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Abstract. The adaptive systems theory to be presented in this paper consists of two
closely related parts: adaptive estimation (or filtering, prediction) and adaptive control of
dynamical systems. Both adaptive estimation and control are nonlinear mappings of the
on-line observed signals of dynamical systems, where the main features are the uncertain-
ties in both the system’s structure and external disturbances, and the non-stationarity and
dependency of the system signals. Thus, a key difficulty in establishing a mathematical
theory of adaptive systems lies in how to deal with complicated nonlinear stochastic dy-
namical systems which describe the adaptation processes.

In this paper, we will illustrate some of the basic concepts, methods and results through
some simple examples. The following fundamental questions will be discussed: How much
information is needed for estimation? How to deal with uncertainty by adaptation? How
to analyze an adaptive system? What are the convergence or tracking performances of
adaptation? How to find the proper rate of adaptation in some sense? We will also ex-
plore the following more fundamental questions: How much uncertainty can be dealt with
by adaptation ? What are the limitations of adaptation ? How does the performance of
adaptation depend on the prior information ? We will partially answer these questions
by finding some “critical values” and establishing some “lmpossibility Theorems” for the
capability of adaptation, for several basic classes of nonlinear dynamical control systems
with either parametric or nonparametric uncertainties.

Key words. Adaptive systems, estimation, control, uncertainty, stochastic systems, sta-
bility.

1 Introduction

Since the modelling, analysis, intervention or control of complex systems play an important
role in the development of the modern science and technology, it is widely recognized that the
research on complex systems is a frontier of science in the twenty first century. As is well-known,
the Santa Fe Institute (SFI) has conducted extensive research activities on complex adaptive
systems over the past two decades, while the Institute of Systems Science (ISS) of the Chinese
Academy of Sciences has been one of the research centers on systems and control in China since
its establishment in 1979. Investigations on complex systems and control systems are closely
related in many cases. Therefore, it is desirable to provide a forum for experts in both complex
systems and control to get together for a series of technical exchanges to explore the theory and
methodology of intervention and adaptation of complex systems. As an initial step towards
this, the SFI and ISS has jointly organized an International Symposium on “Intervention and
Adaptation in Complex Systems” in Beijing in October 2002.

*This work is supported by the National Natural Science Foundation of China and the National Key Project
of China. This paper is based on the presentation at the International Symposium on “Intervention and Adap-
tation in Complex Systems” held in Beijing from October 21-25, 2002.
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The investigation of complex adaptive systems has been one of the focus of the above
mentioned symposium. For example, Tom Kepler gave a general introduction to complex
adaptive systems, John Holland talked about guiding complex adaptive systems, and Simon
Levin talked about resiliency in complex adaptive systems. In this paper, we will not discuss
complex adaptive systems directly, instead, we would like to take a different approach from
different perspectives to answer such questions as what can be said about the quantitative
theory for simple adaptive systems? We hope that this can offer some implications for a
quantitative theory of complex adaptive systems.

We will first explain the concept of adaptation from the perspective of systems and control.
Then we will briefly present some standard methods used in adaptation, and indicate some
theoretical difficulties even for analyzing some simple adaptive systems. Finally, we will present
some quantitative results about the capability and limitations of adaptation.

2 What is Adaptation?

If we open a dictionary, we will probably find that “to adapt” means to change oneself to
conform to a new or changed circumstance. If we examine this explanation carefully, we will
find that there are two ingredients in it: one is the knowledge from the new information, and
the other is the corresponding responses.

