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1 Introduction

The stabilization of the nonlinear systems has been studied extensively over
the past three decades, and considerable progress has been made in either anal-
ysis or synthesis by introducing some powerful methods, including the well-
known differential geometric method and backstepping method. However, the
differential geometric method can only give local stabilization results of the
nonlinear control systems in general, see refs. [1–3] for example. For the study
of global stabilization, ref. [4] gave some necessary conditions by the meth-
ods of the homotopy and topological degree. As for sufficient conditions, to
the authors’ knowledge, there has been no general methods or results up to
now. For example, the popular backstepping design method and its variants
can only provide global stabilization results for a class of the nonlinear systems
with the special structure essentially (e.g. triangular structure[2,5−7]). Even for
the global stabilization of the seemingly simple planar affine nonlinear systems
with single input, the problem is highly nontrivial, which has been investigated
by many authors from various aspects[8−11], but most of the results are still on
local stabilization, except the case where the system has a special triangular
structure[12].

In this paper, we consider the planar affine nonlinear control systems and
investigate the global asymptotic controllability, a concept which is closely re-
lated to but some-what weaker than the global stabilization. The asymptotic
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controllability has been studied previously[3,11,13], but most of the results are of
local nature. In this paper, we present a necessary and sufficient condition for
global asymptotic controllability of the planar affine nonlinear control systems.
Our new approach used to establish the main result is based on the Jordan
curve-like theorem, Poincare-Bendixson theorem, Whitney’s smooth extension
theorem, and some other basic facts in the geometric theory of ordinary dif-
ferential equations, as well as on some basic results established recently in ref.
[14].

The rest of this paper is organized as follows: Section 2 presents the main
results together with some basic concepts, and several illustrative examples are
given in section 3, and the proof of the main theorem is given in section 4.
Finally, section 5 concludes the paper.

2 Main results

Consider the following planar affine nonlinear control systems
ẋ1 = f1(x1, x2) + g1(x1, x2)u,

ẋ2 = f2(x1, x2) + g2(x1, x2)u,
(2.1)

where fi(x1, x2), gi(x1, x2), i = 1, 2 are smooth functions of the state x =
(x1, x2)

T in R
2, and u is the system input function taking values on R. Denote

f(x) = (f1(x), f2(x))T , g(x) = (g1(x), g2(x))T
, and assume that f(0) = 0,

g(x) �= 0,∀ x ∈ R
2. As usual, a smooth function means a function with con-

tinuous partial derivatives.

Definition 2.1. The system (2.1) is said to be locally asymptotic con-
trollable at the origin, if there exist two neighborhood U1 and U2 of the origin,
such that for any initial point x(0) = x0 ∈ U1, there exists a smooth control
function of state ux0(x) which keeps the trajectory x(t), t � 0 in U2 and drives
the state converging to zero, i.e., x(t) → 0 as t → +∞. If U1 = U2 = R

2, then
the system (2.1) is said to be globally asymptotic controllable1).

The local stabilization issue has been well studied in the literature[1,2,11], for
example, if

(
∂f (x)

∂x |x=0,g(0)
)

is controllable, then a locally stabilizing controller
can be easily constructed. Hence, the locally asymptotic controllability of some
systems is easy to be validated.

The purpose of this paper, however, is to study the more difficult global
asymptotic controllability problems. To this end, we need to introduce several
new concepts.

The well-known Jordan curve theorem in topology[15] says that a simple closed
curve C separates the plane into two disjoint components, of which C is the
common boundary. The proof of the Jordan curve theorem in ref. [15] actually
gives also the following assertion: the curve which is homeomorphic to the
straight-line with its two ends extending to infinite separates the plane into two

1) In most literature, the control function needs not to depend explicitly on the state, e.g. refs.[3,11],
and in some literature the state trajectory does not need to be kept in U2, e.g. ref. [3].

Copyright by Science in China Press 2005



On global asymptotic controllability of planar affine nonlinear systems 705

disjoint components1) . We call this result the Jordan curve-like theorem (see
Fig. 1)

Fig. 1.

We are now in a position to give the following definitions.

Definition 2.2. The inner side of a curve which does not pass through
the origin and is homeomorphic to the straight-line with its two ends extending
to infinite, is defined as one of the two above-mentioned components which
contain the origin. The other component is accordingly called the outer side
(see Fig. 1).

