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beginning of this section gives the partition.of= col(z', 2%) with
z' = col(x1, xa, z4) andz? = x5 and the following mappings:
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as well as the zero dynamics of (3.3)
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As aresultx;(v) can be obtained by solving the following center man-

ifold equation:

Ox3(v)
v

alv) = x3(v) + (—x3(v)va — v1)

2
X3(v) ('vg - vy = 'vl) + ve — V102

—sin(vivz) 1+ sin(v109)02

Therefore, the solution of the regulator equations is given by

U1
Vo
x(v) =
(v) x3(v)
—x3(v)ve — V1
) U2
ll(’U) = X3(U)<U272,’§7U1)+l’27U1U2 .
- 1+sin(viva)vg

IV. CONCLUSION

For a general class of MIMO nonlinear systems, we have shown

the pertinent regulator equations are solvable if the composite sys
has a well defined vector relative degree at the origin, and the equil

rium of the zero dynamics of the given plant with= 0 can be made

hyperbolic. Our approach only involves straightforward algebraic may,
nipulations, and reduces the solution of the regulator equations int

set of well defined algebraic equations and a type of center mani
equation.

The approach and results can be generalized to more general
linear systems as described by (1.1). In fact, we can still define

relative degree for this class of general nonlinear systems [9]. T

only complexity is that the equatiaB, (x, v) + Dq(x,v)u = 0 has
to be replaced by an equation nonlineamrinTherefore, the function
K (z,v,u*) has to be defined through the Implicit Function Theore
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Abstract—A topological structure, as a subset of0, 27)* X R’_‘;l, is
proposed for the set of quadratic Lyapunov functions (QLFs) of a given
stable linear system. A necessary and sufficient condition for the existence
of a common QLF of a finite set of stable matrices is obtained as the pos-
itivity of a certain integral. The structure and the conditions are consid-
erably simplified for planar systems. It is also proved that a set of block
upper triangular matrices share a common QLF, iff each set of diagonal
blocks share a common QLF.

Index Terms—Common quadratic Lyapunov function (QLF), stabiliza-
tion, switched system.

|. INTRODUCTION

In recent years, the problem of stability and stabilization of
switched systems has attracted a considerable amount of attention
[12]. The stability of a switched system can be assured by a common
Lyapunov function of the different models for arbitrary switching.
Particularly, when the switching models are linear, the problem of
common quadratic Lyapunov functions (QLFs) [8], [11] arises. The

M3bblem for diagonal quadratic Lyapunov functions was solved in [3]

gﬂa [9]. When two stable matrices are commutative it was proved in
4] that they share a common QLF. Some special classes of matrices

sharing a common QLF were investigated in [7], [13]. Certain Lie
ebra structure and matrix inequalities were used to solve the
blem [5], [15]. The problem of constructing Lyapunov functions
gs been discussed in [4] for some particular formsPof Some
recent results showed that if the Lie algebra generated by the set of
Birices is solvable, then the common QLF exists [11]. In [2], the set
Pmatrices, which share a given common QLF was investigated. The
irst necessary and sufficient condition was given for planar systems

[16]. Numerical solution of common quadratic Lyapunov function has

been discussed in [4], [10].

M- In this note, we shall give a topological description for the set of
common QLFs of a finite set of stable matrices. Based on it, the exis-
tence of common QLFs depends on whether or not an integral is posi-
tive.
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Il. TOPOLOGICAL STRUCTURE OFQLFs where22 stands for group isomorphism. It is easy to prove the fol-
lowing.

Lemma 2.3: There existL = n(n — 1)/2 one dimensional sub-
groupsS¥ < SO(n,R),i < j, such that

Definition 2.1: A matrix A is said to have a QLF if there exists a
positive—definite matrix? > 0, such that

PA+ATP<O. 2.1 .y s f
+ @1 (S™28' ... 8 (8% 8%* ... 8°"). .. (5<”*1)n) =50(n, R).
(2.3)