In technical terms, it means that adaptation consists of two steps. The first step is estimation
or adaptive estimation (or identification, learning), and the second step is the control or decision
(or intervention). These two steps are closely related, but can also be separated depending on
applications. Obviously, adaptation is the use of system information based on the observed
signals of systems., The information contained in the signals of dynamic systems can reduce the
uncertainty in the system structure. Also, uncertainties in the system structure always exist
in the modelling of practical dynamic systems. Basically, uncertainty can be classified into
two types. One is called system uncertainty, meaning the internal or the structure uncertainty
of the system, and the other is environmental uncertainty treated normally as a disturbance.
But these two kinds of uncertainties are closely related: the environmental uncertainty may
influence the structure uncertainty, and vice versa, so this classification is simply for the ease
of study. The classification may also be situation dependent, and quite artificial sometimes.
Furthermore, there are three cases of structure uncertainties typically. The first case is that a
system contains structure uncertainties but the uncertainties can be represented by a certain
unknown parameter (say 8). In the second case, the system structure uncertainty is represented
by a sequence of signals or time-varying unknown parameters (say {6(t)}). The last case is the
functional uncertainty. For example, we know that there is a nonlinear f(-) between two things,
but we don’t know exactly what the relationship is. We will briefly discuss all the three cases
in this paper.

Now, let’s have a look at adaptation in dynamical systems. Here is a diagram for dynamical
systems:

d
u Dynamical Y
_— —
Systems

where u is the input sequence, y is the output sequence, and d is the disturbance in the dynamic



No. 3 ADAPTIVE SYSTEMS THEORY 295

system. Here the model for a system contains two parts actually. The first part is the prior
knowledge about the system, and the second part is represented by some uncertainties. This
understanding of model is different from what we are familiar with in, for example, the usual
study of differential equations. Also, the key point here for a dynamic system is the so-called
posterior information, meaning a collection of the input-output process at any time ¢,

{y07y1"" y Y  Uo, UL,y - - ,ut}7

which is the information that we know during the operation of the system. It is the posterior
information that makes it possible to reduce uncertainties or to respond to the changes through
the process of adaptation. That is actually the process of adaptive estimation and/ or adaptive
control. Intuitively, adaptive estimation can be explained as a parameter or structure estimator,
which can be updated on-line based on the observed information of an uncertain system. The
following diagram is an example

Adaptive
Estimator

s

— | Plant

In the above, we have a plant with input sequence u, and output sequence y. We have an
estimated model on the top with its simulated output § compared with the actual output y,
resulting in a difference e called the prediction error. Then one can use this difference to
update the estimated model. This is a typical way. But, how to update the model? Usually,
in the parametric case the on-line parameter estimator is derived from minimization of certain
prediction errors, i.e.,
6, = argmin{Certain Prediction Errors}.
0

Next, what is adaptive control? Adaptive control is usually regarded as a controller with
adjustable parameters (or structures) together with a mechanism for adjusting them(see, e.g.
[1]-{3]). The following diagram gives an illustration.
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Here, again, we have a plant which contains uncertainties in the structure. We don’t know the
precise structure of the system, so we use the online input and output information to get an
estimate for the structure. Based on the estimated model at each time, we can then make a
decision, which is usually called adaptive control. This online decision is then used to influence
the plant dynamics, and so the model as well as the decision may change from time to time
according to some objectives. Mathematically, it can be seen that both adaptive estimation
and adaptive control are actually nonlinear mapping of the online observed signals of uncertain
systems.

3 Some Standard Methods of Adaptation

In this section, we will outline some standard methods of adaptation together with some
standard results. First, we consider adaptive estimation.

3.1 Adaptive Estimation

(a) Parameter estimation
There are many standard ways of parameter estimation.
Now, let’s consider a typical example, i.e., the widely used linear regression model

