper. Since this result is of “negative” character, it
is obviously valid also for a more general class of uncertain systems as long as the basic model
class (1) is included as a subclass. Also, the value of b determined by (4) can be shown to be
approximately 7.53.

b) If in (1) the function f(-) is known a priori, then the stabilization problem by sampled-
data feedback is trivial. In fact, in this case, we can simply take ug, = —f(xo), Vk > 0, for
any given sampling period A > 0. This will result in z; = z¢, V¢ > 0 by the uniqueness of the
solution to the closed-loop equation.

c) In the case where f(-) is not known a priori, but is still contained in the class GL, it is
also a trivial problem to stabilize the system by continuous-time feedback laws, for example,
by us = —2Lx;. Our Theorem 2.1 shows that for sampled-data feedback laws, however, there
exists a limit to the stabilizability of the class of uncertain systems when the sampling period
h is larger than b/L. The mechanism causing such a limit may be explained as follows: At any
step k, any given sampled-data feedback which is constructed on the basis of the information
{Y0, Yn, - - -, Yrr} will no longer incorporate new information about the system during the sam-
pling interval [kh, (k+1)h) (in contrast to the continuous-time case where one can continuously
use the information flow to adjust the feedback). Therefore, if the system uncertainty measured
by L is large (say, larger than b/h), the information contained in {yo, yn,- .., yrr} Will turn out
to be insufficient for any sampled-data feedback to be able to cope with the class of uncertain
systems described by GZ.

The following theorem is easy to prove, which shows that once Lh is suitably small, a
stabilizing sampled-data feedback can indeed be constructed.

Theorem 2.2 Let Lh <log4, L > 0 and ¢ > 0. Then the following sampled-data control
(a é 6Lh/2)

(2—a)L

2a P Tkh (5)

ugn = — (¢ + L)z |)sgn(zrn) —
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is globally stabilizing for the system (1) with any f € GL. Moreover,

. (Ba—2)(a*—-1) 2¢ L
< ~— 7 000 . .
t% e < (2—-a)a L’ vIEGe

The proofs of the above two theorems are given in the next section.

2.2 Stochastic Systems

We now consider the following stochastic control system
dry = f(xg)dt + updt + odwy, (6)

where the unknown nonlinear function f belongs to G defined by (3), and where {w;} is the
standard Brownian motion, and ¢ > 0.
Theorem 2.3 For any f € GL, let the sampled-data control (2) be defined by

ugp = —(1 + X) Lok, (7)

where X\ > 0 is a constant. If the sampling rate h satisfies

A
Lh<(1+>\)(\/§+1+>\)’ ®)

then the closed-loop system (6)—(7) is globally stable, i.e. for any f € GE,

lim Ez} < oo, Vaxo€ R'.
t—o0

Remark 2.2  The right-hand-side(RHS) of (8) takes its maximum value (& 0.15) at
A = VV2+ 1. We remark that the ideas used in Theorems 2.2 and 2.3 can be extended to
higher order systems with no essential difficulty.

In the above, we have constrained ourselves to the case where the nonlinear function has
a linear growth rate. A natural question is: Can we find a stabilizing sampled-data control
for systems where the unknown nonlinear function has a nonlinear growth rate? The following
theorem gives us a negative answer for a class of nonlinear stochastic systems, even in the case
where the nonlinear function is known a priori, and the sampling period is arbitrarily small.

Theorem 2.4 Consider the stochastic control system (6). Assume that

(i) u¢ is continuous on [kh, (k + 1)h),Yk > 0, and

lug — ugp| < M, Vte€ [kh,(k+1)h), Vk>O0,
for some constant M > 0. Also,
ofus,t € [kh, (k+ 1)h)} C o{ws,t < kh},

where o{z} denotes the o-algebra generated by x.
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(ii) The function f(x) is locally Lipschitz and there exist two positive constants Ry and §
such that
zf(z) > |z|**°, Vz:|z| > Ro.

Then for any h > 0 and any feedback control satisfying (i), the closed-loop system is unstable
in the sense that
Ex% =00, VT >0.

Remark 2.3

a) The class of sampled-data control defined by condition (i) includes the standard zero-
order hold device (2) as a special case. It also includes other familiar hold devices such as the
first order hold device, etc.

b) The condition (ii) in Theorem 2.4 is obviously satisfied if we take f(z) = |z|**%sgn(z). In
this case, it is easy to show that the simple state feedback control u; = —|z¢|' Tsgn(z;) — z; will

globally stabilize the system in the sense that sup Ez% < 0o, Vzo. This example in conjunction
T>0
with Theorem 2.4 demonstrates the fundamental differences between continuous-time control

and sampled-data control for stochastic system described by the standard stochastic differential

equation, even in the case where the nonlinear function f(-) is known a priori.

3 Proofs of Theorems 2.1 and 2.2

First, we introduce a definition.
Definition 3.1 Consider the following two sampled-data control systems:

5. = f(z)+u, t>0, z(to) =a, (9)
I ug = Upp, kh<t<(k+1)h;

5, {é’zg(z)-{—ut, t>0, z(t)=a, (10)

u = ugn, kh<t<(k+1)h.

Under the same sampled-data control sequence {u;}, the above two systems ¥ and X, are
called N-step equivalent starting from the same initial point a € R!, if the sampled signals or
observations of the two systems are equal, i.e., ¢, +xh = Ztg+kn, K =0,1,--- N.

Such an equivalent relationship will be denoted by

Iy <%> Ly, st{us}.

If N = 1, we will simply use the notation ¥; <= ¥/, s.t. u to denote that z(ty + h) =
2(to + h) when z(to) = 2(to) = a and uy = u,to <t < to + h.

Now, we proceed to present the proof of Theorem 2.1. This proof is prefaced with the
following four lemmas whose proofs are given in Appendix A.

Lemma 3.1 Consider the one dimensional autonomous system:

{a&:as(a:), t>0

11
z(0) = zo D
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where ¢(+) is locally Lipschitz. Then

(i) The trajectory x(t) is a monotonous function of t;

(ii) For any T > 0, and 7 # o, the necessary and sufficient condition for z(T) = zr is
f;OT % =T together with ¢(x) # 0 on [min(x7, o), max(xr, z)].

Remark 3.1 The state signal z(t) defined by (1)—(2) is monotonous in any fixed sampling
interval. With the help of (ii), we can calculate how much time it will take for the state x(t) to
travel from one point to another or how far z(¢) will travel in a certain time period. The first
part (i) of Lemma 3.1 can be found in [10], but for the sake of easy reference, we still give a
simple proof here in Appendix A.

