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STOCHASTIC ADAPTIVE SWITCHING CONTROL
BASED ON MULTIPLE MODELS*®

ZHANG Yanxia GUO Lei
[Mmatitute of Systems Science, Academy of Mathemalics and Systems Science,
Chinese Academy of Sciences, Beipng L0080, Chine)

Abstract. Lt is well known that the transient bebaviors of the traditional adaptive control
may be very poor in general, and that the adaptive control designed based on switching
between multiple models is an intuitively appesling and practically feasible appreach to
improve the transient performances, In this paper, we shall prove that for a typical class
of linear aystems disturbed by random noises, the multiple model based least-squares (LS)
adaptive switching control is stable and convergent, and has the same convergence rate
as that established for the standard least-sqnares-hased self-tunning regulators. Moreover,
the mixed case combining adaptive moedels with fixed models 15 also considered.

Key words, Multiple model, switching control, least-squares, adaptive control, conver-
EED{ZE! rate.

1 Imtroduction

In an uncertain and complex environment, the approach of “optimal” switching is often used
for making decisions through predicting and comparing the effects of multiple schemes, In the
area of control, the multiple model approach, which has been used to improve estimations and
control accuracies, can be traced back at least to 1960519705 (see, e.g., [1]-[3]). Some practical
applications have also been regmr’r.ed"l“"l. In adaptive control, switching controller based on
multiple models has also been used to reduce the dependence of the prior knowledge about the
systems® =5 In [9] and [10], the use of multiple fixed models was studied. By comparing
the prediction errors of the fixed models and switching based on the “certainty equivalence
'pri'_l'll'_':i_P[E:”.l th-. aut}mr deﬁtwd a .'-,il.lpi‘.'l"l.l'i.l-i{:lr}' t;f.:l!.,‘..'r:)ﬂer_, :-Lt],d prl;_'r‘..red LhE 1.ra::l-:it|g perfurrnaume
and robustness of the contrel system: however, the multiple fixed models need to be chosen
with care. Recently, [11] introduced and siudied the adaptive control problem of the mixed
case, where adaptive models are combined with fixed models.

All the above mentioned papers deal with continuous-time syvstemns only. Recently, 11'2]
tried to extend the results of [11] to the discreet-time case. However, when analyzing the
RLS based controller, the authors either assume the persistent excitation eondition as in [13],
or use cssentially a stochastic gradient algorithm which has poor convergent rate in general.
Furthermore, the proof of stability appears to be incomplete for the stochastic adaptive control
bazsed on mixed multiple models,

In this paper, we will consider a typieal class of linear systems, and give a rigorous proof of
stability and optimality for multiple-maodels- based minipnm variance adaptive control.
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2 Problem Formulation

Consider the following linear discrte-time stochastic system:
Alz)ye = Blz)ury + Clzjuy, t 20, (1)

where {ye}, {1}, and {w,} are the system output, input and noise processes respectively. We
assume that y = uy, = wy = 0, V¢ < 0, A{z), B{z) and €[z} are polynomials in the backward-

shift operator z:
Alzy=1+az+---fapsf, p=x1,
Blz) =by + bgz+ -+ bgz™1, g =1,
) =1+ciz+- +oc2", r =0,

where a;, 1 i< pi b, 1 <7 <4, 06,1 < k< r are unknown coefficients; p, g and r are the
upper bounds for the true orders. Now, introduce the unknown parameter vector:

0 = [—ay, —ag, -, —ap, by ba, o by e, e e (2)
and the corresponding regressor:
'iFE' = [H‘hﬁl’t-l,‘ b p B Uy Mgy, W Wy, IU¢_r+|]T, {3}
Wy = [!I'try':—l- B R R L R ,Ht—q+1113't-13¢—11 try l!E't—r+1]T1 (4}
where ally is the estimation of wy. Then system (1) can be rewritten as
Y1 = Erlﬂ? + g, b0 (3}

Our control objective is, at any instant !, to construct a feedback control w, based on the
past measurements { i, ¥y, -+ Yo, Wo, Uy, 0oy Ue—g 50 that the following averaged tracking error
is asymptotically minimized

1l
-

RS ) (6)

where {y]} is a known reference signal.
We need the following standard conditions:
{A.1} The noise sequence {wy, F,} is a martingale difference sequence, i.e., Elw, . |5] = 0,
and satisfies

:
‘ 1 2 2
‘hgip n ,_-E_l wi=g">0, as (7}
stz.pE [|wt+||-'91.ﬁ] < oo, as, for some J§ s 20 (8)

(A.2) in&:& C{z)~1] < 1.

