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Stabilization of Switched Linear Systems

Daizhan Cheng, Lei Guo, Yuandan Lin, and Yuan Wang

Abstract—In this note, we study the stabilization problem of systems
that switch among a finite set of controllable linear systems with arbitrary
switching frequency. For both cases of known and unknown switching
functions, feedback laws are designed to achieve exponential stability.
For the later case, a method combining on-line adaptive estimation and
feedback stabilization is developed in the controller design.

Index Terms—Estimation, excitation, stability, stabilization, switched
systems.

I. INTRODUCTION

In recent years, the switched systems have attracted considerable ef-
forts; see, e.g., [2], [6], [10], [11], and [15], among many others. This is
because switched systems have strong engineering backgrounds; see,
for instance, [16] and [17]. When the switching laws are modeled as
finite state Markov chains, the stabilization problem of switched sto-
chastic systems has been investigated by many authors, and necessary
and sufficient conditions have been given to solve the problem for both
the nonadaptive case where the switchings are available (c.f. [7] and [9]
and the adaptive case where the switchings are unavailable (c.f. [19]).
We will consider the stabilization problem for switched linear sys-

tems as follows:

_x(t) = A�(t)x(t) +B�(t)u(t); x(t) 2 n
; u(t) 2 m (1)
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where the switching law �(t) : [0;1) ! � is a piecewise
constant function that is continuous from the right, and where
� = f1; 2; . . . ; Ng for some integer N .
When the switching law has no given mode (or is arbitrary), one

way to investigate the stability and stabilization problems is to find
a common Lyapunov function for all the switching models (c.f. [1],
[3], [5], [10], and [14]). The conditions in such an approach tend to be
strong because the existence of a common Lyapunov function guaran-
tees the stability of a system under all possible switchings.
Another commonly used approach is to assume that a system remains

unswitched for a period long enough to allow the overshoots of the
closed-loop system in the transient phases to fade (c.f. [8] and [12]).
In this note, we will consider the stabilization problem of systems

that switch among a finite set of controllable linear systems at any
given frequency. To guarantee the stability of such a system at a given
switching rate, it is certainly not enough to just stabilize each individual
system for the obvious reason that the overshoots may destroy the sta-
bility. A feedback should be designed so that the magnitudes of the
states of each individual system will decay by half on any interval of a
given length. We will achieve this by first developing an estimation on
the overshoots of the transition matrices (see Lemma 3.2), which can
be considered as an enhancement of the Squashing Lemma in [13].
We will first present a preliminary result for the case when the

switching functions are explicitly given. Our design in this case
applies whenever the switching frequency is finite and known, in
particular when the “average-dwell-time”[8] (instead of just the dwell
time) is positive. The way the switching frequency is defined (see Def-
inition 2.1) allows our result to apply to the case when the switching
functions have some fast switchings on some intervals, provided that
the switching frequency is “bounded on average” in the long run.
We will then continue with the case when the switching frequency is
finite but unknown. Finally, we will develop a method that combines
online adaptive estimation and stabilization to treat the case when the
switching functions are not given. We remark that even in the simplest
case when the switching law is given the controllability condition
cannot be relaxed to stabilizability. It is not hard to find an example
of a system that switches between two stable systems that fails to be
stable with certain switchings.

II. MAIN RESULTS

Consider a system as in (1) with a switching function �(t). The
switching moments 0 < t1 < t2 < � � � of �(t) are defined recur-
sively by tk+1 = infft > tk : �(t) 6= �(tk)g, t0 = 0. The switching
duration �k is defined by �k = tk � tk�1 (k = 1; 2; . . .).

Definition 2.1: Consider a switching function �(t) : [0;1)! �.

• The switching frequency f of �(t) is defined by

f = lim
t!1

fNumber of switches of �(�) in [0; t]g
t

: (2)

• The dwell time of �(t) is defined by � = infk �k .

Throughout this note, we will need the following standard assump-
tion: H1) The models (Ai; Bi), i = 1; . . . ; N , are controllable.
Our first result is for the case when switching functions are explicitly

given.
Theorem 2.1: Assume H1) holds for a switched system as in (1).