Lemma 3.2 Let the function § € GL satisfy §(z) = L|zo| + ¢, for z > |20|, such that the
state signal of the system

B 2=g(z) +up, t>0 12)

! { z(0) = 2o (
satisfies z(1) = z1 > |z0| > 0. Then there exists a function g1 € G% satisfying g1(21) = Lz1 +c,
and g1[z0, |20|] = G, 91[|20], 21] > 0, such that the state signal of the following system:

{j::gl(:r)+u0, t>0
91.

13
z(0) = 2o (13)

satisfies x(1) = z1, where by definition fi]a, 3] = f2 means fi(xz) = fa(z), Vx € [min(«, 3),
max(a, 3)].

Remark 3.2 Lemma 3.2 shows that although . and }° are one-step equivalent by
Definition 3.1, the terminal values g(z1) and g1 (z1) can be quite different. This key fact makes
it possible for us to construct the nonstabilizable system in the proof of Theorem 2.1 later on.

Like Lemma 3.2, we have the following “adjoint” lemma.

Lemma 3.2' Let the function § € GE satisfy §(z) = —L|20| — ¢,z < —|20| such that the

state signal of the system:

{ézg(z)-i—uo, t>0 (14)

2(0) = 2o
satisfies z(1) = 21 < —|z0| < 0. Then there exists a function g, € GL satisfying g1(z1) = Lz, —c,
and g1[—|z0|, 20] = g, 91]21, —|20|] < 0, such that the state signal of the following system:

{:bzgl(sv)wo, t>0

z(0) = 2o (15)

satisfies x(1) = 2.

Lemma 3.3 If we explicitly denote the system (1)—(2) as Sys(f,xo, h, {urn}), then for any
positive constant X\, there is a “linear time-transforming” relationship between the state signal
z(t) of the system (1)~(2) and the state signal z(t) of the system Sys(\f,xo, xh, { urs}), ie.,

z(t) = x(At), Vt>0.

This lemma will make it possible to transfer the general sampling rate case h > 0 to the
special case h = 1 in the proofs of the main theorem to be given in the sequel.
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On The basis of the above lemmas, we are now in a position to present the detailed proof
of Theorem 2.1. The key idea behind the proof is as follows: Given any sampled-data feedback
{ugn}, we try to find a “worst case” function f* € G% such that the corresponding system is
not stabilized.

Proof of Theorem 2.1

We first consider the case where h = 1.

It is easy to verify that the left-hand-side of (4) decreases with b when b is greater than 2.

Since L > by > 2, where by is the solution of (4), we can select a constant 6 € (0,1) such that

10 L+2 45 2
log 272 41 9L~ <z 1
L(g+ 875 TlogB+2L7) + 2+L)—3 (16)

We will construct the function f* step by step to deal with the possible control effects of
any given feedback sequences {up}.

Throughout the rest of this paper, we use f[a, ) to represent the function f on the interval
[a, B), and fi[az, 51] D f2las, B2] to denote a function f satisfying

B filz), =z €log,B],
T = {f2(m), © € [an, Bo),

where we assume [aq, 81][[a2, B2] = ¢.
The remaining proofs are divided into three steps.
Step1 t=0.
Given the initial input uo and z¢9 = 0, we consider two cases seperately.
Case (i) wuo>0.
Denote a” = ug + ¢ > ¢ and define f* on [—a]",0] to be

Flat.0] = { (L+25 )z +e¢, €[00 )

Lz —ec, z€[—af,—dc).

On the interval [0,a]], let us define gj [0,a] = c. Then it is easy to verify that the system
T4 &= gd () +ug, t >0,z = 0 satisfies 2(1) = . By Lemma 3.2 with zp =0 and z; =
0

ay, we know that there exists a ¢j € G satisfying ¥+ JELN B4 8.t uo, ¢y (af) = Laf +¢
(] 0
and ¢g[0,a;] > 0.
Let G(T be the set consisting of only two functions defined on [—a1, a1], i-e.,

A *
Gy = 01D gq (0,af], f[—ai, 00D ¢4 (0,071} €GP,

where and hereafter Gi C G% simply signifies that any function f in G is locally Lipschitz
and satisfies |f(z)| < L|z| + ¢ on its defined interval.

Then the state z(t) of the uncertain system (1)-(2) may be produced by a system corre-
sponding to any function in G(T . But it is easily seen that for whichever function in Gar, we
will always get z; = af under ug.

Case (ii) wuo < 0.
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Denote a; = —ug + ¢ > ¢ and define f* on [0,a]] to be

0,ar] = { (L4+26"" )z —¢, x€]0,dc]; (1)

Lz +e¢, z€[dc,a).
On the interval [—a;,0) let us define g5 [—a;,0) = —c. Then it is easy to verify that the
system ¥ - : & = 9o (z) +ug,t > 0,29 = 0 satisfies (1) = —a; . By Lemma 3.2’ with 2z = 0
(o]
and z; = —aj, there exists a ¢ € GL satisfying: Yo JELN By st uo, ¢y (—ay) = —Laj —c,
and ¢ [—ay,0] < 0.

Similarly to the previous case, let us denote

Gy £{ g5 (a7, 0) P 710,071, ¢y [-af,0) P 10,071} C GE.

Then the state z(t) of the uncertain system (1)—(2) has the possibility to evolve as the state of
a system corresponding to any function in G; . But we can see that for whichever function in
Gg , we are bound to have x; = —a] under ug.

Step 2 t=1.

We are now given the control u; and the observation 1.

The following discussion is divided into four cases according to the values of (z1,u1).

Case (i)

x>0, wup > —(L1'1+C)+§(|1'1|—|1’0|). (19)

In view of (19), we define f*[0,z1] = ¢, where ¢ is defined in Case (i) of the previous step.
And consequently, we have f*(z1) = Lz; + c.
Next, denote
ag ™ 2o+ (ur + Lay +¢) > 21, (20)

and extend the function f* already defined on [z, ] to [—ai ™t

Lot PEr) 2 QA0 (0 o) 4 g (o)
f*[— ++

a; T, —x1) = x € [—x1 — de, —x1); (21)

,—x1) as

Ly —c, € [—ajt,—z1 —dc).

On the interval [z1, a3 *], we define a function g; *[z1,a3 1] = Lxy +c. Then it is easy to verify
that the system DEEEEE g T (x) + ur,t > 1 travels from z(1) = z; to z(2) = aj .

By Lemma 3.2 with zp = z; and 2; = af ™, there exists a ¢+ € G% satisfying E¢;r+ &
Dyt 8.t u, o7 (a3 ™) = Laf™ +c and ¢ T[z1,a5 7] > 0.

Now, denote

GH 2 { it el ot (@10 ], a2 @ éit (a1,a3 ]} C GEL

It is clear that the state z(t) of the uncertain system (1)—(2) may be produced by a system
corresponding to any function in Gj . Obviously, for fi, f» € G T, we have f; %f% s.t.