(A3) Blz)#0 |z =L
(A.4)  {u}is a bounded reference sequence independent of {w, }.
We remark that if {d,} is a nondecreasing positive deterministic sequence such that

w’ = O(d,), as. {9)
then under Condition (A1), d,. can be taken as

d =15, Whe [%,1) (10)
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where 3 is given by (A1),

Copventional a:la,l}tivn control 12 based on a ::.in{.;lc' ideptification model {q—*.g. LS un{e.L which
usually leads to large transient errors if the initial values of the algorithm are not properly cho-
sen. In order to improve the transient behaviors of the control algorithms, a patural idea is to
use parallel algorithms with multiple different initial values®: 11 Compared with the provious
results, the main contribution of this paper is to design and to rigorously prove the stabil-
ity, optimality and convergence rate of a multiple-models-based stochastic adaptive switching
control.

3 Multiple Models Based on LS Algorithm
Let fy, Iz,---, Iy be M predictive models described by
G t+1)=olélt), i=1,2, M t=12"-.

where @ is defined by (4}, and E:'{(E] is the estimate of ¢ given by the ith estimation algovithm
at time {, corresponding to an nitial valoe H_;I;{]}_ At any instant, one of the models is chosen
according to a performance index, and the corresponding controller is used to control the system.
We consider the problem in the following two cases,
3.1 Multiple adaptive models

First of all, we state some properties of the standard single LS algorithm for the estimation
of the unknown parameter @

it = B + e Pogi(yer — wof 0, (11)
FPiair=F - ﬂtﬁ'ﬁ'ﬁ.‘-’rllluh ay = (1 PE-PHFI:' lm UE}
= [FE:" R = Pt (R R T ] |1?E"f' e 1‘-'L|1 =1t |‘.|.11r I:lSII
e = Y — '15;-['—1E"I (14}

where the initial values 8y, 20 2 0, Fy = 0 can be chosen arbitrarily.
Let {j:} be a sequence of integers taking values in {0,1,--- d},d = p+ g+ r, defined by

je = argmax (b, +ep, Ple] (15)
=y ::r|'
where eg = 0, &;, 1 = j = d is the jth column of the d « o identity matrix, and by, is the
estimate for b given by #,.
To puarantee that the estimated “high frequency™ gain by is not too small in the minimum

variance adaptive control, we slightly modify the LS algorithm as follows!1%

o a
X g | S R — ,
g 1" SRRV (16)

B 4+ PFe;,  otherwise

where py 21 4 Ei;n [l#:ll%, and 3y is an arbitrary positive constant. In practice, F) may be
taken as a lower bound to |by] if it is available.
The following lemma states that the LS-based algorithm {11)-{16) has the same convergence

rate as the standard LS. The proof of it iz almost the same as Theorem 6.3 in []_5].
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Lemma 1 Under Conditions (A.1) and (A.2), for any initial values (8, o, Fo), if {u:} is

adapted to G = %y 4] 110 J = 1), then the estimation [8,)} given by the L8-based algorithm
(11) 16} satisfies

(H.1) [16,])* = Ollog pr—1 ), a.s.
t+1
(H2) 3l — wifl* = O(log pe), a5,
=1
(pl8.)*
: ' = Ollog o), a.s.
(H.3) .2—311“'*’1 g~ Ologed, as
p 1
H.4) byl > C——————,  a.s.
" P2 T

where O > 0 &5 o random varichle, f:-u i5 the estimate for by given by tih and ﬁ; 4 f - ﬁ:,.