Definition 2.3. A smooth curve Γ : γ(s) ∈ R
2, s ∈ R which satisfies the

conditions in Definition 2.2 is called a P -curve of system (2.1), if there exists
s1 ∈ R such that

L(s1) < 0

holds for some function u(x), where L(s) = 〈f(γ(s)) + g(γ(s))u(γ(s)),p(s)〉,
and p(s) is a non-zero normal vector of γ(s) which points to the outer side of
Γ.

Definition 2.4[14]. A control curve of system (2.1) is defined to be a
solution (x1(t), x2(t)) of the following differential equation on the plane which
does not pass through the origin:

ẋ1 = g1(x1, x2),
ẋ2 = g2(x1, x2),

(2.2)

where gi(x), i = 1, 2 are the same as those in (2.1).

Lemma 2.1[14]. Any control curve of the system (2.1) is homeomorphic to
the straight-line with its two ends extending to infinite.

Proposition 2.1. A control curve Γ : γ(s) of system (2.1) is a P-curve
if and only if there exists s1, such that 〈f(γ(s1)),p(s1)〉 < 0, where p(s) is
non-zero normal vector of γ(s), which points to the outer side of Γ.

This proposition is obvious, because p(s) is perpendicular to g(γ(s)) for any
s. Moreover, for any given control curve γ(s) of system (2.1), p(s) can be taken

1) The two ends of a curve Γ(t), t ∈ R extending to infinite means that ‖Γ(t)‖ → +∞, when
t → +∞ and −∞.
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as either (−g2, g1)T or (g2,−g1)T . Consequently, L(s) can be represented as
L(s) = ±{g1(γ(s))f2(γ(s)) − g2(γ(s))f1(γ(s))}.

From this, we can immediately get the following easily verifiable condition
for a P-curve.

Proposition 2.2. If the following function
g1(γ(s))f2(γ(s)) − g2(γ(s))f1(γ(s))

changes its sign over a control curve γ(s), then it is a P-curve.

The main result of this paper is stated below, which characterizes the addi-
tional condition needed from local asymptotic controllability to global asymp-
totic controllability.

Theorem 2.1. Let the system (2.1) be locally asymptotic controllable at
the origin. Then the necessary and sufficient condition for global asymptotic
controllability of the control system is that any control curve Γ : γ(t) of the
system is a P-curve.

Remark 2.1. From the proof of Theorem 2.1 to be given in Section 4,
one can see that if there exists a control curve for the system (2.1) which is
not a P-curve, then the system cannot be globally stabilized by any measurable
control function ut (not necessarily required to be smooth).

Let us now give an intuitive interpretation of the theorem whose rigorous
proof will be given in section 4.

According to Lemma 2.1 and the Jordan curve-like theorem, any control
curve separates the plane into two disjoint components, and by the uniqueness
of solutions, the plane R

2 is partitioned by all the control curves corresponding
to all initial conditions in R

2. These results in a foliation which can be viewed
as Fig. 2 on the whole, where Γi, i = 1, 2, · · · are some control curves of (2.1),
the point x0 is assumed to lie on the curve Γ1, and another curve Γ3 passes
through the origin.

Fig. 2.
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If Γ1 is a P-curve, then there must exist a point x1 ∈ Γ1 and a u(x1), such
that the positive semi-trajectory of the control systems with the initial point x1

will go into the inner side of the curve Γ1. Hence, there exists a neighborhood U1

of the point x1, such that for any point in U1 together with the corresponding
control u(x), the positive semi-trajectory with initial point in U1 will go into the
inner side. On the other hand, according to the local asymptotic controllability,
there exists a neighborhood U2 of the origin such that for each ξ ∈ U2 there is a
control uξ(x) steering the system (2.1) from x = ξ to 0 as the time approaches
to infinity.

Hence, let the control function u(x) be sufficiently large on a tubular neigh-
borhood of Γ1 which contains both x0 and x1 with the direction of the vector
field from x0 to x1. Then under this control, the positive semi-trajectory with
the initial point x0 will reach U1 at some finite time, so we can let the trajectory
go into the inner side of Γ1 in U1. Repeating this procedure, we can prove that
the trajectory will finally reach at U2 or Γ3.