Let � > 0 be given. Then, there exist a set of gain matrices fKi : i =
1; . . . ; Ng such that for any given switching law � with a frequency
f � �, the switched linear system (1) under the switched feedback
law u(t) = K�(t)x(t) is exponentially stable.
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In Theorem 2.1, the gain matrices are designed based on an upper
bound� of the switching frequencies. The stability can still be achieved
when such an upper bound on f is not given. This is the content of the
next theorem.

Theorem 2.2: Let Assumption H1) hold for the switched linear
system (1). Then, for any switching law � with an unknown finite
frequency f , a linear feedback control can be constructed such that the
closed-loop system is exponentially stable.
Finally, we consider the case when the switching process �(t) itself

is not available, that is, when the values of �(t) are not given. In this
case, we will need to assume that the dwell time is positive rather than
merely assuming the finiteness of the switching frequency.

Theorem 2.3: Let H1) be satisfied for a switched linear system as in
(1). Then, for any unknown switching law with a positive dwell time,
a switching linear feedback can be constructed so that the closed-loop
system is exponentially stable.
The proofs of Theorems 2.1 and 2.2 will be given in Section III, and

the proof of Theorem 2.3 will be given in Section IV.

III. STABILIZATION WITH KNOWN SWITCHINGS

For a given switching function, let ��k = (1=k) k

i=1 �i, and let
� = lim

k!1

��k . The following lemma is an immediate consequence of

the definitions.
Lemma 3.1: For any switching function �(�), it holds that � =

1=f .
To be more precise, Lemma 3.1 means that f < 1 if and only if

� > 0 and that � = 1=f for all possible values (including1) of f .
To prove Theorems 2.1 and 2.2, we need the following estimation

on transition matrices, which can be considered as a refinement of the
Squashing Lemma in [13]; see also [7] for a related result.

Lemma 3.2: Let A 2 n�n and B 2 n�m be two matrices such
that the pair (A;B) is controllable. Then, there exists M > 0 such
that for any � > 0, there exists a matrix K 2 m�n for which the
following holds:

e(A+BK)t �M�Le��t 8t � 0 (3)

where L = (n � 1)(n + 2)=2, and where hereafter k � k denotes the
operator norm induced by the Euclidean norm on n.
The significance of Lemma 3.2 is that the estimation M�L on

the overshoot of the transition matrix e(A+BK)t is made explicitly.
Roughly, the overshoot is dominated by �L which can be absorbed
by the decay term e��t over any given interval if � is large enough.
We refer the reader to [4] for a detailed proof of Lemma 3.2 with a
constructive calculation ofM .

Proof of Theorem 2.1: By Lemma 3.2 and Assumption H1), we
know that for any � > 0, there exist a set of gain matrices fKi : i =
1; 2; . . . ; Ng such that

e(A +B K )t �M�Le��t 8t � 0; i = 1; 2; . . . ; N (4)

where L = (n� 1)(n+ 2)=2, andM > 0 is a constant depending on
f(Ai; Bi); 1 � i � Ng and n only.
Let � > 0, and let �(t) be a given switching function with a

switching frequency f � �. Consider the linear state feedback
u(t) = K�(t)x(t). Let �(t; s) denote the transition matrix of the
closed-loop system _x(t) = (A�(t) + B�(t)K�(t))x(t).
Pick any t > 0, and let k = maxfi : ti � tg (i.e., k is the

number of the switches on [0, t]). With t0 = 0, one has �(t; 0) =
( k�1

i=0 �(ti+1; ti)) � �(t; tk), from which it follows that

k�(t; 0)k �

k�1

i=0

M�Le��(t �t ) �M�Le��(t�t )

=(M�L)k+1e��t: (5)

By the definition of f , it is not hard to see that k=t � f + 1 for t large
enough. Hence, k � (�+1)t for t large enough. Substituting this into
(5), we have

k�(t; 0)k � (M�L)(�+1)t+1e��t � Ce��t (6)

if t is large enough, where C = M�L, and � = � � (lnM +
L ln�)(� + 1) which can certainly be made positive by choosing �
suitably large. Hence, we have proved Theorem 2.1 with the decay es-
timation (6).