P is briefly called a QLF ofd. If in addition P is diagonal 4 is said Lemma 2.3 provides a surjective mappifigl0, 27)% — SO(n, R)

to have a diagonal QLF.
: ) . . . as
The following easily provable lemma is the starting point of our new
approaCh' (¢ t )_ ‘12f )lnt ~ )(nfl)nt
Lemma 2.2: Assume a set of matriceflsd, | A € A} are stable, (trye. tr)=exp(s “t1),.. . exp(s “tn),..., exp (‘* Lz'
i.e., Rea(Ay) < 0, (wherea(A) is the set of eigenvalues of) and _ _ I 2
there exists acommon QLF, then there exists an orthogonal rifatgix Throughout the rest of this note, we will not distinguigh with
SO(n, R) suchthaf A, = T 4,T|\ € A} have acommon diagonal ¥»/R+, unless elsewhere stated. _
QLF. Based on Lemmas 2.2 and 2.3 one sees that we can give the topolog-
According to Lemma 2.2, instead of searching a common QLF gl structure of0, 2m) x R~ to the set of positive definite matrices
can search a common diagonal QLF under a common orthogonal tra§ider equivalence). So, in the sequel, we will search the common QLF

formation on{ A4, }. over this set.
Let®,, be the set ofi x n positive—definite matrices, aidl, C @,
be its diagonal subset. Then IIl. NECESSARY ANDSUFFICIENT CONDITION
’ Definition 3.1: Letx = (»1,...,,) be a fixed coordinate frame
®, ={TDT" | T € SO(n,R), D € &,}. in R". A set of limits (L, U), with lower limits L and upper limits
U are described ds = {Li,La(x1),...,Ln(x1,... 20-1)},
Now, since in searching @ QLF, ~ kP, k > 0 (where ~v"stands U = {U1.Uz(21)..... Un(1,....20—1)}. From (L,U), a non-
for equivalence), we need only to consider the quotient set negative set of limits(L,U) is deduced asl; = max{L;,0},
U; = max{U;,0},i =1,....n.
U = 20 /Re = {(L1seeesn1)er > 0,ennsns > 0} For a given(L,U), the positive culC(L,U) C R" is defined as

x = (x1,...,2,) € C(L,U), iff

Giving ¥,, the conventional topology Q‘Ei’l, the set of QLF has the

i1<1‘1<ﬁ1 £2<$2<E’72(.’01),...
structure as

i/n("rl-, B mnfl) <ap < [:rn(mla . wrnfl)- (31)
@, /Ry := {IDTT | T € SO(n,R), D € ¥, 2.2 ,
/R+ ¢ | (m, R) ) 22) In fact, C(L,U) is a domain of:-dimensional integration. It is the
intersection of the domain bounded &¥;, U;),7 = 1,...,n with the
first quadrant.
We need the following lemma, which can be proved by a straight-

and then we define a mapping: SO(n,R) x Hi—l — @, /Ry as

(T,z) — Tdiag(1,z1,...,2,—1)T" forward computation.
Lemma 3.2: Assume a matrix A has a diagonal QLF, then its diag-
which is obviously a surjective mapping. So we can search the comnfji@l elements are all negative, i€, < 0,i=1,....n
QLF overSO(n,R) x Hfl. Now, we are ready to give a complete characterization of the set of

For later discussion, it is not convenient to use the conventiorf@h-F for a given stable matrix. Let be a givenn x » stable matrix.
topology ofSO(n, R) for searching”. We turn to its Lie algebra. A(;cordlng to Lemma 2.2 is a QLF of 4, iff ¢ is a diagonal QLF of
Lets” € o(n,R) be an element in the orthogonal algebta, R), 1 AT for someT = II(#). For a fixedt, we denote
defined as

(1,11(7‘7) (1,12(7‘) e (l,ln(f)
S =-1 90 =1 Vg =0 Ar) = T aT(r) = | 210 o2 ()
(p.q) # (i,j) and(p. q) # (4, ). () ans(t) . awn(t)
Note that the connected Lie group generatedbydenoted bys*/ , is and¢ = diag(l.x1,....2,_1) With z; > 0. Then, it is required
a one-dimensional subgroup 60)(», R), and that (3.2), as shown at the bottom of the page, holds true. To make the
N Q(t) negative—definite, itis enough to show that the determinants of the
S = SO(2,R) principal minors of odd orders are negative and those of even orders are
2a1:(t) ara(t) Fan(ther ... a1 (t) F dna(B)an 1
12 (t 91 () 2a09(t)x cen agn(t 2 () Tn—
Q(t) 1= eA(H) + AT (1) = arz(t) + az (t)z as(t)r1 Azn (1) + ap2(t)2n 1 <0. (3.2)

A1n (t) + ani (t)xn—1 A2n (t) + (1'77,2(1:)-7:77.—1 .. 2ann (t)xn—1
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positive. We show that these requirements lead to the required boundaky also denote\;, = b7 — arcx. To get the coefficients of (3.4) we

functions.