Once the trajectory arrives at ξ ∈ U2, we can use control uξ(x) such that
the trajectory approaches to the origin. Otherwise, if the trajectory reaches
Γ3 but not in U2, we can use a large control such that the trajectory goes into
the neighborhood U2 of the origin. Hence, we can get the globally asymptotic
controllability of the control system, and at the same time the controller can
be made smooth.

3 Some examples

Example 3.1. Consider two dimensional linear systems
ẋ = Ax + Bu, (3.1)

where x =

(
x1

x2

)
, A =

(
a11 a12

a21 a22

)
, B =

(
b1

b2

)
, (A,B) is controllable.

Since (A,B) is controllable, Δ = det(B,AB) �= 0, i.e. Δ = a21b
2
1 + a22b1b2 −

a11b1b2 − a12b
2
2 �= 0. The control curve is defined by the differential equation{

ẋ1 = b1

ẋ2 = b2

or by

{
x1 = b1t + c1

x2 = b2t + c2

, t ∈ (−∞,+∞), (3.2)

where c1 and c2 are any constants. Therefore
b2(a11x1 + a12x2) − b1(a21x1 + a22x2)

= b2(a11(b1t + c1) + a12(b2t + c2)) − b1(a21(b1t + c1) + a22(b2t + c2))
= (b1b2a11 + b2

2a12 − a21b
2
1 − a22b1b2)t + (b2a11c1 + b2a12c2 − b1a21c1 − b1a22c2)

= − Δ t + (b2a11c1 + b2a12c2 − b1a21c1 − b1a22c2).

Since Δ �= 0, the function b2(a11x1 + a12x2) − b1(a21x1 + a22x2) obviously
changes its sign over any control curve defined by eq. (3.2), i.e. the system (3.1)
satisfies the condition of Theorem 2.1 by Proposition 2.2. Hence the system
is the globally asymptotic controllability as we have already known from the
linear systems theory, but this simple example shows a way how to use Theorem
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2.1. Q.E.D

Example 3.2. Consider the following second-order triangular control sys-
tems

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2) + g2(x1, x2)u.

(3.3)

Let us denote x = (x1, x2)T , f(x) = (f1(x1, x2), f2(x1, x2))T , and assume that
f(0) = 0, g2(x) �= 0,∀ x ∈ R

2.

It is easy to check that the control curves of the system (3.3) are the straight-
lines which are perpendicular to the x1-axis, i.e. straight-lines x1 = c1, ∀ c1 ∈
R.

By Theorem 2.1, the curve x1 = c1 is P-curve if and only if there exists an
x′

2 such that f1(c1, x
′
2) < 0(> 0) when c1 > 0(< 0).

A standard assumption in the popular backstepping method[2,6], is that there
is a virtual control x2 = η(x1), η(0) = 0, such that ẋ1 = f1(x1, η(x1)) is glob-
ally stable. Therefore f1(x1, η(x1)) < 0 when x1 > 0, and f1(x1, η(x1)) >
0 when x1 < 0. Hence, the planar systems that can be treated by the backstep-
ping method can also be treated by using our Theorem 2.1. Q.E.D.

We now give a further example where the system is not of the standard
triangular structure.

Example 3.3. Consider the following planar affine nonlinear system

ẋ1 = f1(x1, x2) + cos(x2
1 + x2

2)u,

ẋ2 = f2(x1, x2) + sin(x2
1 + x2

2)u.
(3.4)

Let us denote x = (x1, x2)
T , g(x) = (cos(x2

1 + x2
2), sin(x2

1 + x2
2))T , and let

f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
,M(x) =

(
0
x1

)
,N (x) =

(
sin(x2

1 + x2
2)

cos(x2
1 + x2

2)

)
.

Furthermore, let D1 and D2 be two open discs centered at the origin with radius
1 and 2 respectively. By a standard result in the differential manifold (see ref.
[16] pp. 106–109), there exists a smooth function θ(x) on R

2 which satisfies

0 � θ(x) � 1, θ(x) =

{
1, x ∈ D1,

0, x �∈ D2.

Now, let f(x) = θ(x)M (x)+(1−θ(x))N (x). Then f(x) is smooth function

on R
2 and f(0) = 0. It is easy to check that

(
∂f (x)

∂x |x=0,g(0)
)

is controllable,
and each solution of differential equations defining the control curve

ẋ1 = cos(x2
1 + x2

2),
ẋ2 = sin(x2

1 + x2
2)

(3.5)

will extend to infinite. Therefore, there are at least some parts of each trajectory
out of D2.
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It is easy to see that for x out of disc D2,
g1(x)f2(x) − g2(x)f1(x) = cos2(x2

1 + x2
2) − sin2(x2

1 + x2
2)

= cos(2(x2
1 + x2

2)) = cos(2r2), (3.6)

where r =
√

x2
1 + x2

2.