Proof of Theorem 2.2: Let �(�) be a given switching function
with f < 1. We need to construct an online estimate of an upper
bound on the frequency of switching first. By Lemma 3.1, we only
need to consider an estimation of �.
Let us introduce the following recursively defined sequence (where

��k+1 is defined as in the beginning of this section):

�̂k+1 = minf�̂k; ��k+1g �̂0 = 1; k = 0; 1; 2 . . . : (7)

Let �̂ denote the limit of the nonincreasing sequence f�̂kg. It can be
seen that �̂ � �. By Lemma 3.1, we have f � 1=�̂. Also observe that
since � > 0, it holds that �̂ > 0.
To construct a desired feedback law, letM and L be the “universal”

constants given as in (4) (without loss of generality, we may assume
that M � e). Choose �k > 0 to satisfy the following equation for
each integer k > 0 [which is set to get the decay estimation in (12)]:

�k
2
� (lnM + L ln�k)

1

�̂k
+ 1 = 1: (8)

For each �k defined as before, applying the inequality (4), we know
that there exists a set of gain matrices fKi(k); i = 1; 2; . . . ; Ng such
that

e(A +B K (k))t �M�Lk e
�� t 8t � 0; i = 1; 2; . . . ; N: (9)

The feedback control law is then defined as follows:

u(t) = K�(t)(k)x(t); t 2 [tk; tk+1): (10)

Similar to the proof of Theorem 2.1, let�(t; s) be the transition matrix
for the closed-loop equation of (1) under the state feedback (10). Then,
for tk � t < tk+1

k�(t; 0)k �

k�1

i=0

M�Li e
�� (t �t ) �M�Lk e

�� (t�t ): (11)

It is not hard to see that since the sequence f�̂kg is decreasing and
converges to �̂ > 0, the sequence f�kg is increasing and tends to a
finite positive limit, say �. Hence, there is an integer k0 large enough
such that �=2 < �k � � for all k � k0. Consequently, it follows from
(11) that for tk � t < tk+1 with k � k0 + 1

k�(t; 0)k �Mk+1
k

i=0

�i

L

e
� � (t �t )

� e�� (t�t )

�C(M�L)ke� �t � C(M�L)(f+1)te� �t

=Ce�( ��(lnM+L ln�)(f+1))t � Ce�t (12)

whereC = M�L exp(� k �1
i=0 (�i� (�=2))(ti+1� ti)), and for the

last inequality we have used (8) with the fact that f � 1=�̂.

IV. STABILIZATION WITH UNKNOWN SWITCHINGS

This section is concerned with the case where the switching process
�(t) is not directly available. Throughout this section, we assume the
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following trivial condition on the identifiability of models: (Ai; Bi) 6=
(Aj ; Bj) for all i 6= j.
Intuitively, when the dwell time � is positive, one would naturally

try to first identify the switching signals at the beginning of each time
interval [tk; tk+1) using a short time period (say,� � ), and then con-
trol the identified system in the rest of the time interval.
Consider the switched linear system (1) on any interval [tk; tk+1)

(k � 0):

_x(t) = A�(t )x(t) +B�(t )u(t); x(t) 2 n; u(t) 2 m (13)

which is obviously a time-invariant system on [tk; tk+1). Throughout
the sequel, we will assume that kx(tk)k 6= 0, since otherwise the
system can be trivially stabilized by simply taking u(t) = 0 for t � tk .
To identify the unavailable switching signal, we consider a short time

period t 2 [tk; tk + h), with h < � , and introduce the following
“filtered” signals y(t), �(t) and �(t):

y(t) =x(t)� �(t) (14)

_�(t) + �(t) =x(t); �(tk) = x(tk) (15)

_�(t) + �(t) = x(t)T ; u(t)T
T

; �(tk) = 0: (16)

It is obvious that y(t), �(t) and �(t) (which will be used to identify the
value of �(t) on [tk; tk+1)) are all available signals given the observa-
tions f(x(s); u(s)) : tk � s � tg. Set

Yk =

t +h

t

�(t)y(t)Tdt �k =

t +h

t

�(t)�(t)Tdt: (17)

Then, we can define an estimate for �(tk) as

�̂(tk) = argmin
1�i�N

Yk � �k
ATi
BT
i

: (18)

We will see shortly that if the “information” matrix �k is of full rank,
then �̂(tk) can indeed correctly estimate the unknown �(tk).