Yrr1 = 07 ¢ + witq,

where 6 is an uncertain parameter vector, w; is the noise signal, and ¢(t) is called the regression
vector. Normally, ¢(¢) is linear or nonlinear functions of the observed system signals. For
example, ¢(¢) may be an (arbitrary) combination of the input and output data up to time t.
A typical and widely used way to estimate the unknown parameter 6 is the so-called Least-
Squares(LS) method, which is mean square optimal in the Gaussian case. The recursive form

of LS is as follows:
Oiy1 = 0¢ + Pip16:(yeq1 — 67 d1),

Py = P, — P Po(1 + ¢] Popy) 1,

where P, = (3.'2% ¢:¢7) ™! is the estimation “covariance” matrix (or P; ' is the information
matrix). Roughly speaking, the current model updated by using the innovation gives a new
model. In general, the LS minimizes the following prediction error:

t
Je(0) = (yis1 — ¢70)%.
i=1
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A basic question in parameter estimation is: how much information is needed for the con-
vergence or strong consistency of the LS estimator, i.e.,

0, — 0 7

A basic result in this direction is as follows: the minimum information (in a certain sense)
required for strong consistency of LS is the following Lai-Weil¥ condition

-1
108 Amax(Fy ) /\ma"(ﬁ ) — 0, ast-— o0,
Amin (P )

where P, ! is the information matrix mentioned above. This condition is for the consistence
of the LS parameter estimator. For practical systems, we usually also have something else
unknown in the model. For example, the order of a linear system. The above condition can
also be used to estimate the dimension or order of linear control systems without using any
additional prior knowledge about the system structure (see e.g., [5]).

(b) Parameter/Signal tracking

Consider again the basic linear time-varying signal model

Y1 = 07 d¢ + Wey1,

where the only difference with the previous model is that 8, is a time-varying process rather than
a constant parameter. This model is important because in many cases, a nonlinear system can
be satisfactorily approximated by a time-varying model. Our objective is to track 8; based on
the on-line observed information. The adaptive tracking algorithm usually takes the following
general form, A A R

01 =0 + pLy(Yer1 — 0] 04),

the new estimated model is formed from the old estimated model updated by using the innova-
tion or the new information of the system. Here p stands for the rate of adaptation. Obviously,
small p gives slow adaptation because the update is not so large, while a large p gives a large
modification meaning fast adaptation. The gain matrix L; reflects the direction of adaptation,
its main feature is that

Ly -0, ast— oo.

Otherwise, the algorithm will not be able to track non-trivial time-varying parameters.

Let us briefly show some standard methods.

The first case is the Least Mean Squares(LMS), which is widely used in adaptive signal
processing and adaptive control. The LMS is formed by simply taking L: in the above algorithms
as (or Ls in normalized case):

P:
Li = o or  Lj=—2t |
( 1+ ||¢t”2>

Actually, this corresponds to a gradient algorithm aiming at minimizing the expected pre-
diction error,

ei(6) = E(ye+1 — ¢76)*.
The second standard case is the Forgetting Factor (FF) algorithm with L; given by

Ly = Py,



298 GUO LEI Vol. 16

1 P TP
P, = {-Pt—l—,u ¢ 1<Pt<PtT t—1 }’
1—p I—p+ppi Py

which gives an estimate 6, that minimizes

t
D (1= 1) " yigr — 970)?,
=1

where (1 — p2) is the “forgetting factor”.

A remarkable feature of this algorithm is that the “old data” are discounted exponentially
fast, in order to capture the most recent parameter changes.

The third standard case is the well-known Kalman Filtering (KF)-based algorithm, where
the gain matrix L; has the following form:

L = P14
t= T
R+ o[ P19+
P TP _
P,=P_, - %t_i+Q, (R,Q > 0).

R+ ¢l P14t

A main feature of this algorithm is that it is optimal in the mean square sense, if the system
noise and the parameter variation process are Gaussian white noises with covariance matrices
R and Q. In fact, in this case, 6; is the conditional expectation of 8; given the observations:

8, = E[0|o{pi,i < t}].

This result is slightly different from the traditional ones, since ¢; is an adapted process.

Now, one may ask some basic questions:

(i) How much information on the system signals is needed in order to guarantee the stability
of the tracking algorithms?

(i1) How to analyze / calculate the tracking performances measured by the covariance matrix

of the tracking error: s B ~
Ht = E[otGZ]y 9t = Gt - 9t ?