{ug,u1}. In particular, for whichever function in G, we will always have zo = a3 * under u;.
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Hence, it follows from (19)—(20) that |za| > £|z4].
Case (ii)
L
z1 >0, wu < —(Ll‘l + C) + 5(|1‘1| — |£L’0|) (22)

In view of (22), we define f*[0,z1] = g¢', and hence we have f*[0,21] = ¢ = Lag + c.
- 2 A 4 .
Let g{ = (=00, —z1) = f*(~=1) and fi" (~o00,21] = gi ~(~o00, —21) & f*[~x1, 21].
It can be shown that the system: z = f;(2) + uy,t > 1,2(1) = 2 satisfies

2(2) < —§$1- (23)

The proof of this inequality is put in Appendix A for simplicity of presentation.
_A
Next, we denote aj =~ = —2(2) > ;.

By Lemma 3.2' with 2o = 2; and z; = —aj~, there exists a ¢~ € G% satisfying:
Eﬁ_ & Effr(—oo,zlp st. uy; ¢f [~x1,71] = f*[-21,71], 7 (—af ") = —Laj~ — ¢, and
(Zﬁri[_a;iv —561] <0.

Let

O { Ly — f*(a:%):- (1+ 6L)C(1‘ o0t Fe). e (oo 4] "
) Lz + C, xr € (;L’l + (5C, 0/3’7],

and denote

¢f 2 { gt " maf T, —a) @ Flwrad ), o Tlad T, ) @ Flenaf Tl C 6L

Then the state z(t) of the uncertain system (1)-(2) may be produced by a system corre-

sponding to any function in G ~. But it can be easily seen that, for whichever function in

G, we will be bound to get o = —aj ~ under u;.
Obviously, we get from (23) that |za| > Z|z4|.
Case (iii)
L
z1 <0, w >—(Lxy —c)— §(|m1| — |zo])- (25)

The conditions in this case are “symmetric” to those in Case (ii), so the proof ideas are similar.
In view of (25), we define f*[z1,0] = g, , where g, is defined in Case (ii) of Step 0. And
hence we get f*[z1,0] = Lzo — c.
Let g; T (—1,00) = f*(—x1), and let ff[ml,,oo) 2 f*[a:l,—:rl]AEB gy T (=z1,00).
Similarly to Case (ii), it is easy to show that the system 2z = f; (2) + w1, t > 1,2(1) = 23
satisfies
z(2) > —§$1- (26)

Next, we denote a, * 2.2) > 0.

By Lemma 3.2 with 2o = 1 and z; = a; ", there exists a ¢; ™ € GF satisfying: Z¢;+ s
Efl_[mhoo), st uy; ¢ [, —21] = f[x1, —21], o7 T (a3 ) = Lay T+, and ¢ T [—z1,a5 1] > 0.

Let

dc (27)

Lr—c¢, x€[-ayt, 2 —dc),

o —Lay + f* (1) + (1 +5L)c(x —x1) + fT(z1), @€ [z —be,a);
frl=ay ", m) =
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and denote

arteq frlmay = @ o (21,0, 7] flmay T~ | @ T (—w,0, T]} CGE

Then the state z(t) of the uncertain system (1)—(2) may be produced by a system corre-
sponding to any function in G; 7. But it can be easily seen that, for whichever function in
G, we will get z(2) = a5 " under u;.

Obviously, it follows from (26) that |zs| > £|z;]|.

Case (iv)

L
21 <0, w <—(Lay—c)— §(|a:1| — |zo). (28)
In view of (28), we define f*[z1,0] = ¢, and get f*(z1) = Lx1 —c.
Next, denote
as 2 —(21 + (ur + Ly — ¢)) > —m1, (29)
and extend the definition of f* to (—x1,a; | as

—Lx1 — f*(_;Ucl) + (1 + 6L)c(m + 561) + f*(_wl),

fr(=z1,ay ] = r € (=1, —11 + dcl; (30)
Lr+e¢, z€(—z1+0ca, |

On the interval [—a; —,x1], we define a function g; [—a5; ,x1] = Lzy — ¢. Then it is easy to
verify that the system V- k= 97 (x) +ug,t > 1 travels from z(1) = z; to z(2) = —ay ~
By Lemma 3.2’ with 2o = z; and z; = —a; —, there exists a ¢; ~ € G~ satisfying: E¢—_ &

Egl—_, s.t. w1, ¢; (—ay ) =—La, —c,and ¢; [—a, ,z1] <0.
Now, denote

Gl__é{gl__[—az @f 1’1,02 ] Qsl - y L @f ml)a2 ]} CGL

Then the state z(t) of the uncertain system (1)-(2) may be produced by a system corre-
sponding to any function in G~ ( obviously Vfi, fo € G{ ~, we have f; <%> fo, s.t. {uo,ur}).

But it is easy to see that, for whichever function in G ~, we will get 52 = —a; ~ under u;.
Obviously, we get from (28)—(29) that |za| > £|zy|.
To proceed further, we denote

LA {gf*, in Case (i); A {gf, in Case (ii);

gy ", in Case (iii). g, , in Case (iv).

|
>

N {qﬁfr, in Case (i);

#7~, in Case (ii);
o7, in Case (iii).

¢, in Case (iv).

Step 3 t=k.

We now use the induction argument. Suppose that at some time k, for the given feed-
back sequence {ug,u1,---,ur} we have found a trajectory {z;,x2, -, zrs+1} together with the

corresponding nonlinear system or function f*, which have the following properties:
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) [oasr| > Elol, Jor] >
b) If zx41 > 0, then f* is defined on the interval [—|zyi1], |zx|], together with g; and ¢
defined on (|zk|, Zk+1], such that

S, &y :
Flons leu | D g (onl, ] 541 7 [on, lokl] €D 67 (1, ]

s.t. {u,t=0,1,---,k}

c) If 441 < 0, then f* is defined on the interval [—|xy|, |T141]], together with g, and ¢,
defined on [zj41, —|zk|), such that

0
) . Y . ,
9 [wrn, — o) @D Fr[=lwel, ze] k41 70 [wrir, —lor]) @ £ [l w4]
s.t. {u,t=0,1,--- k}.

Our objective now is to show that for any given ugy1 at time k + 1, the above properties
can also be made true with k replaced by k + 1. Since the proof ideas are similar to those used
as above, we put the proof in Appendix B.

Therefore, according to the induction principle, for any given feedback sequence {u;,i > 0}
we can define a nonlinear function f* € G¥ such that the corresponding closed-loop system
with initial point zo = 0 is unstable in the sense that |z;| > (¥)*=! - c.

Hence the proof of Theorem 2.1 is completed for the case h = 1. The general h > 0 case
can be easily proven by applying Lemma 3.3 as follows.