Remark 4.1: Note that �̂(tk) can also correctly estimate �(tk) even
if there are bounded noises in the systems, provided that �k has cer-
tain level of excitation. The main reason that make this possible is that
(Ai; Bi) are distinct matrix pairs of finite number. It is natural to see
that in the bounded noise case, a suitable signal-to-noise ratio is re-
quired for feasibility of this identification.
We now introduce a class of excitation signals, under which the ma-

trix �k will have full rank. Let Cn[0; h] be the space of m-valued
functions defined on [0, h], which have continuous derivatives up to
order n. For any u 2 Cn[0; h], let us denote U(t) as

U(t) = u(t)T ; _u(t)T ; . . . ; u(n)(t)T
T

: (19)

Consider the following class of functions:

H0 = fu 2 Cn[0; h]jU (0) = 0;

�min

h

0

U(t)U(t)Tdt > 0 (20)

where �min(�) denotes the minimum eigenvalue of a square matrix. It
is not difficult to show thatH0 is not empty (see the Appendix for more
details). Now, let us take u0(t) as any fixed function in H0. Then, we
denote C as

C = max
1�i�N

keA hk+ �

h

0

eA (h�s)Biu
0(s)ds (21)

where � > 0 is a constant which is large enough such that � >
(2h=b1)�0 for some constants b1 and �0 to be defined later in (30)

and (36). Let � be large enough so that the following holds:

�(� � h)� [ln(MC) + L ln�] > 1 (22)

where M and L are the “universal” constant appeared in (4). By
Lemma 2.1, there exist gain matrices Ki (i = 1; 2; . . . ; N) such
that (4) holds. We can now define the control law on each interval
[tk; tk+1) by

u(t) =
� kx(tk)ku

0(t� tk); t 2 [tk; tk + h)

K�̂(t )x(t); t 2 [tk + h; tk+1)
(23)

where �̂(tk) is the estimate of �(tk) given by (18). To prove Theorem
2.3, it is enough to show that (1) is exponentially stable under the feed-
back (23). We sketch the proof via several lemmas, which are proved
in the Appendix.

Lemma 4.1: If the matrix �k defined in (17) is of full rank, then
�̂(tk) = �(tk).
Wewill show that thematrix�k is of full rank by the following steps.
Lemma 4.2: Let z(�) be defined by

_z(t) = Az(t) +Bu(t) z(tk) = 0 (24)

where u(t) is defined as in (23), and (A;B) 2 S
�
= f(Ai; Bi) : 1 �

i � Ng. Then

�min

t +h

t

z(t)

u(t)
(z(t) u(t))dt � b1�

2 kx(tk)k
2 : (25)

Lemma 4.3: Consider the switched linear system (13) on the in-
terval [tk; tk + h) with the control law defined by (23). Then

�min

t +h

t

x(t)

u(t)
(x(t) u(t))dt > 0: (26)

Lemma 4.4: Under the conditions of Lemma 4.3, the matrix�k de-
fined by (17) is of full rank.
Finally, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3: By (13), we know that

x(tk + h) = e
A h

x(tk) +

t +h

t

e
A (t +h�s)

B�(t )u(s)ds:

Consequently, by the control law (23) and the definition of the constant
C in (21), it follows that

kx(tk + h)k � C kx(tk)k (27)

By Lemmas 4.1 and 4.4, we have �̂(tk) = �(tk). It then follows from
(13), (23), (4), and (27) that

kx(tk+1)k = e(A +K B )(t �t �h)x(tk + h)

�M�Le��(t �t �h)C kx(tk)k

� (MC�L)k+1e��(t �h(k+1)) kx(0)k

� e[ln(MC)+L ln���(��h)](k+1) kx(0)k

� e�(k+1) kx(0)k

where for the last two inequalities we have used (22) and the fact that
tk+1 � � (k + 1).
One can then complete the proof of Theorem 2.3 by following the

same arguments in the proofs of Theorems 2.1 and 2.2 to show that
x(t) tends to zero exponentially.
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V. CONCLUDING REMARKS