(iii) Can we get the “best rate of adaptation” in a certain sense 7
To answer the first question, let us introduce the following condition called “conditional
excitation” to describe the information needed

k+h AT
3 —¢—’1¢’—2|ﬂ] >6§1>0, Vk
2 T ]

for some A > 0 and é > 0, where Fy, 2 o{d;,1 < k}.

This condition is imposed on the regression vector which contains the information about
input and output signals of a system. We remark that this condition is the minimum information
needed for stability in some standard cases, and is a sufficient condition for stability in the
general casel®).

As for the second question, we have a rather general formula for the tracking errors under

some reasonable conditions!”

E[6i0;] ~ I=pR,+ g
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where g, as mentioned before, is the rate of adaptation, 7 represents the speed of parameter
variation, R, is a quantity reflecting the noise variance, and @., is a quantity reflecting the
variance of parameter variations. From this, we can see that the “best adaptation rate” is a
tradeoff between tracking ability and mnoise sensitivity, e.g., for the RLS algorithm(™):

Tr(Qu)
Tr(S™1)’

which means that the “best” adaptation rate is proportional to the speed of parameter variation.
(c) Functional estimation
Let us consider a typical simple nonparametric model as follows:

Yer1 = flye) + us + wep,

which is a stochastic dynamical system with unknown function f. There are many ways to
estimate f by using techniques from nonparametric estimation in statistics. One of the method
is the so-called Kernel estimation described as follows.

We first define a Kernel function K (z) satisfying the following three conditions:

(i) A'(z) is bounded and has compact support;

(ii) K(0) > 0, K(—z) = K(z)

(iit) /K(z)dz =1, /[Kz(z) + |z|K (z)]dz < .

Then using this Kernel function to define a new, shifted function

§i(z,y) = K(7%(=z —-v)), 721,

where a > 0, and ép = 0.
By using this, we can then get a kernel estimation f(y) in the following way.
For any y € R, the kernel estimate for f(y) is defined as

t
fily) = [Ne—a ()] Z‘si—l(yi—l,y)(yi —u;—1), if N()>0,
t =1
0, otherwise,

where

Nt 1 y) 251 1 yl 17y>

This nonparametric estimate can be used in adaptive control to get asymptotically optimal
control systems in some cases (see [8,9]).
Another typical method is the nearest neighbor estimator. We first define i; as

iy = argmin |y; — yi_1].
0<i<t—1

In other words, ¢; corresponds to the point in the observations which is closest to the current
observation value. Then for the above nonparametric model, the nearest neighbor estimator
for f(y;) can be written as follows(]

f(yt) = Yip41 — Ugy,

which is a simple, intuitive and powerful method in the design of adaptation laws('%!.
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3.2 Adaptive Control

(a) “Certainty Equivalence” control
In adaptive control, a basic concept is the so-called “certainty equivalence” principle, which
normally means that the adaptive controller is designed by replacing an unknown parameter
8y in a non-adaptive controller by its online estimate 6;, where the bias in the estimation is
neglected
Uy = U(OO, ¢t)|60=§¢ .

Let’s look at a simple (probably the simplest nontrivial) example — the first order linear control
system.:
Ytr1 = @y +bug +wepy, b#0, t=0,1,2,---,

where v, is an input sequence, w, is the white noise sequence (for simplicity), y; is the output
sequence. The parameters ¢ and b are unknown, which can be any parameter in the plane
except the line b = 0.

Our objective is as follows: given a desired reference signal {y; }, to design a feedback control

A . . . .
u; € Fy = a{y;,1 < t}, s.t. the following averaged tracking errors is minimized:
1 I
lim T E (y¢ — y7)®> = min, as.