By Lemma 3.3, the stabilizability of Sys(f,zo = 0, h, {Grs}) is equivalent to that of Sys(hf,
xo = 0,1,{higp}). If hL > b where b is defined by (4), then according to the results established
above, there exists a function hf* in G which makes the state of Sys(hf*, 0, 1,{hdn})
satisfy

el = (2 e k=12

Thus by Lemma 3.3, f* is the desired function such that the state of Sys(f,zo = 0, h, {Grr})

satisfies Lhs k-1
|MMN2(3J cch, k=1,2,--,

and hence the proof is completed. |

Before presenting the proof of Theorem 2.2, we first introduce the following lemma whose
proof is placed in Appendix A.

Lemma 3.4 Let the system @ = g(z) + uo, z(0) = o satisfy

(i) g€ GLe>0and 0 < L <log4;

(ii) |zo| > 2- % . g:i, where a = e% .

If up = —(c+ Llzo|)sgn(wzo) — 32 Lo, then we have |x(1)| < p - |zo|, where p € (0,1) is a

constant.
Proof of Theorem 2.2
We first consider the case where h = 1.
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a—1
2—a

the control (5), then there must exist a finite number N such that

By Lemma 3.4 , if the initial point zo satisfies |zo| > 2+ 2¢

, and the system is under

| |<2 2¢c a—1
NE=2"T "9 74

(31)

Without loss of generality, we assume 2y > 0.

Since g(xn) +un < 0, and z(t) is monotonous in t € [N, N + 1], it follows from Lemma 3.1
that xn41 < zn. The conclusion is obviously true if zx41 > 0, we hence assume zy41 < 0 in
the remainder of the proof.

Taking into account of the structure of uy, we have

2-a)] 4c a-1 a® + 4a — 4
>_c—LI1 L. = — . c. 32
UN = ¢ {—{_ 2a L 2-a a(2 —a) ¢ (32)
We proceed to show that
(3a—2)(a®?—-1) 2c a
> WOTAR Tt a
INFL = a(2 —a) L
By Lemma 3.1, it suffices to show
—b
d
$ 2 / _® (33)
o 9(@) +un

Now, by (32) and the constraint that g(z) > Lz — ¢,z < 0, we have
—b
t> / o = 1.
0 g tde—d
a(2 —a)

Hence, (33) is true. Consequently, since z(t) is monotonous on [N, N + 1], we get

2¢c a—1

b) =b, te(N,N+1]. (34)

Now, we proceed to show that the above inequality is also true for ¢t € [N + 1, N + 2].

First, if |zn41] > 2+ % - g:;, then by Lemma 3.4 and the monotonicity of the trajectory,

we see that |z¢| < |zn41], t € [N +1,N +2]. On the other hand, if |zn41]| <2 2¢- =1 then
applying the same argument as that used above for xx and starting from (31), we see that (34)
is also valid on t € [N + 1, N + 2].

Continuing this argument, we see that |z(t)| is bounded by the same upper bound as in (34)
when t > N + 1. So the proof is completed for the case h = 1.

In the general case, we know from Lemma 3.3 that there is an explicit relationship between
the states of Sys(f, zo, h, {ugn}) and Sys(hf, zo, 1, {hurp}).

Suppose that f € GL and hL < log4. Then we can apply the result just established for
the case h = 1 to Sys(hf,xo, 1, {hugr}). Moreover, since the controller is constructed by just
replacing the constants L and ¢ in (5) by AL and he, therefore the desired stability result for
Sys(hf,xo, 1, {hugy}) is true, and the upper bound for the state of Sys(f,zo, h, {urp}) is also
valid. Hence, the proof is completed. |
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4 Proofs of Theorems 2.3 and 2.4

The proof of Theorem 2.3 is prefaced with the following lemma whose proof is given in
Appendix C.

Lemma 4.1 Let us denote e; = Ex}. Then for the system (6)—(7), we have for any
t € [kh,(k +1)h),
et < 9c. \Jey +2Ley — 2L - (14 Negn + 2L2(1 + ) 2eg - (t — kh)

&t (35)

t
+2L(1 + M) /e - / 2c2 + 2L2%e,ds + o°.
kh

Proof of Theorem 2.3
(i) We first prove that there exists a constant M; > 0 such that if at some kh, the state of
the system (6)—(7) satisfies Exz3, > M;, then

% <0, te[kh,(k+1)h). (36)

Now, by (8), we know that ¢ Sa- Lh(1+ A)(V2 41+ )) > 0. Hence, we have

z/)(ekh) = 2¢c\/exn + 2Legp — 2L 1+ )\ ekh + 2L2(1 + )\) ern - h

k+1)h
+2L(1 + N)y/exn / \/20 +2L%ends + o

=2 L[ — A+ L(L + N)(1 +f+/\)h+0(@)]

=2ekhL[—5+o(\/;6_h

So, there must exist a constant M; such that ¢ (egn) < 0,Vegy, > M;. Hence, when ey, >
My, it is easy to see from Lemma 4.1 that de‘ |t h < 0.

If (36) were not true, then there would ex1st at; < (k+ 1)h such that %¢|,—,, > 0. Let us
denote t*—lnf{t > kh: % = 0}.

Now, since % is contlnuous on [kh,kh + h), we have kh < t* < t,
% < 0,Vt < t*. Therefore, we have es < egp, s € [kh,t*].

Let h* 2 t* — kh < h. By Lemma 4.1, we see that

)] —> —00, as epp —> 0.

dey —
atle- = 0, and

|t ¢+ < 2cv/ern + 2Legn — 2L(1 + Negn + 207 (1 + \)epnh”
kh+h*

+2L(1 + )\)\/ekh . \2c? + 2L2%ep,ds + a?
kh
<plern) <0, for egn > M.

This contradicts dei +|¢= = 0. Hence, (36) is valid.
ii) Next, we prove that if for some k > 0, Ex2, < M, then there exists a positive constant
kh
M5 which depends only on M, h,c, L, and A such that the state of the system (6)—(7) satisfies

Ex? < My, t€ [kh,(k+1)h). (37)
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By Lemma 4.1 and the elementary inequality v/z < (z + 1)/2,z > 0, we know there exist

positive constants aq, as, asz, aqs which depend only on ¢, L, h and A such that
det t
I <ay+ase +as(t—kh)+ay | esds, t€lkh,(k+1)h).
kh

Let z; be the solution of the following equation:

t

dZt
{ ’r =a; +axz; + az(t — kh) + a4 /kh 24ds, (38)

Zkh = €kh.
Then, by the comparison principle for differential equations, we have z; > e;.
Since (38) is a linear ordinary differential equation, there must exist a constant M> such
that Ex? < 2, < My, t € [kh,(k+ 1)h). Hence, (37) is true.

Finally, combining (36) and (37) we get max Ex? < max{FExz3, M>}. 1

To prove Theorem 4, we need the followiné property on the standard Brownian motion!'!],

Property 1 Let w; be the standard Brownian motion, and let n be a Markov time defined
by

A
n=inf{t > 0:w; = —a + bt},

where a > 0, 0 < b < oo. Then the probability density of n is p,(t) = Wexp{—(bt -
a)?/2t}.