We have investigated in this note the stabilization problem for sys-
tems that switch among a finite set of linear systems. The main condi-
tions used are the controllability of each subsystem and the finiteness of
the switching frequency of the switching signals. Both the cases where
the switchings are available and unavailable are considered, and control
laws are designed to make the closed-loop switched systems asymptot-
ically exponentially stable. Based on our precise estimate on the norm
growth of closed-loop linear system, the design for stabilizing control
is presented.
We remark that some extensions of the results of this note are

straightforward. For example, by suitably strengthening the conditions
on the switching signals, one can design control laws to achieve the
uniform exponential stability of the switched linear systems; and by
modifying the design of controllers, one can also deal with bounded
disturbances. However, there are also many challenging problems
for future research. It would be nice to understand theoretically the
capability of the switched linear models (or controllers) in dealing
with uncertain nonlinear dynamical systems, and thus to help to
understand the capability of the feedback mechanism in dealing with
nonparametric uncertainties which are more general than those treated
in, e.g., [18].

APPENDIX

Proof of Lemma 4.1: It is easy to see from (13)–(15) that _y+y =
_x = Ax+Bu, where for sake of simplicity,A = A�(t ); B = B�(t ).
Noticing (16), we have

y(t) =

t

t

e
�(t�s) (A B)

x(s)

u(s)
ds = (A B)�(t):

It then follows that

t +h

t

�(t)y(t)T dt =

t +h

t

�(t)�(t)T
AT

BT
dt:

By (17), we have Yk = �k
A

B
. Substituting this into (18), we see

that Lemma 4.1 holds true.
Proof of Lemma 4.2: Denote the characteristic polynomial of A

by sn+an�1s
n�1+ � � �+a1s+a0. Then, An+an�1A

n�1+ � � �+
a1A + a0I = 0. Now, by iterating the (24), we have

z
(i)(t) =Az

(i�1)(t) +Bu
(i�1)(t)

=A
i
z(t) +A

i�1
Bu(t) + A

i�2
Bu

(1)(t)

+ � � �+Bu
(i�1)(t): (28)

Multiplying both sides by ai (i = 0; 1; . . . ; n) with an
�
= 1 and sum-

ming up, we get

n

i=0

aiz
(i)(t)=

n

i=0

aiA
i
z(t)

+Bu
(n�1)(t)+(AB+ an�1B)u(n�2)(t)

+(A2
B+an�1AB+an�2B)u(n�3)(t)+� � �

+(An�1
B+an�1A

n�2
B+� � �+a1B)u(t)

�
=

n

i=0

�Biu
(i)(t)

where �Bn = 0, and �Bi = (An�i�1B + an�1A
n�i�2B + � � � +

ai+1B) (1 � i � n � 1). Next, let w(t) = (z(t)T u(t)T )T , Di =
( �BT

i aiI)
T . Then, n

i=0 aiw
(i)(t) = n

i=0Diu
(i)(t), that is

n

i=0

aiw
(i)(t) = QU(t)

where U(t) is defined as before and Q = (D0 D1 . . . Dn).
For any 0 6= � 2 n+m, set �(t) = �Tw(t), V (t) = �TQU(t).

It can be seen that n

i=0 ai�
(i)(t) = V (t). Define W (t) =

(�(t) �(1)(t) � � � �(n�1)(t))T . Then, we can formally construct a
linear system as

_W (t) = FW (t) + bV (t);

�(t) = cW (t)
(29)

where

F =

0 1 0 � � � 0

0 0 1 � � � 0
. . .