Since each control curve γ(t), t ∈ R defined by eq. (3.5) will extend to infinite,
we know that the function in (3.6) will change its sign on each control curve.
Hence, by Theorem 2.1, the system is globally asymptotic controllable. Q.E.D.

Finally, we consider an example taken from ref. [17] which is not globally
stabilizable.

Example 3.4. Consider the following system
ẋ1 = − sinx2 cos x2 + sin x2 exp(−x1)u,

ẋ2 = sin2 x2 + cos x2 exp(−x1)u.
(3.7)

It has been shown that this system is not globally linearizable (see ref. [17]),
and hence a globally stabilizing control cannot be constructed by using the
traditional differential geometry method. Here, we will further show that this
system is actually not globally stabilizable.

First of all, it is easy to check that
(

∂f (x)

∂x |x=0,g(0)
)

is controllable, so the
system (3.7) is locally stabilizable. Note that one of the control curves of the
system (3.7) is {

x1 = ln t, t > 0,
x2 = π

2
,

and that on this curve, the normal vector p(t) = (0, 1)T which points to the
outer side, and the function 〈f(x),p(t)〉 = sin2 x2 = 1,∀ t > 0. Hence, this
control curve is not a P-curve, and the system cannot be globally stabilizable
by Remark 2.1. Q.E.D.

4 The proofs of main results

For the planar affine nonlinear control systems (2.1), let C1(R2) denote the
class of smooth functions on R

2, and (ϕu(x0, t), t > 0) be the positive semi-
trajectory of the system (2.1) under control u(x) ∈ C1(R2) with the initial
point x0. The reachable set of the systems (2.1) at x0 (see ref. [14]) is
defined by

R(x0) �==
⋃

u∈C1(R2)

{ϕu(x0, t) | t > 0}. (4.1)

Lemma 4.1[14]. Let x1, x2 ∈ R
2 be two distinct points which lie on the

same control curve Γ : γ(t) of the system (2.1). Then for any small ball U(x2, ε)
centered at x2 with radius ε > 0, there exists a control function u(x) such that
the positive semi-trajectory of (2.1) with the initial point x1 reaches the set
U(x2, ε) at some finite time.
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We can say that Lemma 4.1 is also valid for the negative semi-trajectory.

Lemma 4.2[14]. For the planar affine nonlinear control systems (2.1), if
det(f(x0), g(x0)) �= 0, then R(x0) is an open set.

Next, we introduce the following Lemma 4.3 which is about the transitivity
of the reachable points.

Lemma 4.3[14]. Let x0,x1,x2 be three points in R
2. If x1 ∈ R(x0) and

x2 ∈ R(x1), then x2 ∈ R(x0), where R(x0) and R(x1) are the reachable set
defined by (4.1).

Proof of Theorem 2.1. We first prove the sufficiency part of the theorem
by contradiction.

Assume that (ϕu(x0, t), t > 0) cannot approach to the origin under any con-
trol u(x), where (ϕu(x0, t), t > 0) is the positive semi-trajectory of the system
(2.1) under control u(x) with the initial point x0.

Because the system (2.1) is locally asymptotic controllability, there exists a
small neighborhood of the origin U(0, δ) such that for any initial point x1 ∈
U(0, δ), there exists a control u(x) driving the state x(t) → 0 as t → +∞.

We first show that {ϕu(x0, t)|t > 0} ∩ U(0, δ) = ∅. In fact, if {ϕu(x0, t)|t >
0} ∩ U(0, δ) �= ∅, then there exists t1 > 0, such that ϕu(x0, t1) ∈ U(0, δ).
Therefore, by the similar proof method of Lemma 4.3 in ref. [14] and the
results in refs. [18,19], we can construct a new control such that the positive
semi-trajectory with the initial point x0 tends to the origin, which contradicts
with our assumption. Thus we have

R(x0) ∩ U(0, δ) =

( ⋃
u∈C1(R2)

{ϕu(x0, t) | t > 0}
)

∩ U(0, δ)

=
⋃

u∈C1(R2)

({ϕu(x0, t)|t > 0} ∩ U(0, δ)) = ∅. (4.2)

Hence, R(x0) is not the whole plane.