T—roc
t=1

Note that

Elyesr — yi)* = 02 + E(ay: + bue — y7y)*

Letting the last term to be zero, then we find that the minimum tracking error is o2, the
variance of the noise. Also, the optimal control in the case where both a and b were known is

1 *
Uy = —E(Gyt ~ Yi1)-

Since a and b are unknown to us, this controller is not available. Now, let (a¢,b;) be any
parameter estimate at time ¢ (for example, the LS estimate). Then, the certainty equivalence
adaptive control is

1 *
Uy = —b—t(atyt - yt+1)'
(b) Cautious/Dual control
There are also other ways to design an adaptive controller. Let 8 = (a,b)” and {w;} be

independent and Gaussian distributed, and let {u;} be any feedback sequence. Then by the
(generalized) Kalman filtering theory, the LS estimate 6, for 8, can be expressed as

9, = E[0|FY], P, =E[6.0]|F), F¥=o{y,i<t}
By solving the following one-step-ahead minimization problem,

mijrrl El(yer1 — yi)*1 7]

y
ut €5,

we can get the so-called cautious control represented by

U = (atbeyy — pr2(t) — bryiy )

a b2 + p2a(t)
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which is different from the certainty equivalence control, since the estimation uncertainty mea-
sured by P, = (p;;(t)) has been taken into account. (In the certainty equivalence control, the
terms p;2(t) and p22(t) do not appear).

It can be seen that when the variance p22(t) of the estimate for b is large, the feedback gain
will be small. In this sense the above controller is cautious. Cautious control is only the result
of a one-step-ahead minimization. The general case gives the so-called Dual Control, which is
obtained from the following multistep minimization problem

N
A . *
Vit+1)= u:_x}}’rtN E {;(yi-&—l - yi+1)2|7ty} .

From this, the following Bellman equation can be deduced:
Vt+1)= min B {(yer1 —ye)? +V(E+2)|F}

Unfortunately, this equation is hard to solve in general, even in the case where € is a constant
parameter vector. Anyway, from the above equation, one may find that the optimal control has
dual effects!']: it should be a compromise between the control action and probing (or learning)
action. This gives us some very valuable guidelines in designing better adaptive controllers (see,

e.g., [1])-

4 Theoretical Obstacles

Now, let’s discuss the theoretical difficulties in analyzing even some very simple adaptive
systems.

Theoretically, we are interested in many properties of a closed-loop control system, e.g.,

a) Stability

) 1
lim sup T Z(ytz +u?) < o0, as.

T
t=1

b) Optimality
¢) Rate of convergence

d) Consistency, robustness - - -

Now, let’s go back to the simple LS-based-adaptive control system as mentioned in Sec-
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tion 3.2. We put all the related equations together to get the following closed-loop equation:

(Y111 = Ciyt + buy + wigq,
Us = —‘b:(atyt - yf+1)7

t—1 t—1
2

E Yis E UiYq

i=0

t—1
Z YilYi+1
i=0 i=0

t—1 t—1 t—1
2
E U;Yi, E u; E Ui Yit+1
i=0 i=0

L =0

-1

The first is the system equation with unknown parameters a and b. Then a and b are
estimated by LS in the third equation using the online input and output data, giving the
estimates a; and b; at each step t. It is a very complicated nonlinear function from data to a;
and b;. Then use a; and b, in the second equation to form a certainty equivalence controller,
which then influence the system dynamics through the input u;. One can see that even for this
simple case, the output y; is generated from a very complicated nonlinear stochastic dynamical
system, which can be written in the following general form:

Yer1 = fe(Yo, Y1, -, Ye) + Wegr.

Now, one may ask: why the analysis of the closed-loop equation is complicated? Some of
the main reasons are described as follows:

{i) The closed-loop system is a very complicated nonlinear stochastic dynamical system
(even for the simple case), which defines the data to be used in the estimation and control.

(ii) No useful statistical properties, like stationarity or independency of the system signals
are available or can be directly used without proof.

(iii) Also, because of (ii), no properties of (a;,b;) are known a priori.