use the following simple fact. Led be ann x n nonsingular matrix

According to Lemma 3.2, (¢),7 = 1,...,n should be negative. andb,c € R". Then

Denote the:th principal minor byD,.. Whenk = 2, we have

2a11(:t)
a12(t) + a21(t) a1

Dot 21) = < a2(t) + a,zl(t)wl> '

2a22(t)ar

Letdet(D2) > 0, we get a quadratic inequality abouit. It is easy to

see that the solution of the inequality can be expressed as
L] (t) <z < [’71 (2")

DenoteA = (2@11 (f)a;zz (f) — a2 (t)cbzl (t))2 — ((1‘12 (t)dzl (t))z, the
boundary can be calculated as

Ul(t):+oc
a2,(1)

L’l (t) = m, a1 (t) :0

Ui(t)=0

7 _ (2aii(Hasa(H)—aja(Hag; () +VA

Ui(t)= (a21(1))?

Ly ()= Conlteaa=az@en=VE - gy (H20,  A>0,

3.3

Using mathematical induction, we assume there exists,

s < k — LUs(t,x1,...,25s—1) and Ls(¢,21,...,25—1), such
thatdet(D;s+1) > 0 for odds or det(D,41) < 0 for eves, iff

Lo(tya, ... 25-1) <as <Us(ty1,...,xs—1).

If there is somex < k — 1, such that

{za| La(t, 21, ooy @a—1) < xa < Ualt,x1,...,00-1)}

is an empty set, then we g6f = 0 andV, = 0,s > «. Otherwise, we
considerdet(Dy11) and denote

Ey = (a1 p41(t), az jrr (1), .o apxga(t)
Fr = (appria(8)sartr o)y sapsr p(0)
Then
Dyt 215« sTi—1) Ep+Fray
Dysitwr,. . xp)= . .
ke o) ( EF+Fl 2a k41, k41 () g

A computation with some skill shows that

D, E
det (D41 (t,@1,...,x5))=det <E§ 0k>

Dy,
Ej

Fy

+2det .
< Ap41,54+1(1)

D, F
+det <FI;II: Ok > 7. (3.4)
Denote (3.4) simply by
det(Dk_H )=ak (1’, Tlyeny Tp—1 ):ci—l—?b;,w(t, Tlyeny Tt ).r;,
Fer(t,wi, ... op_1). (3.5)

det < 4T b) = —det(A)(c" A7'b) + edet(A).
C €

Applying it to (3.4), a straightforward computation shows that

ap(t, 1, ... ,2p_1) = —det(Dy) (F,‘,TD,Zle)
bi(t,x1,...,x1—1) = — det(Dy)Ef Dy ' Fy,

+ det(Dy)ap41,k+1(¢)
ety @1, oy @p—1) = — det(Dk)EkTDk_lEk.

(3.6)

Assumek is odd. Thendet(Dr) < 0 and sinceD; is neg-
ative definite, thena, < 0 and ax 0 iff I 0. Note
thatc, = —det(Dy)E/D,'Ex < 0, and whenF; 0,
by, = det(Dy)agt1 k+1(¢) > 0. Since we requirelet(Dyy1) > 0,
then the boundary functions can be expressed as

Z:7k<t7171,...7,]}k71):+oc
Li(t,ey,...,xp—1) = % F, =0
Uip(t,ziy. .. 26=1) =0
Li(tyxr, . y26-1) =0, Fr#0, A, <0
Ui, _neyA

for

- ,;L’]‘-,_1)

f
Lk(t,l’h...,.’rk,l):_b%\/ﬂ, F, #0, Ar > 0.

" 3.7

Assumek is even. Thenlet(D,) > 0 and sinceD, is negative

definite, thena;, > 0 anda; = 0 iff F; = 0. Note that now;, >
0, and whenF, = 0, b, < 0. Now, we requiredet(Dj4+1) < 0.
Taking this into consideration, a formula can be obtained, which is very
similar to (3.7), but with an opposite sign before the square roots. Then
a general formula, which covers (3.3), (3.7), and the case of kyen
can be expressed in a unified form as

Ui(t,xi,. .., xp—1)=+00
Li(t,x1,. .., xp—1)= ;;A" R

Sk, Fr,=0
{Uk(t,wl.. . ,.L’k_l):()

Le(t, 21, .o 2-1)=0, Fp#0, A, <0
_ —1)k. /7
[Tk(f,.[’l./...gélfk—l):%w
_ i ’\'/ /A
L};(t,l'l-/---wl)k—l)zw'/ FI‘-,#O, Ak>07
k=1,2,...,n—1.