0 0 0 � � � 1

�a0 �a1 �a2 � � � �an�1

b =

0
...
0

1

c =(1; 0; � � � ; 0):

Now, by the definition of W (t), we know that W (tk) = 0. Hence,
�(t) =

t

t
ce(t�s)F bV (s)ds. Therefore, by the definition of �(t),

V (t) and u(t) we have

�min

t +h

t

w(t)wT (t)dt

= inf
k�k=1

t +h

t

�
T
w(t)

2

dt

= inf
k�k=1

t +h

t

(�(t))2 dt

= inf
k�k=1

t +h

t

t

t

ce
(t�s)F

bV (s)ds

2

dt

=�
2 kx(tk)k

2 inf
k�k=1

t +h

t

t

t

ce
(t�s)F

bV
0(s�tk)ds

2

dt

=�
2 kx(tk)k

2 inf
k�k=1

h

0

t

0

ce
(t�s)F

bV
0(s)ds

2

dt

where V 0(t) = �TQU0(t) with U0(t) being defined in a similar way
as U(t) in (19) but with u(t) replaced by u0(t). Therefore, to prove
the lemma, we only need to show that

b1
�
= inf

(A;B)2S
inf

k�k=1

h

0

t

0

ce
(t�s)F

bV
0(s)ds

2

dt > 0: (30)

Note that S is a finite set and f� 2 Rn+m : k�k = 1g is a compact
set, so to prove (30) we only need to show that for any � 2 Rn+m with
k�k = 1

h

0

t

0

ce
(t�s)F

bV
0(s)ds

2

dt > 0: (31)
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Suppose this is not the case. Then, for all t 2 [0; h]

t

0

ce
(t�s)F

bV
0(s)ds � 0: (32)

Let i = min0�j�n�1fj � 0 : cF jb 6= 0g. By the observability of
(F; c) and the fact that b 6= 0, we know that such an i must exist.
Now, differentiating both sides of (32) yields

cbV
0(t) +

t

0

cFe
(t�s)F

bV
0(s)ds � 0: (33)

Note that cb = 0, we then have

t

0

cFe
(t�s)F

bV
0(s)ds � 0:

Furthermore, differentiating both sides of the above equation up to i
times, and using the definition of i, we get

cF
i
bV

0(t) +

t

0

cF
i+1

e
(t�s)F

bV
0(s)ds � 0: (34)

Next, let a
�
= jcF ibj�1max0�s�h jcF

i+1esF bj. Then, it follows from
(34) that jV 0(t)j � a

t

0
jV 0(s)jds for all t 2 [0; h]. Hence, by the

Bellman–Gronwall Lemma, we must have

V
0(t) � 0; t 2 [0; h]: (35)

However, by the controllability of (A;B) and the definition of the ma-
trix Q, it can be verified that �min(QQ

T ) > 0. Consequently, by
the definition of V 0(t) and the fact that u0 2 H0, we have for any
� 2 Rn+m with k�k = 1

h

0

V
0(s)

2
ds =�

T
Q

h

0

U
0(s) U

0(s)
T
dsQ

T
�

��min(QQ
T )�min

h

0

U
0(s) U

0(s)
T
ds

> 0

which clearly contradicts (35). Hence, (31) must be true.
Proof of Lemma 4.3: Let z(t) and �(t) be defined as follows

z(t) =x(t)� �(t);

_�(t) =A�(t )�(t); �(tk) = x(tk):

It is obvious that z(�) satisfies all the conditions required in Lemma
4.2. We now denote

�0 = max
1�i�N

max
0�t�h

keA tk (36)

It then follows from the definition of �(t) that

sup
t2[t ;t +h]

k�(t)k � �0 kx(tk)k 8k: (37)

Hence, by the definition of z(t) we have for any � 2 n and 
 2 m

with k�k2 + k
k2 = 1

t +h

t

�
T
z(t) + 


T
u(t)

2

dt

=

t +h

t

�
T
x(t) + 


T
u(t) � �

T
�(t)

2

dt

� 2

t +h

t

�
T
x(t) + 


T
u(t)

2

dt+ 2

t +h

t

�
T
�t

2

dt:

Since � and 
 are arbitrary, by Lemma 4.2 and (37) we have

�min

t +h

t

x(t)

u(t)
(x(t) u(t))dt

�
1

2
�min

t +h

t

z(t)

u(t)
(z(t) u(t))dt �h�20 kx(tk)k

2

�
1

2
b1�

2 � h�
2
0 kx(tk)k

2
> 0

where, for the last inequality, we have used the choice of the � made
in (21).