In the study of switching control using multiple adaptive models, the estimates of the un-
known parameter #;{¢), 1 = 1,2,--- M are all given by the LS-based algorithm (11)-{16).
However, their initial values (#;(0), y;(0), P{0)) are different, resulting in different. prediction
models £;. Notice that

ilE) = [t s Vet ey oo o U, W5 (1), - - a(E — 7 4 lliT: (17)

@i (t) = e — 67 (thpult — 1). (18)

It is obvious that for each model I, the corresponding values of @(t), Fi(t), p:(t) are also
different.
Denote

'-"F:.r lé[t - 1}:

e;l:”gy:
rj. 1 :
=-t-zlj o i=1,200, M,

i 2 argmin Ji(t). (19)
1<ic M

At any instant ¢, the prediction model corresponding to the minimum of J,(t), i=1,2,--- | M
is chosen to determine the input u(t), i.e

g (4 1) = ol (18, (8) = w71y (20)
or
y = E}l:m(a.“ (B + ++ + g, (et — b, (D — -+~ — by (i
— (B (1) = oo = &y (i, (7 4 1) + 1/,4) {21)

where dj, (t), by, (t) and &, (t) are the components of 8 (1).
Define
&) SRty - Ple+ 1), &S max &(2). (22)
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Theorem 1 For the system (1), let the conditions (A1) A.4) be satisfied, and let the
comtrol law be defined by (21). Then the closed-loop system is globally stable, optimal and has
ihe following rele of convergence:

fty = Oflogt + =4) (23)
where )
Lo .
R: = z‘.y:. — W — w‘L}E! {2‘1}
=1
ge = (logt) 11£?§!{&jj‘dj}, Ve =, {25)

3.2 Multiple models consisting of fixed and adaptive models

We now suppose, without loss of generality, that 8, (f) is given by adaptive algorithm {11)-
(16), and .‘l-{t]l =@, 1 =23,---, M are fixed estimates for the unknown parameter. For the
fixed models, we still use {12) to construct {F;(#)}, ¢ = 2,3, .-, M; maoreover, for each fixed
parameter estimate : 8; = [—ay,, o, —a, by, by e, 00|, we can define the following
polynomials in the backward-shift operator z:

Afz) =1 tayz+ - apa?,
Bi(2) = by, 4 bayz + oot by 2471, (26)
Cilz)=1+4+e,z 6 - +op, 2"

Since C(z) satisfies the strictly positive real condition in the svstem (1}, it is natural to require
the fixed noise models Ci{z) be stable, ie., Ci{z) £ 0, |2| <1, i =2,3,--- | M.

Furthermore, we need the following strengthened noise c:crudjtmn

(A1) {w,.F} is a martingale difference sequence, and satisfies:

E [urf_,_l].?']] =, supk [wf+l|.ﬂ] < o, A, (37}
[4
Define ,
TED R} (28)
-1 B TR
Sl{t}g 1_ E{y}'f'rr H; {J}‘FI[J)? \ l-=l..2,""|,M| (29}
log Feo1 £ 1 4+ (3)Pi(3 )il )
Lit) S max (S() = S, =120, M, (30)
A2 i1 << ML < K} (31)
where K > (} is a constant. Since [;{t) = 0, it is obvious that 1 € Ay, hence Ay # . Let
i* 2 argmin Si(t), {32)
B

then at time £, u(t) is determined by the following equation:
B (0w (8 = w7y {33)

Theorem 2 For the system (1), let Conditions (A1), (A.2)~(A.4) hold and let the control
law be defined by (32) and (33). Then the closed- Emp nyﬁtrm s globally stable, optimal and has
the following rete of convergence

Ry = O(logt) + (&) (34)
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where By and £, are defined by (24), (25) respectively,

4 'The Proofs of the Main Theorems

[n this section, We first present two lemmas which will be used in the proof of Theorem 1.
Now we introduce the following notations:

" . Teoyd(ey?
02000, awé ZG O wf e, o)
() S 14 Y lleeli)lP v 2 ma (o) (36)
2 o

Lemma 2 Consider the closed-lopp system (1) with the control given by (19) and (20). [f
Conditions (A.1)-{A.4) are satisfied, then there erists a positive random process {L,} such that
yf < Lh L¢+|_ i: I:}I. -+ szg,}Lg_ +'£1‘-.‘ where the constants A “= (ﬂ, 1}‘ Cg = (. Aﬂ.rj

fi = [oadilog(t + r)1* + oudy, (37)
& = O{ddog®(t + ry)). (38)

