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Abstract |n this paper, we present a theoretical analysis on stability and convergence
of the cautious control, which has advantages over the traditional certainty equivalence
adaptive control, since it takes the parameter estimation error into account in the design,
and is also one-step-ahead optimal in the mean square sense under Gaussian assump-
tions.
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1 Introduction

Over the past three decades, there have been extensive efforts devoted to adaptive con-
trol of linear stochastic systems, and much progress has been made in both theory and
applications (cf. refs. [1-8]).

However, most of the stochastic adaptive controllers studied so far are designed mainly
based on the so-called “certainty equivalence principle”. This principle means that in the
design of adaptive controller, the unknown parameter is simply replaced by its on-line
estimate, without taking the parameter estimation error into account. As is well-known,
this kind of controller hardly has any optimality at any finite step, and may result in very
poor transient performances of the underlying adaptive control systems.

In this paper, we take another view on the design of adaptive control, and investigate the
so-called cautious control which may be derived from the standpoint of partially observed
stochastic control systems. (see ref. [3]).

Let us consider the following SISO linear discrete-time stochastic system:

A(2)ye = B(2)ug_y +wy, t 20, (1.1)
where {y:},{u:}, and {w;} are the system output, input and noise processes
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respectively. We assume that y, = u; = w, = 0, V¢t < 0, A(z), B(z) are polynomials in
the backward-shift operator z,

A(Z) =14 a2+ -+ 4 ap2?, P
B(z)=by +byz+ - +b,297, ¢

where a;, 1 <4 < p; b;, 1 < j < g are unknown coefficients; p, ¢ are the upper bounds

L,
1

VoWV

b

for the true orders. Now, let the unknown parameter be denoted as

=[—a; -~ —a, by -+ b7, (1.2)
and introduce the corresponding regressor
O =Yt Yeopi1 Ut -+ Ur_gra]T (1.3)
Then system (1.1) can be rewritten as
Y1 =070 + wen, 0. (1.4)

Our control objective is, at any instant ¢, to construct a feedback control u; based on
the past measurements {yo, - -, Yz, Ug, -+, Us—1 + SO that the following one-step-ahead
tracking error is minimized:

I = E(Yr1 — y;‘+1)2, (1.5)
where {y; } is a known deterministic reference signal.
If the parameters of system (1.1) were known, it would be easy to determine the optimal
control law as follows:
QT‘Pt = y;rl-
From this, u; can be expressed explicitly as
= Yir1 — gT@t’
by
where @ = [y -+ Yr—pp1 O Upep -+ Upgy1]T.
In the case where the parameter is unknown, the traditional “certainty equivalence prin-

(1.6)

ciple” suggests that the unknown parameter § be replaced by its online estimate 6;, and
thus we get the familiar adaptive control law as follows:
T —
B Yipr — 0 Pr
t— Ty
bu

where by, is the estimate of b;. Note, however, that

0:9,5—"@,5, étZQ—“(it

(1.7)

Hence, obviously, the above controller does not take the parameter estimation error 9~t
into account, and so it is hardly to be an optimal one at any time ¢. Also, u; may not be
well defined, since the set {b;; = 0} may have a positive probability.

To obtain an optimal controller, let us assume that the parameter  and the noise se-
quence {w;} are jointly Gaussian. Assume further that {w,} is a zero mean white noise
with variance o2 . Then by the Kalman filter theory (cf. ref. [5]), we have for any u; € Y,

et:EWD)t]: P, ZE[étéﬂyt]; ét=9—9t7
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where Y, is the o-algebra generated by {yo, - - + , Yt }» and 6, is the estimate of § which may
be generated by the least-square algorithm, P is the corresponding estimation covariance.
From the facts that E[0;|Y;] = 0 and {w; } is Gaussian and white, we can see that

El(yesr — y:+1)2|yt]
= B[(0F 0 — Y51 + 07 e + w,11)")| Vi)
= (67t — yin)? +9¢ Pepe + 0,
= (0T B¢ + bueuy — yi 1) + @r Po@e + uipy, () + 2u () 2 = o3, (1.8)
where P;(t) = [T P, py, (t) = " P,l and [ is the (p + 1)th column of the d x d identity
matrix with d = p+ ¢.
Now, minimizing (1.8) with respect to u; gives the one-step-ahead optimal controller
[01:(0) @ — yiy) + Pi(t) @]
b%t + e, (1) .
The above controller differs from (1.7), because the parameter estimate error measured by

(1.9)

Up = —

P, has been taken into account. Furthermore, it is cautious since the presence of py, (£)
in the denominator will reduce the magnitude of u,, once the estimate uncertainty in by,
measured by py, (1) is large (see ref. [3]).