Proof of Lemma 4.4: Consider the signal �(t) as defined in (16).
For any 0 6= � 2 n+m, we have �T�(t) =

t

t
e�(t�s)f�(s)ds,

where f�(t) = �T x(t)
u(t)

. Note that

t +h

t

�
T
�(t)

2

dt =

t +h

t

t

t

e
�(t�s)

f�(s)ds

2

dt

=

h

0

t+t

t

e
�(t +t�s)

f�(s)ds

2

dt

� e
�h

h

0

t

0

f�(tk + s)ds

2

dt: (38)

By Lemma 4.3, the integral t

0
f�(tk+s)ds cannot be identically zero

for any � 2 n+m with � 6= 0. So there exists at least a 0 < �� <

h, such that �

0
f�(tk + �)d� > 0 (or < 0). It follows that for

any nonzero � 2 m+n, it holds that �T t +h

t
�(t)�T (t)dt � > 0,

which is the desired result.
Proof of the Nonempty Property of H0 in (20): Let

a1; a2; . . . ; aJ be J = m(n + 1) linearly independent vectors in J .
Choose 0 < �1 < �2 < � � � < �J < h and choose a Cn function u
so that U(�i) = ai (i = 1; 2; . . . J) and U(0) = 0. For any v 2 J ,
there exists some i = 0; 1; . . . J such that vTU(�i) 6= 0. By the
continuity of U

v
T

h

0

U(t)U(t)Tdt v > 0: (39)

One can see that u 2 H0 since (39) is true for any v 2 J .
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Exponential Estimates for Neutral Time-Delay
Systems: An LMI Approach

Vladimir Kharitonov, Sabine Mondié, and Joaquín Collado

Abstract—Exponential estimates and sufficient conditions for the expo-
nential stability of linear neutral time delay systems are given. The esti-
mates are obtained for the case of known parameters as well as the uncer-
tain case, including uncertainties in the difference term. The proof is based
on Lyapunov–Krasovskii functionals, and the conditions are expressed in
terms of linear matrix inequalities (LMIs).

Index Terms—Exponential estimate, linear matrix inequalities (LMIs),
Lyapunov–Krasovskii functional, neutral time-delay system, uncertain sys-
tems.

I. INTRODUCTION

A large number of linear matrix ineqaulity (LMI)-type stability con-
ditions for linear time delay systems have been reported in the litera-
ture; see the survey papers [4] and [9]. Formally speaking, these con-
ditions provide the asymptotic stability of time delay systems only.
Having in mind the fact that in many cases the asymptotic stability is a
synonym of the exponential stability one may ask if there exists a pos-
sibility to use the LMI approach for deriving exponential estimates for
solutions of time delay systems, too.
For the case of retarded-type systems several approaches have

been used in order to obtain exponential estimates for the solutions:
Some exponential estimates based on the LMI approach were re-
ported in [10]. Exponential estimates, based on a generalization of
Bellman–Gronwall lemma and the matrix measure concept, have been
presented in [8] and [7]. The Lyapunov–Razumikhin approach to
derive exponential bounds for solutions has been developed in [3] and
[12]. The same issue has been addressed recently in [6], where, based
on the complete type Lyapunov–Krasovskii functionals proposed in
[5], exponential bounds for solutions of exponentially stable retarded
type time-delay systems were obtained.
In this paper, an LMI approach is presented to construct exponen-

tial estimates for solutions for the case of the neutral type time-delay
systems. A certain modification of standard LMI-type stability condi-
tions is needed, it consists of a slightly new form of estimation of the
time derivative of the corresponding Lyapunov–Krasovskii functionals.
Some auxiliary results on exponential estimates for difference systems
in continuous time are also needed. These results are valid for systems
which are stable independent of delay. On the other hand, both the ex-
ponential decay rate and the corresponding 
 factor in the exponential
estimates depend on the particular value of the delay. All these results
are presented in Section II. In Section III, the previous results are ex-
tended to the case of uncertain time delay systems. It is worth to be
mentioned that in contrast with some other known robust stability con-
ditions for the neutral-type delay systems, here it is allowed uncertainty
also in the corresponding difference term. Section IV contains an illus-
trative example.
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