(3.8)

To assurer; > 0 we need only to show thdtL., Uy ) is a positive
interval. We need only to prove it for the cadg > 0. Observe that
for either oddk or evenk we always have: 1)-b;, = a; > 0 and 2).
agcr > 0. It follows that(Ly,Ux) C Ry.

Summarizing the aforementioned argument, we have the following.

Theorem 3.3:Let A be a givenn x n stable matrix. ThenP is a
QLF of A iff there exists a set= (¢1,....71) € [0, 2m)f, a positive
cubeC(L,U) C &, such that

P=Ter? (3.9)

where ¢ diag(l,@1,...,2n—1), With (z1,...,2n—1) €
C+(L,U), T = II(t), which is defined by (2.4). The boundB(¢, =),
U(t,x)) are determined by (3.8).
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Now, for a set of matrice§As,..., Ax}, say the boundary func- Then, we have the following. (Since space is limited, we refer to [6]
tions are obtained a&} (¢, z1,...,x,—1) and L, (t,x(,...,zx—1), for some missed less important proofs hereafter).
o . : § ]
fori = 1,..., N, respectively, then we can define Proposition 4.1: Given a stable matrix = i‘ s > . Whenr >
v

. . L —a, the diagonal elements of
{Dk(t,:m e sth—1)=mini<i<NUg 24,0 . k—1)

Lit,xy,... 7;1?]6,1) :lnaxlsiSNL;C (t,.'r,j,. .. ,{Ckfl). (3.10)
Ay =TFAT,, o<t<n~

Summarizing the aforementioned argument, one sees easily that a
set of matriced 41, ..., Ax} have a common QLF, iff there exists a

¢ € [0,2m)" such that are negative, iff satisfies

Ui(t, ey, o) > > L(tw,. o ee—), k=1,...,n—1 rlsin(2t + p)| < —a. (4.3)
(3.11)
have a solution: = («1,...,2,—1). AS a consequence, we have the_ |
following. Equivalently

Theorem 3.4:A set of stable matriced4,...,Ax} have a

common QLF, iff kr —sin™! (‘%l) - kw4 sin™! (@) -
3 <t< 5 keZ
27 27 Vi(t) Va(t,e1) (4.4)
/dt1 .. ./dtL / dxy des ... Whenr < —a, the diagonal elements are always negative.
b LI La(hey) Remark: From the structure af(¢), one sees easily that we do not
Vi oty ) Vi (21050 2) need to consider wholeé < # < 2x. It is enough to consider the

problem only ford < ¢ < .
. dx,_o / drp—1 >0 (3.12) Denote by
Ly _o(t,z1,,2n_3) Lp_1(t,z1,..,2n_2)
where

Vie(t,z1,. .., wk—1)=max {U(t,x1,..., T6—1), O={tfo<t<m r|sin(2t 4+ p)| < —aj.
Li(t,x1, .y 2k-1)}, k=1,....,n— 1.
Note that Proposition 4.1 provides the set ofvhich assures that the
It is well known that [11], all the leading principal minors of a Her-rOt"jlted maFri_xA(t), has negative diagonal elemen_ts. Later on, we \.Ni“
mitian matrix are real. A Hermitian matrii{ is positive definite if and prove that it is exactly the set for the corresponding rotated matrix to

only if all its leading principal minors are positive. Using this fact, W@ave diagonal QLFs.

can prove that Theorem 3.3 remains true for the set of complex malNOW: We can start to search the diagonal QURs) = diag(L, «),
trices. It will be used in Section V. wherex > 0. For notational ease, 1€1S = r sin(2t 4+ ) andRC =

Corollary 3.5: Theorem 3.3 remains true when the set of matricds"0S(2f + 11). Then
are complex matrices.

P(x)A(t)+ AL (#)P(x)
IV. ON PLANAR SYSTEMS < 2(a+RS) (=d+ RC)a+(d+ RC)
(

= . (4.5
For the planar case, the orthogonal transformatibrns SO(2, R) —d+RC)x+(d+RC) 2(a — RS)x ) (4.5)
can be expressed as

) Define D(t,2) = det[P(x)A(t) + A (t)P(x)]. Now, finding a
T, = <Ff)s(f) - Sm(t)) , 0<t<2m. (4.1) QLFPisequivalenttofinding € © andx > 0 suchthatD(¢, ) > 0.
sin(t)  cos(t) It is equivalent to

-

[}

. . B ; 9 ,
Consider a stable matrit = < s ) . According to Lemma 2.2, —D(t,x) = E(t)a® + 2F(t)x + G(t) < 0 (4.6)

we first consider when

whereE(t) = (RC — d)?, F(t) = (RC)? — d* 4 2(RS)* — 24%,

A(t) = TF AT, 0<t<m G(t) = (RC + d)?.
Sincet € ©, (4.5) is negative definite, iff there exists> 0 such
has negative diagonal elements. Set that (4.6) is satisfied.