Proaf By [5) and (20}, we have

Yerr = ‘FE'[*}B - Wﬁft}éit () + 87 (9] — i, (£)) + Yrsr T West
= o (08:, (1) + 87 (0] — @i, (1)) + wisy + wesr- (49}

From the definition of o, and (H.3) of Lemma 1, it follows that

] [ ! Travm 10 t T ¢y Sy
. (7 ()61 (5)) (ear(7)Bar ()}
wj < a;(4) = Lot 1R .
2= Lyl = Y e e T L T oL ) Pl D)
= Ologr(t) +-- +logra(t)) = Ologr). (40}

Particularly, oy = Oflogry), e, (t) < oy = Q(log ry ). Hence

(n, ()8, (1) = e, (111 + @] ()P, (e (£))
= o, (1L + @ ()P, (1) — Py (8 4 1)), (1) + T (OB, (£ + Lgs, (£))
< o, (08, () |les, (O + 2a, ()

< audiflips, (8] + 200 = cudillipi, ()] + Ollog re). (41)
By (H.2), we have
r—1
(07 (0! = i, (80007 < N8I D (e = g, (t = 3))* = Ollogr, (£~ 1)) = Oflogr, ). (42)
=0

From Condition [A.4) and (9), it is seen that

Vi < 30T (18, () + 3007 (47 — i, ()7 + 3(ul,, + weey )P
< Baudy|ligs, (8)]* + O(de) + C log ). (43)
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By the stability of B{z}, it is known from [1) that there is a constant A € {0, 1)} such that

ui_, =0 Zk* )+ Q(ZM-J%) (44)

. =
lhes, (B — =o(ir‘ )+0(EJ~‘ ) +ﬂ(r:;w3;{*-ﬂ)
_ O(EA* ) +{J{FZ': i (€ = ) = wi)?) +D(g‘wf_3) + Ofdy)
- o( gaf-i'yf) + O(logrr_1) + O(dy). (45)
By (H.1) and (H.4) of Lemma 1, it is seen that
Hﬂ;,tt:uuzfgua i ~o(zlugnu—1}) Ologr-1), (16)
01> min, o (0] 2 i, e > e an (40

where C; = €' = 0 is a random variable. From this and {21}, we have
p=1
u? = G[Iug (t+ n...}lzz_’y?‘_, + E__,“f—.r + Lw (£— ) + log(t + ?‘3_1})

el

—G[lng {t+r¢_.|}[23.‘ ’y2+ZA"’w +Zwi|[t—;r]|) +lug{t+re._1}]

= O(log™{t + T:—l}(Lr +d; + 105{1 +7ri-1))
= O(Lylog®(t + re_ 1)) + Oldlog® (1 + r_1)). (48)

where L = Zj_u At —’yg Substituting this into (43), we have
i, (£} = O(Lydog®(1 + 7)) + Oldelog™(t + 1)) (49)
Note that bju, = ﬁal‘{t}ﬁ'h{t}+ Uiy + (bruy — 0T, (¢) and by (41}, (44), it follows that

biug < 3{:.);‘:{%. (N2 + 00+ e — 0%, (1)
< 3&'!,51:“4;'*. {t}||2 +Mlogre) + C{Ly +dy + logr_q). (50

Therefore, . .
u? = O(ogdllor, (DI°) + O(Ly + dy + log ). (51)

From (45), we have
Nei I = Oladillis, (1%} + O(Ly + dy + logry). (52)
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———— e e ——

Substituting (49) into this, we get
e (IF = Ofedy Lo log™(t + ve 1)) + O(Le + dilog*(t + 1)), (53)
Finally, substituting the above into {43), we find that there exists a constant Oy = 0 such that
Wi, € Cafile + &, (54)
where f; and & are defined by (37) and (38). Moreover by the definition of L, we have
Ly ALe + iy < (A4 Cafe)Le + & (55)

Hence the proof of Lemma 2 is completed.
Lemma 3 Under the conditions of Lernma 2, we hove

lei ()| = Offt + re)°dy), @8, Ye =0,

Proof By the definition of 4;, it is seen that

M
5 = S0 = Nt P8 — Pt + 1) 56
: Hﬁ‘é’iﬂ-”—?—l”{” (t+1)) (56)
Hence
=2 M om0
Y <y Y te(Pit) ~ Bt +1)) < oo, (57)
= i=1 =D