By Property 1, it is clear that the following lemma is true.

Lemma 4.2 For any T and c; > 0, we have

Pl{ow; >cit—1, Vt€[0,T]} >0,

where w; 1s the standard Brownian motion.

The proofs of the following two lemmas are presented in Appendix C.

Lemma 4.3 Let a function f(z) € C*(R') satisfy f'(z) > 0,V > a—1, and f(a—1)+b > 0,
where a,b € R' are two constants. Also, let x(t) and y(t) be two continuous functions of t,
which satisfy

t

x(t)2a+/ flzg)ds+bt —1, t>0;
0

z(0) = a;

and .
y(t) =a+ / f(ys)ds + bt — 1.
0

Then
z(t) >yt) >a—1, Vt>0.

Lemma 4.4 For any positive constants T, v, go and any o € R, there exists a constant
b > 0 such that the solution of the following integral equation

t
zt:x0+/ (lzs — o + 1| — go)ds + bt — 1 (39)
0
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blows up at time T, i.e., z(T) = oo.
Proof of Theorem 2.4

To prove the theorem, we need only to show that:
Plzp =00} >0, YO<T <h. (40)

Let the initial point be 9. By Assumption (ii), we see that f(z) > z'*% 2 > Ry. Hence,
there must exist constants v € (0,0) and go > 0 such that there is a locally Lipschitz function

g* satisfying g(z) > ¢*(x),Vz € R, and
g (@) =z —xo + 1*" —go, Vo >x0—1. (41)
Now, consider the following set
Wi 2 {ow, > et — 1, Vt € [0,T]},

where ¢; > 0. By (6) and Assumption (i), we have a.s. on W;:

t t
Ty = T +/ g(xzs)ds —l—/ usds + owy
0, 0
Zx0+/ g(xs)ds“‘(UO—M)t-FCﬂf—l
0

t
Za:0+/g*(ms)ds+(cl+u0—M)t—1, vt > 0.
0

So, if we define y(t) to be the solution of

t
y(0) =0+ [ g @ds+ (1 +un — M)t 1, (42)
0
then by Lemma 4.3 with a = zg and b = ¢; + ug — M, we have for ¢; sufficiently large,
z(t) > y(t), Vt>0, as. onWr.

Applying Lemma 4.4 to the system (42), we know that there exists a ¢; > 0 large enough
such that y(T') = co. So we have z(T') = oo a.s. on W . Furthermore, by Lemma 4.2, we know
that P{W:} > 0. Hence the proof is completed. |

5 Concluding Remarks

In this paper, we have tried to understand how the capability of the sampled-data feedback
for systems with uncertain nonlinear structure depends upon the (not necessarily small) value
of the sampling period and upon the “size” of the uncertainty. As a starting point, we have
considered a typical class of first-order sampled-data control systems with unknown nonlinearity,
and have obtained several concrete theoretical results. These results show, among other things,
that for the uncertain system to be stabilizable by sampled-data feedback, the choice of the
sampling rate h should be of the magnitude O(+) with a suitable “O” constant, where L is the
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“slope” of the unknown nonlinear function. For further investigation, it is desirable to bridge
the gap between the bounds for Lh in Theorems 2.1 and 2.2 (as has been done for the pure
discrete-time case in [12]) , and to study more general systems. Finally, it is worthwhile to
remark that, since our main result—Theorem 2.1 is of “negative” character, it is valid also for
a more general class of uncertain systems which include the basic model (1) as a special case.

Appendix A

Proof of Lemma 3.1

(i) Since ¢(x) satisfies the Lipschitz condition, the trajectory of the system is unique. If
z(t) is not monotonous, then there must exist ¢t > t; > 0 such that @(¢1) - #(¢2) < 0. By the
continuity of the time derivative of the trajectory, there exists a t* € (¢1,t2) such that (¢*) = 0.
Hence, by (11) we have ¢(z(t*)) = 0.

Now, let

Then y(t) is also a trajectory of the system. By the uniqueness of the trajectory we have
Z(t2) = y(t2) = 0. This is a contradiction! Hence, x(t) must be monotonous.

(ii) Without loss of generality, suppose that z(T") = z7 > x. We first prove that ¢(z) > 0
on [zg, zT].

Since x1 > xg, by the continuity there must exist a + € (zo,z7) such that ¢(z) > 0.

If there is an =~ € (zo,z7) such that ¢(z~) < 0, then there must exist an z* € (zo,zT)

such that ¢(z*) = 0. Let
z(t), x(t) <z
y@Z{* .
¥, x(t) > ",
Then y(t) is also a trajectory. By the monotonicity we have z(t) < z*, V¢ > 0. This contradicts
x(T) = z7! Hence we get ¢(z) # 0,V € [zg, 27].
By the continuity of the trajectory, we have ¢(x) > 0,z € [xg, zT], and so

dz dz
= = — —— =dt.
Integrating both sides, we have
rT d T
QL:/)m:T
xo ¢($) 0

On the other hand, if ¢(z) # 0 on the interval [min(xr,zo), max(zr,x)], we then have

% = dt on the interval (without loss of generality, we assume ¢(x) > 0). So, z(T') = zy only

if
T dy

v (@)
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Proof of Lemma 3.2

For convenience of presentation, we denote « 2 L|zp|+c+up and 8 2 21 — |20| in the sequel.
Obviously, we have a > 0, 8 > 0.

First, by Lemma 3.1 it can be calculated that

; . /zl dw . /21 dx B
Folms T 3@ Fuo Sy Llzol +etue  a

where and hereafter ¢|.|_,., denotes the time needed for z(t) to travel from |29 to z;.
By the assumption and Lemma 3.1, we see that if we can construct a locally Lipschitz
function g* on [|zo|, z1] to satisty
a) |g" ()| < Llz| + ¢, @ € [|z0], 21];
b) g*([z0]) = 9(|z0l), 97(21) = Lz1 + ¢
c)g [|z0|,21] > 0;

) I =4
|z0] 9* z)+u0 o’
then §[zo, |20|]] @ g*[|20], 21] is just the desired function g;.

oL

Let s and [ be two small positive constants, and let n > 0 satisfy a—n > 0 and L|zp|+c—n >

0. We define a function g,; on the interval [|zo], 21]:
Lizol+c= (@ = |20}, @ € [[z0]; 20| + s];

" Lizol +c=n+2(x = Jzol = 5), @ € [Jz0] + 5, |20 + 2s];
gsi\T) =
’ Llzo| + ¢, x € [|z0] + 25,21 —];

L(z1 — |20|)
; (
It is easy to verify that g, is locally Lipschitz and satisfies a), b) and c) required above when

x—z +1)+ Llzo| +¢, z€[z1—1, 2]

s and [ are small enough.