Observing (4.6), it is obvious th#t(¢) < 0 is a necessary condition
y o p ) a_ for the existence of > 0. Fortunately, fort € © this condition can
a=2 —21_ 6-/ =" 5 57 c= a —; 1d= P 5 1 or=Vi? ¥ . be satisfied automatically.
- (4.2) Lemma 4.2: Whent satisfies (4.3), the#'(t) = (RC)* — d* +
Whenr # 0, we definey € [0, 27) by 2(RS)? — 24 < 0.
Then, we can prove the following.
c b Theorem 4.3:For eacht € O, there exists an open nonempty in-
= sin(p) = p 0<p<2m. terval I, = (L(t),U(t)) C (0,+0oc) such thatP = diag(1,z) is a

cos(p) =
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diagonal QLF of4, iff, + € I;. Here,L(t) andU(t) are determined 08 ' ;
by
07t i
5 (a)2 2|a a\2
142 () - () VE L =0 os} ]
L=~ 4 > 0,RC =d osl |
e N2 q2)2 >
= Cf(((fiﬁp ?) ’ r>0,RC#d € o4l 1
3
o (a)2 2|a| a2 L o
1+2(%) +(W) (%) +1, r=0 03k |
U(t)=¢+o0, r>0 RC=d
— _ 2_42)2 02+ i
\ F”i;c,(_(if) By S0,RO#d 160/,
We can also prove the following. otr i
Proposition 4.4: If (¢, x) is a feasible QLF with < = /2, then

, 0 : :
(t+7/2,1/%)is also a feasible QLF. Conversely(if x) is a feasible 0 20 40

QLF witht > =/2, then ¢ — 7/2,1/2) is also a feasible QLF. =(0.1.5708]
This proposition tells us that to search the common QLFs we haye
only to search ove), 7 /2). Usinga, b, ¢, d, andr as in above, the seta'¥'g' 1. Setof common QLF fa, 5, andc'.
© can be precisely described as the follows.
Assumer < |a|, then® = [0, 7/2). Otherwise, we first calculate

pas 4 -1 2 3 5 2
— 4 — — —O
A= B= C=
sin™! (“7)) b>0,c>0 ( 2 0'1) < 1 _2> ( 3 _2)

100

Example 4.6: Consider three matrices

(4.11)
I (M) , b>0,6<0 We skip the tedious elementary computation and give the domains
p= (4.8) of A(t), B(t), andC(t), respectively, as
T+ sin? (U:_l) b<0,e<0
©4 =(0.0764,1.2552) Qg =1[0,7/2) Oc =][0,7/2).

So

Then, we can get the feasible region of the rotations, which assure © =©4N Oz NO¢ = (0.0764,1.2552).
that the rotatedi(¢) has diagonal QLFs. Set

27 — sin~* (‘f’—l) , b<0,¢c>0.

It is easy to calculate the integration as

R ] D R o
b1=sin < r > bo=m =01, a=m + 01, 04 =2m — bu. / (V(t) — L(t)) dt = 0.2524 > 0.

Then LEO
0, 574)} U {(%52, 5)}, < s
O2—u 93;” }7 8, < < o SoA, B, andC share acommon QLF. Fig. 1 shoWst) (above curve),
) YU {(B22,2) Y, fop < 63 (4.9) L(t) (below curve), and the set of common QLFs.