From this and (40}, we can prove the lemma by procceding along the same lines as those for
Lemma 6.2 in [15]. The details will not be repeated here.
Froof of Theorem 1 By (39), we have

t £
- ) ) 2
Hepy = E (W41 — Yl —win) = E (#J;EUI'EU{J} +67 (] — i, [J]']')
a=i

=)

1 i
< 2D (el (N8, +2 3 181P e = i, ()12
i=0 J=u

i Mo
= O( D" (@, les, G +205)) + O D2 D" (w; - wi(i))?). (58)
J=n

i=1 j=0
From (40) and (H.2) of Lemma 1, it follows that
¢
Ris = O( 3 a8 i, (3)I17) + Ollogr).
i=0
From Lemma 3, it is obvious that for any ¢ > 0, we have

Rer = Ologry) + O max {8;(j +r;)d;) log rtj. (59)

SEPEY
Therefore, for {23), it suftices to prove that r, = ({t). From above, we have

R = Ot + 7 )0de )
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By Conditions (A1) and (A.4), it follows that

41

S g = OfF) + Repy = O(t) 1 O((t 1 7)°dy). (60)

J=u

By this and Condition {A.3), it follows from (1) that

i f!‘-{)(iy:) +O(HI ) Ot} + O((t + e ) ds ). [61)
i+1 141 £l
Zw j}—(}(zq_mj-in,{; )+{)(Ew J
= O{lc}gr* (£]) + Oft) = O(log r‘} + O[], {62)

From the definition of r;(t), it is seen that for each © = 1,2,-- M, we have r;(t) = O((t +
ry)ds) + O(t). Hence,

re= max rift) = O((t +r)) + O(t), *fae(g-.lj (63)

By taking ¢ small enough such that = + 4 < 1, we get

" 0t +0((2) ries) <o o((2)). o

From this, we see that vy = €t} holds, hence
Ry = Ollogt) + =), as {66}

where £; is defined by (25). Obviously, 2, = o(t). Aoreover, by the definition of J, and
Condition (A1) (see [16]), we zet
lim J; = o”, as [66)

S 25 =
Hence the optimality of the control is also true.

In the following, we present three amviliary lemmas which will be needed in the proof of
Theorem 2.

Lemma 4 Consider the closed-loop system (1) with the control based on mized models, Let
Conditions (A.1Y,(A.2) and (A4} be satisfied, and the adaptive model use the LS algorithm
(L} {16). If the fired noise models, Cilz). + = 2,3,--- . M are stable, then 7y 15 equivalent to
rdt), i =1,2,... M in the sense that, there caist some positive random variables m;, M, such
that

m,-r,-[ﬁ} Efi- EM-,T"{I‘-J, i = l,?,---,M. {'ﬁ?}

Proof For the adaptive model, we know from (H.2) of Lemma | that,

Dy —in(3))* = Oflogra(t — 1)), 168)

i
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S

By Condition (A.2), we know that €(z) is stable, henee

Z‘u.- —(J(iyj) 1 o(L ) (69)

J=0 F=0 =0
Therefore,
t
S i (3) = O(re) + Ollogri(t)). (70}
7=I)

From this and the definition of r{(t}, we have

=O(iyf) O(i uf] | O(iaﬁ’f[g‘}) = O(f) + o{r (t)). (71)

Hence ri{t) = O[#).
For the fixed models I;, i = 2,3, ---, M, we have
wi(t) = g~ 0 @alt — 1). (72)
From this and (26}, it follows that
Ailzlw = Bilz)ug—y + Cil )iy t). (73)

Since C;(z) is stable, we have

t

k(i) =0 {E:yﬂ) '”(Z 2). (74)

a=0 J= F=ii

Therefore ri(t) = (), 1 = 2,3,---, M. Moreover, from the definitions of v;(t) and 7, it is
obvious that 7 < ry(t), 1 = 1,2,--- .M, Thus the proof of thiz lemma iz completed,