Next, it is easy to calculate that

/21 dx _ (/|ZO|+S N /20+2S N /le N /21 ) dx
20| 95.1(2) + 0 0] ol Jlzofe2s Jact gs.1(x) + uo
2s — [ L3+«

—2810 a + + lo
- n ga—n «@ Lj &

Now, to make g, satisfy d), let

S a B—2s—1 l L+a «
2—1 — log =—.
noga—n+ o I8 a B
We have 2 2s+1 | . LB+
s a s «
0=—1 — log .
n Oga—n @ +Lﬁ @
So,

i e D)= - e 1+ )

Since log(1l — z) < —z,¥0 < x < 1, and log(1l + z) < z,Vx > 0, we know that both sides
are positive. So, we can select s > 0 and [ > 0 small enough to make the requirement d) hold.
Finally, the g5, is just the desired function g*. |
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Proof of Lemma 3.3
Applying the time transform ¢ = A7 to the system (1)—(2), and denoting y(7) 2 z(Ar) =

z(t), we have

dy(r) _ dz(t)  dt
dr — dt dr

= [f@(®) +ua] - A = Af(y(7)) + Augn, (k= D)h < A < kh,

ie.,

dy(r) 1 1
_— = " — —h < . —h-

{ ar /\f(y) + Augp, (k? ]_) )\h <7t<k )\h’
y(0) = zo.

By the uniqueness of the trajectory of the above differential equation, we have y(t) =
z(t),t >0, i.e., z(At) = 2(t),t > 0, where z(t) is the trajectory of Sys(Af, zo, %h, Dugrd).
Proof of Lemma 3.4
. . 2— (a®=1)(2—a)
We are going to prove that 4 = max(1— 252,11 — =—-=—%)

. But, before pursuing further,
let us first verify that for u defined as this, we have u € (0,1).

Obviously, we have a € (1,2), and so 1 — 2 is in (0,1). Moreover,
1< @D a,
2a ’

So, we have u € (0,1).

Now, without loss of generality, we assume ¢ > 0 in the sequel.

Since g(x) + ug < Lz + ¢+ up < 0 on the interval [(1 — d)zg, zo], by Lemma 3.1 we know
that the time needed for z(t) to travel from zy to (1 — d)zo is

(-d)zo  go (1—d)zo de
Fo-rli—dyzo = / 9@t / Lotetu
Hence, we have
z(1) < (1 —d)zg. (43)
Next, since g(x)+ug < 0,Ve < xg, by Lemma 3.1 and g(z) > —Lx—c¢, YV > 0, g(x) > Lz —c,

2—a
2a

; _/0 dx 4_/(1‘“)””0 dx
zo%*(lim)zo - 0 g(a:)+uo o g(a:)+uo

Vx < 0, we have to denote a; =

0 dz —(1=a1)zo dr
L[
wo —LT —c+ug 0 Lx — c+ uyg
1 2-£+(2+a1)m0 2-£+2m0
——{1 L +lo L
= c & ¢ :
L 27+ (1 +a)ao 24+ (L4 an)zg

a—1 4=
5=, it is easy to

Since the last part increases with xo when zp > 0, and since by (ii) z¢ > % .

show that ), _(1_4,)e, > 1. Hence, by Lemma 3.1, we have

z(1) > —(1 - 22_a“)xo. (44)



No. 3 ON LIMITATIONS OF THE SAMPLED-DATA FEEDBACK 243

Finally, combining (43) and (44), we get the desired result. |
Proof of (23)
By the construction of ff(—oo, x1], it follows that
e, xz€0,z];
2
A_i_(x): (L+ 5)x+c, x € [—0¢,0];
Lz —c¢, x€][—xz1,—0c];
—Lxy—c¢, x<-—x1.
Also, by (22), the control satisfies u; < —($Lzy + c¢).

It is easy to verify that ff(a:) + u; < 0,V < x1, so we can apply Lemma 3.1 here. By
Lemma 3.1, it is clear that to verify the desired result (23) we need only to show that

N dz
v fi(@)+wm

For simplicity, we will continue to use ¢, 3 to denote the time that the trajectory needs to
travel from «a to § in the sequel.
By (45), we know that ff(m) < con [-dc,z1]. And since z1 > ¢, we have

—de dz 1+ %
tm—)—&c < 1 < L
I c— (§Lm1 + c) 9

Also, we have

- dw - dw
——x1 _sc Lz —cH+up e Lw—c—éwl—c
2
3L
1 7371 + 2c
= zlog T < zlog3
501 + (24 Ld)c
and
—zn dx
t =
—x1—>—%x1 /Il —Ll’l —C+ uy
1 2 1
-3 3 L
So, we have
t= t:tl—>76r: + tfﬁcﬁle + tleﬁfgml
2(14+4) 1 1 21
ok Sl el | Z_Z2. =
- trledtyogog
L+2 46

114
< 7 §+log(3+2L*1)+2+log

1
-2 24173

2,1 _ .
Hence, by (16), we have ¢t < £ + 3 = 1. This completes the proof. |
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Appendix B

To complete Step 3 in the proof of Theorem 2.1
Given the control ug41 and the observation 11, we need to show that a)—c) still hold with
k replaced by k + 1. Similarly to Step 2, we consider four cases separately.
Case (i)
L
Tey1 >0, uppr > —(Logpr +c) + §(|$k+1| — |z ])- (46)

In view of (46), we define f*[|zx|, zr41] = ¢}, and consequently we have f*(zr41) = Lagy1 +c.
Next, denote
A
a;::} = Tpy1 + (Ugrr + Logyr +¢) > xpeq, (47)

and extend the definition of f* already defined on [—xg41,Zr+1] to [—aﬁ_‘Q, —Zgy1) by

L + (= +(1+446L *
Tre1 + f7( m;;rl) ( )C(Z’+1'k+1)+f (=Tk11),

f*[—aziw —Tpt1) = T € [~Tpy1 — OC, —Tpi1); (48)

Lx—¢, z¢€ [—a;::'w —Zp1 — 0c).

On the interval [zj41, agj_g], we define a function g,jj'l [Tkt1, a;l'j_'Q] = Lxpy1 +c. Then it is easy
to verify that the system Tt 1@ = g,jjl (z) + ug41,t > k+ 1, travels from z(k + 1) = xp41
k+1
to z(k + 2) = a .
By Lemma 3.2 with zp = 241 and 23 = a:_;, there exists a ¢:j1 satisfying: E¢++ &t

b g S t. ugi1 and ¢k+1(a’z_1_2) La;:; +c ¢k+1[mk+1’ak:_2] > 0.