Let R(x0) be the closure of R(x0), then there must exist a point ξ ∈ R(x0)
such that

‖ξ‖ = inf{‖x‖ : x ∈ R(x0)}. (4.3)

By (4.2) we know that ‖ξ‖ > 0, and that ξ is on the boundary ∂(R(x0)).

Let Γ0 denote the trajectory of (2.2) passing through the origin. Hence Γ0

separates the plane into two parts which are denoted by Side-A and Side-B
respectively. By Lemmas 4.1, 4.2 and 4.3, it can be easily shown that ξ cannot
lie on the curve Γ0 by our contraction assumption. Without loss of generality,
we suppose that ξ lies in Side-A. Now, we proceed with the following four steps:

Step 1. We prove that x0 should lie on the same side with ξ, i.e., Side-A.

First of all, by Lemma 4.1, it is obvious that the point x0 must not lie on
Γ0. Now, let U(ξ, ε) ⊆ Side-A be a small neighborhood of ξ. Then there exists
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a control such that the trajectory ϕ(x0, t), t > 0 of (2.1) with initial point x0

can reach a point in U(ξ, ε) at some time. Therefore, by the Jordan curve-like
theorem, if x0 lies on Side-B, then ϕ(x0, t), t > 0 must intersect with Γ0. By
a similar argument as used before, this will contradict with our assumption.
Hence x0 must lie on Side-A.

Step 2. We prove that the point x0 does not lie on the inner side of the control
curve Γξ which passes through ξ.

To this end, let Γ1 denote the control curve passing through the point x0.
By the uniqueness theorem of solutions and the Jordan curve-like theorem, the
three curve Γ0, Γ1 and Γξ separate Side-A into three disjoint parts as shown in
Fig. 3. If x0 lies in the inner side of Γξ, we then have
the outer side of the control curve Γ1 ⊃ the outer side of the control curve Γξ.

(4.4)
Therefore, we have
0 < inf{‖x‖ : x ∈ the outer side of Γ1} < inf{‖x‖ : x ∈ the outer side of Γξ}.

(4.5)
By Lemma 4.1, Γ1 ⊆ R(x0). Therefore, by (4.5), there exists a η ∈ Γ1 such
that ‖η‖ < ‖ξ‖ which contradicts with the definition (4.3) of ξ.

Fig. 3.

Step 3. We prove that there is no reachable point between Γ0 and Γξ. This
is true, because, otherwise, by Lemmas 4.1 and 4.3, and the procedure in Step
2, we can also get a contradiction with definition (4.3) of ξ.

Step 4. Finally, we prove that the sufficiency part of Theorem 2.1 holds.
Because Γξ is a P-curve, there exists a point y ∈ Γξ such that 〈f(y),p(y)〉 < 0,
where p(y) is a non-zero normal vector of Γξ, which points to the outer side of
Γξ. By Lemmas 4.1, 4.3 and the fact that ξ is on the boundary ∂(R(x0)), we
can construct a control such that the positive semi-trajectory of (2.1) goes to
the inner side of Γξ. This certainly contradicts with the conclusion of Step 3.
Hence the sufficiency part of Theorem 2.1 is proven.

Next, we prove the necessity part of Theorem 2.1 also by contradiction.

We need only to show that if there exists a control curve Γ which is not a P-
curve, then the system (2.1) cannot be globally asymptotic controllable. By the
similar method in ref. [14], we can easily prove that the positive semi-trajectory
of (2.1) starting from the outer side of Γ cannot go into its inner side under any
control u(x) by the assumption about Γ, and therefore it cannot approach to

www.scichina.com



712 Science in China Ser. F Information Sciences 2005 Vol.48 No.6 703—712

the origin. This completes the proof. Q.E.D.

5 Concluding remarks

In this paper, we presented a necessary and sufficient condition for the global
asymptotic controllability and a necessary condition for global stabilization
of the planar affine nonlinear systems. These conditions are imposed on the
system nonlinear structure only, and the analysis technique is based on some
basic facts in topology and in the geometric theory of ordinary differential
equations, as well as on some basic results established recently in ref. [14]. For
future investigation, it is desirable to extend the results of this paper to high
dimensional nonlinear control systems.
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