Lemma 5 Jf Condition (A.3) holds in additional to those of Lemama 4, then for the fixed
models [j, ¢ = 2,3,... | M, there erists ¢ constant 0 < p < 1 such that

ur { = U(erf_-' 3) + O{dy). [75)
F==lh

FProof By (73) and the stability of Ci(z), it is known that for each fixed model I, ¢ =
2.3, M, there exists a constant 0 < A; < 1 such that

’%:}—D[LA"J ") (LA' T2 1) (76)

j=0

From Condition (A.3), it follows that
(o, .f
wl =0 Yo N )+ o 3o A e?). (77)
J'_-I:I _1-:|_'|

Substituting this inte (76), we get

t |4

i _r}(LA‘ i 2) (Z{r—k+l}|i*"‘y§) +O( Yt k+1x fu). (1)

fe=0) =0
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where A = max{A, Az, - - Ay Let p = VA, it is obvious that 0 < g < 1, henee there exists a
constant 'z = 0 such that for any = = 0, we have

lvﬂ
IP# = mpu: E G:!- [';rg.}
Therefore,
(t—k+1)AF < %crapb—*ﬂ — %Pt—kr (80)
i
a?(t) = 0 3 'yt ) + Ody). (81)
J=0

Henee the lemma is true.
Lemma 6 For the system (1), let Conditions (A.1) . (A.2)(A.4) be satisficd. If the control
low is determined by (32) and (33), then there exists a random Wme &) > 0 such that ford = 1,

the value of i} will belong to the set N 2 {i: 1< i< M|L(t) < K, ¥t >0}, and

E (07 (5)wi (3} + 07 () — i ()
i 1+ ()Pl )

Proof By the definition of I;(t), we see that for each ¢ = 1,2, - -, M, L(t) is nondecreasing.
If for some i, Egn; I{t) = K, then after a period of time, i will no longer belong to the set
M. Moreover, from the definition for N, we know that there exists some £ > ) such that
Mp=N, t = 1§ Dh‘i"iﬂlﬂl}", 1 iV,

By the definition of 5;(t), we know that

=0(logfy_y), as. Vie N (82}

1 s (BT (i) + 07 (Y — el ) + wiga)?
Z .

Sift) = ]
Y= o & R VXE ) &
Denote gi(t) = 87! — wi(t)) + BT (E)e(1), then Si(f) can be rewritten as follows
ey ol ey L g
St} = log 7o (S(t) + 57(t) + 57(8) (84)
U ST RO T S+ el PGl

Sy & — wi g

0= ZQ. L+l (G)P)ei(d) ®0
By the martingale convergence theorein, we have

S2(t) = 0((SHt)H ), vy > 0. (87)

From {H.2), (H.3), it follows that S1{t) = O(logr; (£ — 1}). Moreover, from Lemma 4, we sec
that v (t) = O(F,). Hence S}(t) = O(log 7, ), and S3(t) = Olog#_,).
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By the definition of §?(t}, it is known that

=1 1 1
o _ 2
S0 =510 ,ezn (1 + @1 )P (e () t+:p?{3'}ﬁi_f}w-{;f})w’“

Z i (J}Ps{.?}&?i{.?*
< (1+ 91 ()P )er (M1 + o () Pe5 s () v

t—l, - t—1

wi (NPeidd) . o2 el (1) B(5)eild) -
: :91+w.-T{J'}R(i}cﬁ.-{.:‘}(w’“ LT rae” &

From (12), it is seen that P7H(j 4+ 1) = P7H ) + wili)el (4). Then taking determinants on
both sides, we have

P7G+ )= 1B GN(1 + T GRGe)). (89)
Therefore,
v _erAGed) g, _ 1P
S+l GIRG)e) E (1 P+ 111]
t—1 — -
PN N _
sm(_logm)—msm ()] + log| P(0)].  (90)
Since ,
PN E+1) = PTHO) + 3wl idel (). (s1)
It follows that
log | P (t)] < dlog Amax (P (t)) < dlogri(t = 1)+ O(1) {92)

where d = p + g + r. Substituting the above into (90), it follows from Lemma 4 that

el WPGG) o |
2 + i (1) Fi(3)eild) = Xlog ). (93)