Now denote

A
Gﬁﬁ {f ak+2: Th1] @ngrl $k+1,az_:_2] f*[—akﬁg, Th1] GB d);::_l (xk-i-laaz_rz]} - Gf'

Then the state z(t) of the uncertain system (1)-(2) may be produced by a system corre-

sponding to any function in Gﬁfl ( obviously Vfi, fa € G,jjfl, we have Yg <%>Ef2, s.t.

{ut,t =0,1,---,k + 1}). But it is easily seen that, for whichever function in Gk+1’ we will get
Thto = az_ﬁ under wg4q.
From (46) and (47) it is obvious that |zgj2| > £|zg41]-
Case (ii)
Tp1 >0, upp1r < —(Lxpyr +¢) + §(|mk+1| — |z ]). (49)

In view of (49), we define f*[|zx|,zx+1] = gi, and hence we get f*[|z|, zx+1] = Llzk| + c.
Let g; 7 (—00, —zp11) = f*(—2k41)(=—Lagr — ¢ ), and let

~ A B N
fiq (=00, 2r41] = g (00, —2pp) @ f=Ths1, Ths]-
It can be shown that the system: z = f,;:_l(z) + ugt1,t > k+1,2(k+ 1) = x4 satisfies

L
z(k+2) < 5 Tkt (50)
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For the smooth flow of presentation, we put this proof at the end of this appendix.
Next, denote azé = —z(k+2)>0.

By Lemma 3.2" with 2y = x5y and z; = —a:_ifQ, there exists a ¢Z:1 € GL satisfying:
Tht e _ oo
Boir, 7 i (oo SB Uk i =Tkt 1, Thr1] = [ —Try1, Tht], Oppq(—ap,) =

_Laz_;z —cand ¢;:J:1[_a;:4:2a —zp41] < 0.

Now, let
Lapir — f*(@pe1) + 1+ 6L)c(m — Tpr1) + [T (Thp1)
oc ’
[ (@esr, 0] = T € (Thy1, Try1 + dcf; (51)
Lz +ec, z€ (xpe1 + de, GLTQ],
and denote

A _ _ _ _ _ _
G:Jrl = {g;r+1[—a:+2, —Tk41) D *[~rt1, a,az], ¢:+1 [—a:+2, —Tk41) D FF[~rt1, a,j+2]}
C GL.

Then the state z(t) of the uncertain system (1)—(2) may be produced by a system corresponding
to any function in G}[;,. But it is easily seen that, for whichever function in G} ;,, we will get
Thio = —az;2 under wg41.

Obviously, we get from (50) that |zjia| > Z|zpi|.

Case (iii)

L

= 5 (zkra] = lzx])- (52)
All the conditions in this case are “symmetric” to those in Case (ii), so the proof ideas are

Tr1 < 0,upqr > —(Lzgyr — )

similar.

In view of (52), we define f*[zr41, —|zk|] = g, , and hence we get f*[zy41, —|zk|] = —L|zg|—
Let g1 (=k+1,00) = f*(=2p41)(= L(=2k41) +¢), and let

A AN _
fonlwer1,00) = f e, —zia] @D 9y (—wa11,00).

Similarly to the proof in Case (ii), we can prove that the system Z = fk__H (2) + ugg1,t >
k+1,2z(k+1) = x4 satisfies

L
z(k+2) > 5 Tkt (53)

A
Now, let us denote a;, = z(k +2) > 0.
By Lemma 3.2 with z9 = xy1 and 23 = a,;:g, there exists a ¢,;:r1 € GL satisfying:

x — _ _
E¢;J:r1 = Ef;;l[wkﬂm)’ St kg1 Gppq[Thet, —Trsa] = FH[Zer1, —Tre], Oy (agss) =
La,;_f_; + ¢, and ¢I;jl[_$k+1, a,;g] > 0.
Let
—Lxpi1 + [ (2pa1) + (L +0L)c
(50 )+ ) (T — opt1) + [ (Trs1),
f*[_a’];rzawk-i-l) = T € [«Tk-i-l — dc, mk+1); (54)

Lx—¢, =x€ [—a,:jrg,a:k_,_l —dc),
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and denote

_ A _ _ _ _ _ _
Gk:ﬁ = {f*[_ak.::rga ~Tpi1] @gk_ﬁ(_xlwla akﬁ], f*[_akim —Zjq1] @ ¢kj1(_mk+l,aki2]}
C GL.

Then the state z(t) of the uncertain system (1)—(2) may be produced by a system corresponding
to any function in G,;jl. But it can be easily seen that, for whichever function in G,;jl, we will
get z(k +2) = a,;g under ug41.

Obviously, we get from (53) that |zji2| > £|zpi1|.

Case (iv)

— 2 (eksa] ~ lanl). 55)

In view of (55), we define f*[xri1, —|zk|] = ¢, and get f*(xr4+1) = Lapr1 —c.

Tet1 <0, uppr < —(LTpt1 —©)

Next, denote
__ A
Ao = —(Thy1 + (Ukt1 + Logy1 — €)) > —Tpqa, (56)

and extend the definition of f* to (—Zr41,a; 5] by

Lape — (= +(1+6L .
oret = L) DUy ) 4 (s,

[ =Ty, 0, 5] = T € (—Tpy1, —Tha1 + Ocl; (57)

Lz +ec, =€ (—Tpe1+0c a5 5]

On the interval [—a,;_},xkﬂ], we define a function g,;Jl[—a,;_ifQ,a:kH] = Lxpy1 —c. Then it is

easy to verify that the system ¥ —— @& = g, (#) +uk+1,t > k+1, travels from z(k+1) = zp41
k41

toz(k+2) = —azj_}

By Lemma 3.2" with zp = 41 and 23 = —a;,,, there exists a ¢, € GL satisfying:
Tr+1 R _— R _— N
Z¢;J:1 = ng:l, St Upt1, Opyq(—apy) = —Lag 5, —c, and ¢ 5 [—a 5, Try1] < 0.

Now, denote

A o . L o . L
Gk+1 = { gk+1[_ak+zaxk+1) @f [xk+15a’k+2]7¢k+1[_a’k+2axk+1) @f [xk+17ak+2]}
C GL.

Then the state z(t) of the uncertain system (1)—(2) may be produced by a system correspond-
ing to any function in G, (obviously Vfi, f> € G}, we have Xy, %Efz, s.t. {u,t =
i+

0,1,--+,k + 1}). But it is easily seen that, for whichever function in G 7, we will get
Tht2 = —Qp o under wg41.-

Obviously, we get from (55)—(56) that |zyia| > £|zpi1]-

Finally, denote

LA g/jjl, in Case (i); N 91::1: in Case (ii);
g = g =

ki gk_jl, in Case (iii). i 91, in Case (iv).
~ N ¢}:j_‘1, in Case (i); _ A ¢;:_:1, in Case (ii);

FHT ) gpf,, in Case (). T | g5, in Case (iv).
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We get the following desired results:
a) [Chyo| > Slergal, |21] > c

b) If zx42 > 0, then a Lipschitz function f* on the interval [—|zg12], |Tk+1]] together with

its accompanying functions g7, ; and ¢, ; on (|&x41], Te42] can be defined. Furthermore

7 0

st. {upt=0,1,---, k+1}.