Actually, from the above closed-loop equation, one is likely to have a circular argument as
follows: If we require (a¢,b;) to have good properties, then that implies that the signals used to
estimate (at,b:) should be good in a certain sense. However, why the system signals are good?
Note that the system signals are affected by a controller which is formed by using (a;, b;), and
so (aq,bt) should have good properties in order for (u:,y;) to have good properties. This is
certainly a circular argument! In fact, it has been a long standing issue in adaptive control
theory how to avoid this kind of arguments(!2:13].

From the above analysis we can see that there is a key difference between adaptive systems
theory and the standard statistical theory. We would like to remark that almost all adaptive
estimation and control problems of dynamical systems have the similar theoretical difficulties.

5 Capability and Limitations of Adaptation

Now, let’s mention some recent results on capability and limitations of adaptation for some
typical nonlinear dynamical systems.

Let’s first formulate the problem in a mathematical way.

Since it is the posterior information that enables one to reduce the uncertainty in a system,
let us denote I, as the posterior information available at any time ¢,

It = {y07y17 T Y Up, UL, 7ut—1}-

Then the estimation (in the abstract sense) at any time ¢ is actually a mapping from the
information space to the parameter space:

8, =0,(I;),  6:(): RYI™UI) —, RIME)



No. 3 ADAPTIVE SYSTEMS THEORY 303

The feedback at t is then a mapping from the information-parameter space to the control space:
up = ut(gt;It), () : RAmU)+dim(9) __, ppdim(w)
Now, substituting 8, into this leads to
up = gt(-h), gt() : Rdim(It) — Bdim(u)

which says that the feedback control is essentially a nonlinear mapping from the information
space to the control space.
Adaptation law is defined as a collection of such u;,

w={u,t=0,1,2-}.
The adaptation mechanism is then defined as the collection of all adaptation laws:
U ={u| wuisany adaptation law }.

Obviously, the adaptation mechanism thus defined contains all the possible feedback controls or
adaptation laws that can be constructed by using the posterior information. So the capability
of adaptation means the capability of all the adaptation laws in U, not of a specific class of
adaptation laws. Essentially, it is the capability of all possible feedbacks laws.

Below is a diagram explaining our problem formulation

Noise

1

Uncertain f(e) € F —

Adaptation u e U

Here we have an uncertain system with its model represented by some function f. This function
is not known to us. What we would like to do is to find an adaptation law such that this system
behaves well under some noise disturbances.

Since the function f is uncertain, it is can be treated as any point in a set of functions. So
the uncertainty can be measured by a set of functions. The adaptation law should be able to
deal with any f in the function set F. This is certainly a kind of robustness problems.

However, since we are interested in the capability of the whole class of adaptation laws
(not only a particular adaptation law), our problem is: how large the size of the uncertainty
set F can be dealt with by the set of adaptation laws U? This is a basic problem setting.
Mathematically, it is a complicated optimization problem:

sup {Size(}') ssup ||y (f,u)|| < o0, Vf € _7-"} .
uelU t
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To solve this problem is very hard in general. Here, we just show some cases where the
solutions have been found.

a) Linear time-invariant stochastic systems

Here we have a transfer function model:

w; |noise
Ut 4 Yt
input ﬁ% output

where A(z) and B(z) are coprime polynomials of finite order. If the noise is zero, then by
solving a set of linear algebraic equations, one can get the precise value of the transfer function,
as the transfer function only contains a finite number of parameters of the linear system. Hence,
it appears to be a trivial adaptive control problem to not consider the noise effects, at least
theoretically. In the noise case, however, there does indeed exist some essential difficulties in
establishing a rigorous adaptive theory, as delineated in the last section. Despite of this, much
progress has been made over the past several decades. The basic understanding now is that
without requiring further prior information, adaptation is capable of achieving (asymptotically)
the same control performance as the case where the system transfer function is known, for either
tracking problems or LQ /pole-placement problems(see, e.g.[1,2],[12-15]).