T\ P i hom,
Note that { .I.pfji j?li:[].ﬁ;ﬁf[{i}{w]ﬂl —a?), F;i1} is a martingale difference sequence, by Condition
(A.1)" and {93}, it follows from the the martingale convergence theorem that

k=1

LR (2 3y ofleed s |
Y T TR i ~ o) = Olleg? i), ¥ >0, (54)

d

Therefore, for each i € /N, we have

(S1(8) + $70)) = Si(t) = $i(0) + o (SLe) + 530 + 570 - S}(0)
EI:'EEI'-I"C}{”EK*'UU Of1}. (93]

log Ftl
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Moreover, from (87), it is known that SHt) = O(log#,_,), Wi € N. Hence the proof of the
lemma is completed.
Proof of Theorerm 2 By (39) and the definition of g,(4), we know that

Yerr = Qi (1) + 0 +wes. (96)
. . aie [t
From Lemma 6, it follows that for ¢ > &, iy € V. Define 3 = s pmyb—mo—m then for
iy "t "1
t =t k1, we have
‘ : 9. ()
g; = e (a7)
IDEEDNDY L+ ! (1) P hal5)

J=t1 41 PEN j=0,+1
Using the result of Lemma § again, we get }:;=u g =0(1) + Et‘=a.+r 3; = O{log,), particu-
larly, #; = O{log 7). Hence, we have
Uiy < 29‘?;”}1 4 2yp e +we ) = 201+ uﬂl'f{t]Pe;{t}wi; {20+ Oldy)
< 20,8 fees; (11 + Oflog 7o) + O(dy) (98)

where 8, is still delined by {22).
By Condition (A3}, (H.2) of Lenuna 1 and LDemana 5, it follows that

t

o 01 - = 0 oa=7) + o Lo xrud) 4 o Lae- )
i=u J=n

=0
=03 pu) +Ologri 1} +O(dy). (99)
f=l
From (H.1),(H.4) and the fact that #(t) =€, i = 2,3,---, M, we have
M
8 (17 < D 10O = Oorri{t - 1)) + O(1) = OlogFe ), {100)
i=1

Ca

——————, A
Vieg{t + 7o)
where £ = 0 is a random variable. Similar to (21}, we know that

s {101)

P, ()] 2

i

t r=i
uj = G(lugz{i +'Fa-|}(2lg_jyf + Z a"'-"'_{w;z- + Z T-E"w_'zt-{t _.ﬂ) + log(t + ﬁ:—L})

i=0 i=0 j=0
= O(log?(t + 7o )( Ly + dy + log(t + 7 1))
= O(Lylog®(t + 7oy )} + Oldylog®(t + 7 4)) (102)

where L, 2 Zj:u p' Iy}, Moreover, by (99), it [ullows Lhat

llei; ()P = O(Lylog® (£ -+ vy 1)) + Oldelog®(t + re-y)). (103)
Note that byuy = gir () + w4 (b — 'I.?Tﬁ,:‘i; (th) - ﬂ'lf-,ﬂ? - \Pi:{t}}. Hence

re-1

biuf < gl (8) + O(1 + |byuy — 8T i (2] *) + U(Z(wt-j = gy (£ - I'Ua)

=

= 438, |i; (B + Oflog ) + U{L; +dy +logr, ;). {104)
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Using {99} again, it follows that
llecsI? = OBbellpiy (D)) + O(L; + do + log #4). (105)
Substituting {103} into this, we get
v - r
s (01" = O(Fede Ly log [t + 74y} + O(L, + delog®(t + 1)) {106)

Finally, substituting this inte [98), we know that there exists a constant Cy > 0 such that

Ui S fIL + &, {107)

whers
£ 2 (Buflog(t + 7)F + B.d, (108)
£ 2 O(ddog®(t + 7). (100}

Similar to the proof of Lemma 6.2 in (13|, we can prove that for t =t + 1,
llee: (1) = OL{t + 7)), W & > 0. (110)

Therefore, for ¢ =ty + 1, we have

t

i i
Z{yjﬂ — Vi1~ wip ) = Z{!HH - 5";'4-1 = wip ) + Z QE}(J]
i=0 F=i0 i=t1+1

<O+ D Bl + k(5P e ()

FEIE N

]
= O{1) + Ofloge) + Y Bsdjllps ()

i=t+1

= Oflog ) + O max (6, +7,)°d;}logr).  (111)

Motice the definition of #, we can prove that 7, = O(t) in a similar way as that for Theorem 1.
Hence the proof of Theorem 2 is completed.