=X
Frleens loen 1D g (wrsn | miaa] 42 7 f wrpn, [2aa 16D 4 (k1| wrra]

¢) If zx12 < 0, then a Lipschitz function f* on the interval [—|zr41], |Tr+2|] together with

its accompanying functions g, ,, and ¢, , on [Tj12,—|zk+1]) can be defined. Moreover,

0

+ : e AP . !
gialorse, —lowei)) @ £ -lersil @] 53 7o [onre, —lorst) @D £ lersl, 2rsa]

sit. {u,t=0,1,--- k+1}.

Proof of (50)
By the construction of f,, , we see that

flj—}-l(z) S M(Z), Vz S Th41,
where M (-) is defined by
( Llzg| +c, z€[|zk], Trerl;
Lz+c¢, z€]0,|zk|];
% ¢, z€[-dc,0];
0, z€[—d0c—|zxl|,—dc];

Lz — ¢, z¢€ [_karl) —dc — |mk|])

—(Lzpy1 +¢), z2< —Tpy1.

r

Also, by induction we have

L
|.’L'k| > ¢ Th+1 > §|.’L'k| > 07
and by (49)
L
wiar < = (5 @ees +lanl) + ).
Now, we define y(t) to satisfy

{y = 1)~ (Ewn + ) + o)
ylk+1) = xp41.

(60)

Since M (y(k+1))— (% (zk+1+|zk|)+¢) < 0, by Lemma 3.1 we know that y(t) is monotonically
decreasing. By the comparison principle for differential equations, we have z(t) < y(¢), ¢t > k+1.

So, to prove the desired result we need only to show that y(k + 2) < _%$k+1.
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Now, by the definition of M (z) and Lemma 3.1, and with the help of (58) and (59), it is
clear that the time needed for the system (60) to travel from x4y to _éxk+1 via |z, 0, —dc,

—|zg| — d¢c, and —zy4;1 can be calculated as follows:

tIk+1*>‘Ik‘ = I) | |
Tk 2
1+ il
1 dy 1, T 1 1+ +
tlIkl‘)O_z 1 =7 OgW_f 08—
ol —§($k+1+|$k|)+y 1--— 1-=
k+1
oc 0
to——sc = 1 < 1 ’
—L(.T]H_l + |.7Jk| 5[4( )
|| 2
lge—s—|ay|—0c = il < A
S L(@rar + za]) +
—TE41 dy
t—\mk|—6c—>—xk+1 = 5 1
—lekl =de Ly - bL(xk—H + |z ]) + c}
1 5(31’k+1 + |1'k|) + ZC
= —log
L 1 2 5
5@k +3loel) + (£ +9)
1 3Tkt + |Tk] _ 1 ( )
<7 log Trat ¥ 3loe] = < log 3+

¢ N — (L 2)a:k+1 < L— 2
“Te1 = 3Te1 T 3Lxpyq + Llzg| +4c = 3L

w|>—~ N oo

Wl
=

Hence, by the calculations made above and (16), we have

_1 1+%+ 46 L2 110( 2) 2 1
L% 2 e+t T3 73T

B (10+1 1+%+1 ( 2 45)+1<1
AN TS T Tl GV A Ty A T

_+_

; 2
mk+1‘>7%3k+1 — Z

So, by Lemma 3.1, we know that y(k + 2) < _%.'Ikarl. This completes the proof of (50). |

Appendix C

Proof of Lemma 4.1
By Ito’s formula and (6)—(7), we have

dz} = 2x¢(g(z¢) — (1 + A) Lagp)dt + o*dt + 2x0dw,, t € [kh,kh + h),

and so,
dEz} = 2Ex1g(v;)dt — 2(1 + \)L - Exgapy, - dt + odt. (61)

Since xy = xpp + fkth g(zs)ds — (1 + N) Lzgp (t — kh) + o(wy — wgp), we have

¢
Exixy, = Exyy, + / Eg(vs)zgnds — L(1 + \)Ex3, (t — kh).
kh
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Substituting this into (61), we have

t
Cﬁlett =2Ex:g(x¢) — 20(1 + Negn + 2L%(1 + N)2epn(t — kh) —2L(1+ X) | Eg(zg)zpnds + 0.
kh

Furthermore, by |g(z)| < ¢+ L|z| and |Ex;| < \/e;, we have
der < e Jer +2Ley — 2L - (1+ Negn + 2L2(1 + \)2exn - (t — kh)

dt
+2L(1+ N)\/exn - / V2¢% + 2L2%eqds + o®.
kh

Proof of Lemma 4.3
Obviously, we have z(0) > y(0). Hence, if the conclusion is not true, there must exist a

t; > 0 such that z(¢;) = y(¢1). This ensures the existence of the intersection time ¢* = 1nf{t

z(t) = y(t)}. By this definition and the assumptions, we have

y(t*) = a+/0 flys)ds +bt* —1 = z(t*) > a+/0 f(zs)ds +bt* — 1,

/0 fe)ds > /0  fla)ds (62)

Now, since y(t) satisfies §(t) = f(yt) + b, we have y(0) = f(a — 1) + b > 0. Also, by the
assumption f'(xz) > 0,z > a— 1, it is easy to verify that y(¢) is monotonically increasing, hence
we get y(¢t) >a—1,t > 0.

By the definition of ¢* and the continuity of z(¢) and y(t), we have z(t) > y(t) > a — 1,
Y0 < t < t*. Consequently, we have f'(&) > 0,V& € [y(t), z(t)],t € (0,t*).

Therefore, we have

/  flea)ds = / t:(f(ws)— vas+ [ £ *f

+*

=/ P @ —y)ds+ [ Fly

0 0
t*

>o+/O F(ys)ds.

S0,

This contradicts (62), so the lemma is true. |
Proof of Lemma 4.4
Taking the time derivative on both sides of (39), we get

dz

§:|Z—$0+1|1+V—go+b.

Hence,
dz

= dt.
z—xo+ 11" —go + b
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Integrating both sides(z from xg — 1 to z¢ while ¢ from 0 to T'), we have

zr dZ zp—xo+1 dZ T
f [ [acs
zo—1 |2 — @0 + 11" —go + b 0 |z|'T" —go + b 0

Obviously, when b — gg > 0,

o0
¢ A/ dz <
= _——— Q.
b 2] = go + b
0

Hence, by the dominated convergence theorem, ) lim ¢, = 0. Therefore, we can choose a by > 0

—>00

large enough such that ¢;, <7, which means 2z = oo. |

[10]

[11]

[12]
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