We would like to remark that similar general assertions may not be true when either the
“linear” assumption or the “time-invariant” assumption is removed. This will be explained
later.

b) Nonlinear parametric systems

Counsider the following nonlinear system with unknown parameters entering into the system
in a linear way:
{ Yerr = 07 f(d¢) + wiy1,
¢y = [ytv Yt—1 " Yt—pt1Ut ' ut—q+1]T7

where the nonlinear function f is assumed to have a linear growth rate:
If (@) < c1 +eollz||, « € RPT.

In this case, it can be shown that adaptive control results can also be established based on
the existing results for linear systems.
The nontrivial case is the nonlinear growth rate. We now consider the following simple
system
Yer1 = O (ye) + ue + we g

where the uncertainty is represented by an unknown parameter #, and f(-) is a known function
with growth rate
f(z)=0(z%), as z— oco.

Obviously, if b is less than or equal to 1, then the growth rate is dominated by linear growth,
which can be dealt with easily. Our question is: does adaptation have the capability of dealing
with any nonlinear growth rate b > 17

It turns out that b = 4 is a critical case for adaptive stabilizability To be precise, if
b < 4, then one can design an adaptation law (for example, the LS-based adaptive control law)
to globally stabilize the uncertain system.

[16],



No. 3 ADAPTIVE SYSTEMS THEORY 305

However, if b > 4, it can be shown that there is no stabilizing adaptation law for the
uncertain system. In other words, for any adaptation law u in the adaptation mechanism U, it

is always true that
E|y:|® — o0, as t — oo.

¢) Linear time-varying systems

We consider the following first order system

Zip1 = a(0p)Te + up + Wit

where 6, € {1,2}, is a Markov chain with transition probability matrix {p;;}, a(1) = a,
a(2) 2 az, and p12 = par.

It is easy to see that in the non-adaptive case where 8; is available, one can cancel the first
term in the system equation by choosing u; = —a(8;)z;. If the noise is bounded then we have
bounded output(stability).

In the adaptive case, however, there is a limitation on the capability of adaptation. In fact,
it can be shown that the system is adaptively stabilizable if and only if the following inequality
is satisfied (see [17])

(a1 — a2)*(1 — prz)p12 < 1.
From this, we know that the capability of adaptation is inversely proportional to the uncertainty
Q = p12(1 — p12), and the commonly used “rate of parameter changes” is not a proper measure
in characterizing the capability of adaptation.

d) Nonlinear and nonparametric systems

Consider the following basic system:
Yir1 = f(¥e) +ur + wey1, y,w,u € R,
where we assume that f is unknown, but satisfies a Lipschitz condition:
|f(z) - f(y)| < Llz—y|, L>0, =,ye€R"

It is known that an asymptotically optimal adaptive tracking control can be designed based on
kernel estimation whenever L € (0,1)([8, 9]). Our question is: how large the Lipschitz condition
L is allowed by adaptation? Now we denote the class of uncertain Lipschitz functions as

FLy=A{f11f(z) - f)| < Llz ~y|, Va,y€R'}.

The size of this set can also be regarded as a measure of uncertainty of the above control
systems.

It has been found that the Lipschitz constant L = % + /2 is a critical value for adaptive
stabilizability!1®. In other words, if L < % + v/2, then one can construct an adaptation law
{ut}, such that the closed-loop system is globally stable for all f € F(L); while if L > % +4/2,
then there is no stabilizing adaptation law {u.} for the class of uncertain systems described by
F(L).

6 Concluding Remarks

Adaptive techniques have been applied successfully in many engineering systems over the
past several decades. In this paper, we have only presented some of the basic concepts, methods
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and results developed in adaptive systems theory. Various extensions of the existing theoretical
results are possible, but many are hard and still open.

Finally, a natural question is: what can be done towards a mathematical theory of complex
adaptive systems based on the existing results in adaptive systems? It is open for investigation.
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