5  Simulation Results

In Sections 3 and 4, the convergence and optimality properties of stochastic adaptive control
using multiple models are discussed. In this section, we use an example to demonstrate the
performances of the switching adaptive control.

5.1 The Problem
Consider the following linear time-invariant diserele-time plant described by

wit 4+ 1) = 3y(t) - 2y(t = 1) =yt — 2) +ult) +0.8ult — 1)
+0.4u(t — 2) + wit + 1) + 0.5w(t) (112}

where {w(t)} is a white noise sequence which is normally distributed with zera mean and
variance o2 = (,04.
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The above plant can also be written as
gt + 1) = @ (£)8 + w(t + 1),
where

'Fg“] = [y{t}, ylt — L), wi{f —2), ult), w(t — 1), u(t - 2, wf.t}L
67 =3, -2, -1, 1, 0.8, 0.4, 0.5].

Let us assume that # s an unknown parameter vector of the plant that has to be estimated.
The objective of the control is to track the following reference signal y*(t) (]12]).

y (Lt} = sin (%) + sin (%)

5.2 The Simulations

Simulation 1 The comparison of the transient responses between nultiple-adaptive-model-
based switching controller and controller based on single adaptive model is shown in Fig.1{a)
and (b). For the switching controller, five adaptive models are used, which have the following
initial values respectively:

A, =[4.9, 3, —-2.4, 2.1, L&, 0.8, 07|,

f; = [2.85, -2, —0.93, 1.05, 0.87, 0.45, 0.52],
By = (2.7, 1.5, —1.34, 1.12, 0,91, 0.51, 0.62],
&, = [4.7, 2.1, —1.4, 2, 1.65, —0.25, .17,

oy = [1.31, —2.9, 1.21, —-1.6, 1.5, 0.24, 0.78].

At each instant, the performance index J;(f) = {1/} Z::i:l eZ(j) is computed for all the models,
and the model corresponding to the minimum of J;{) is chosen to determine the control inpui,
The response of the switching controller based on multiple models is found to be satisfactory
feee Fig l{a)), However, the single adaptive model based controller with initial value 8, = @,
will result in large transient errors as shown in Fig. 1(b).

(a) ib)
Fig.l Comparison between multiple-adaptive.-modal-baged control and tranditional adaplive control

Simulation 2 This simulation comparss the transient response of mixed-model-based
switching controller with that of tranditional adaptive control. Fig.2(a) corresponds to the
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switching controller, where the initial value of the adaptive model is #;, and the fixed models
are specified by the parameter vectors ; (1 = 2.3, --- . 5) given in Simulation 1.

Fig.2{b) shows the response of the controller based on a single adaptive model, where the
initial estimation of # is #; = #,. It is obvious that the response of switching controlier is much
more satisfactory. In fact (14 @F(5)F(5)ei{7)) 7" acts as a time-varing “forgetting” factor in
the performance index 5, (t) for each model. This implies that past errors are less weighted than
present ones, and thus the adptive model will have the chance to be chosen if its estimation for
the unknown parameter is gocd enough.

(a)

Fig.2 Comparison between mived-model-based control and tranditional control

nEm o E:rli:-
]

it b |

o . L . L . —— PE——
o 2 &4 B & M0 120 w0 180 0 e
faves

() (b)
Fig.d Comparison of mived-model-based control and tranditional adaptive control for a switched system
Simulation 3 In this experiment, the plant parameters are assumed to vary periodically,

i-e., starting from time 0, the plant parameter vector is a constant in every 100 units of time,
For simplicity. here the plant parameter is assumed to switch between

#=[3, —2, -1, 1, 0.8, 0.4, 057

and

8 =[1.13, 3.9, 2.27, 3.14, 3.02, 0.5, 0.89|".
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Fig.3(a) shows the response of controller using multiple mixed models, where the initial value
of the adaptive model and the fixed models are the same as those in Simulation 2. Obviously,
the performance of switching controller is significantly improved, compared to the response of
the controller using a single adaptive model [Fig.3({l)].
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