From Fig. 1, it is easy to find out a common QLF. S&y,z) =
(0.37,0.5) is obviously in the feasible region. Hence, we can choose

VNI RY)
ZmE—iny g (2t )Y g < <o,

{1

{(%
0= {[0,03‘7H

{(

{1

cos(0.3w) —sin(0.37) 1 0
Using (4.9), we can construct the feasible setfoir each matrix, as = sin(0.37  cos(0.37) 0 05
O. Moreover, over each;, the boundary function (¢t) andUx(t) cos(0.37)  sin(0.37)
as in (4.7) are defined. Then, we construct the common feasible set as ( _ sin(.() 2 ;:os(0-3rj >
0.6727 0.2378
N ™ = .
O =Nk=10k C [0, 5) : (0.2378 0.8273)

We know that it consists of only finite intervals. Then, define

V. SYSTEMS OFSAME BLOCK UPPERTRIANGULAR FORM

L(t) = 12?;\7 Li(t) U(t)= in'lilfbk(t)

I<k<N In this section, we show that when a set of matrices have the same

V(t) =max {U(t),L(t)}, t€0©. block upper-triangular form, the complexity of the searching common

QLF will be reduced tremendously. The main result is the following.
Theorem 5.1: Assume a finite set of block triangular (complex) ma-

Summarizing the previous argument, we have the following. . ) !
trices with same diagonal block structure as

Theorem 4.5: The set of stable X 2 matrices{A4,, 42,..., An}

share a common QLF, iff i Ai A
A1 A ... Aip

0 Ab ... Aj,
/(V(t)—L(t))dt>(). (4.10)
o 0 0 ... A
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where the samkth diagonal blockst},, have same dimensions for all

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003

So,ifA;,i =1,..., N canbe converted into a same block upper tri-

i. Then,A; share a common QLF, iff for every the diagonal blocks angular form, verifying the existence of common QLF becomes much

{A}, |i=1,..., N) share a common QLF.

easier.

Proof: Without loss of generality, we have only to prove it for

n = 2. Then, by mathematical induction we can prove it for arfpr
both necessity and sufficiency.
(Sufficiency) Denote by

X: Y . .
:L:—<O Zi)’ i=1,...,N.

(5.2)

Assumelim(X;) = p anddim(Z;) = ¢. Let P and(@ be the common

QLFof {X;} and{Z;}, respectively. Sinct; := —(PX,+XIP) >
0,i = 1,...,N. There exists a positive real number> 0, such
that all the eigenvalues df; are greater theh. Similarly, letV; :=
—(QX; —|—XfQ) >0,i=1,...,N,and all the eigenvalues df are
greater then some positive> 0.
We claim that for large enough > 0, W = diag(P, nQ) is a

common QLF of4;. Calculate

PY;

—uVi) '

To showH; < 0, choos& € C? andn € C?. Then

—-U;

WA o+ ATW =
Ho = WA, + AT <Y:P

(&5, n")H; <§> =V +EPYin+ 0", PE— un™Vin

T 2 1 * * 12
<UL+ OlEl” + 507 (VPP
—unVin
= (Uit ol)E+n

X {—mxz + 1 (Y7 P°Yi) | 0. (5.3)

5
Choosing

> 1 max ||Yi*P2YZ'||

de 1<i<N

then it is obvious that (5.3) is less than or equal to zero, and it equals

zero, iff, ¢ = 0 andn = 0.
(Necessity) Assumd;,i = 1,...,¢ share acommon QL. Ac-
. . Py Pri»
cording to the structure ot;, we splitP as< ot ) . Then
P21 P22

PA, + ATP = <P“Xi t)"'P“ i) <0

where X stands for some uncertain elements. Théh; X; +
XTI P, < 0, which meand?, is the common QLF of;.

H
LetH = H“ H” =P ' >0.Then
21 22

H(PA; + A/P)H <0

which leads to

. [ X
A,‘H—FHA,; = <>< HZZZL*-FZszz) < 0.
It is easy to see than

Hy'Z, + Z;HY' < 0.

That is,H,," is a common QLF ofZ;. O

VI. CONCLUSION

In this note, we considered the common QLF of a set of matrices.
[0,2m)" x Hi“ , was proposed as the topological space of the set of
QLFs for a set of stable matrices. Based on this structure, a necessary
and sufficient condition for the existence of a common QLF was pre-
sented. The condition is described by the positivity of an integral. In
fact, it provides a region because the integrand is 1. Comparing with
other numerical methods, this condition provides a precise description
for the set of all QLF.

As for planar systems the structure of the set of common QLFs and
the necessary and sufficient conditions become very simple. We may
compare it with [16]. The result in [16] says that the existence of a
common QLF iff every three-tuple of systems have a common QLF.
So if the number of matrices is 100, by [16] about 160 700 three-tuples
have to be verified. But according to ours, only two curves need to be
considered.

For a set of same structure of block upper triangular matrices, it was
proved that they share a common QLF iff each set of same position
diagonal blocks share a common QLF.
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