2 Main results

Although the Gaussian assumption is used in the derivation of the cautious control in
the last section, the main theorem together with the stability analysis to be given below
does indeed not require this assumption.

In fact, throughout the sequel, we only need the following standard conditions:

(A.1) The noise sequence {wy,F;} is a martingale difference sequence i.e.,
Elw;1|F:] = 0, and satisfies

Ewi,|F]=0">0 as. 2.0
supE [thﬁlﬁl.ﬁ] < oo as. forsomed > 2. (2.2)
t
(A.2) B(z) # 0, Vz with |z| < 1 (the minimum-phase condition).

(A.3) {y;} is a bounded reference sequence independent of {wu}.
We remark that if {d; } is a nondecreasing positive deterministic sequence such that

we” = 0(d;)  as. (2.3)

then under condition (A.1), d; can be taken as

d =1, Vye (% 1), 2.4)

where ( is given by (A.1) (cf. ref. [7]).
Instead of the one-step-ahead tracking error I;, we consider the following averaged

tracking error
i

al .
Ji = ?Z(yz — ;).

=1

Converge

Define

Then by
totic 1o

where -
le. >

Now
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Define
¢
JA) * &
RS> (g —yp —wi)™ (2.5)
i=1
Then by the condition (A.1), we know that for any adaptive sequence {u¢, 7}, the asymp-
totic lower bound to .J; is o2, and

Ry = o(t) & lim J, = o,
t—o0

where o is defined by (2.1). Furthermore, once R; = o(t) is proved, the global stability,
ie., Z;=1 (y7 + u3) = O(t), can be derived easily by the conditions (A.1)-(A.3).

Now we introduce the standard least-squares (L.S) algorithm for the estimation of the
unknown parameter § :

Ors1 = 0p + e Py (Yegr — o1 0,), (2.6)
Piyy = P~ a;Prpvpl Py, 2.7
ar = (1 + ¢ Pupr) ™, 2.8)

where the initial values 8y, F, > 0 can be chosen arbitrarily.
Let by, be the estimate for b, given by 8;, and denote

D = {by #0, V&; liminf \/log(t + re—1)|bue| # 0}, @9
where
.
=14 el (@10)
i=0

The main result of this paper is as follows.

Theorem 2.1.  For system (1.1), let the conditions (A.1)—(A.3) be satisfied, and let the
control law be defined by (1.9). Then the closed-loop system is globally stable, optimal
(in the sense that B; = o(t)), and has the following rate of convergence on set D:

R, = O(logt + &), (2.11)
where
g = (logt) fnaict{djjedj}, Ve >0, (2.12)
<I€
A
5,5 = tr (Pt - Pt+1)' (213)

3 Proofs of the main results

To prove Theorem 2.1, we need to present several lemmas first.
Introduce the following notation:

3 (éf@t)g

T 14T Py

We then have
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Lemma 3.1%,  Under conditions (A.1) and (A.2), for any initial values (A, P), if

{u.} is adapted to G, = o(Ys, Yi11» J < t), then the estimate {6, } given by the LS-based
algorithm (2.6)—(2.8) satisfies

(H1)  [l6)° = Oflogriy) as.

t
(H.2) Z a; = O(logr;) as.
i=1

where 7, is defined by (2.10).

For simplicity, we will sometimes omit the phrase “a.s. on D" in the sequel, and all
relationships should be understood to be held on I with a possible exceptional set of
probability zero.

Lemma 3.2. Consider the closed-loop system (1.1) with the control law given by

(1.9). If conditions (A.1)—(A.3) are satisfied, then there exists a positive random process
{L;} such that

v <Ly, Ly <(A+ef)L;+€ as. onD,
where the constants A € (0,1), ¢ > 0, and
fe = a8 log(t + ro)]° + a6 log(t + 7)]* + ud;
+ [0: log (t + r)* + 07 log(t + r4), (3.1)
& = O(ddog™ (t + 7). (3.2)
Proof. First of all, from (1.9), we know that
bre(brewe + 67 @) = —(poy (t)us + Pi(t)@e) + by,
that is
0107 pr — Y1) = —Fi(t)gr. (3.3)
Next, we give an estimation of | P,(£),|?. From the LS algorithm(2.6)~(2.8), we have
|P(t)pe]* = 1" Prpepi Pi
(P = P)
Q¢
= (1 + @;prf’t)lT(R - Pt—i—l)l
(1 +@f (P = Pipa)pr + @] Per1p]d
5:(2+ 8illee?), (3.4)

where we have used the fact that ¢} Py < 1.

=T

l

<
<

From the definition of D, we know that there exists a random variable M such that

W < Mlog(t+r;—1) as. on D. (3.5)
it

Then combining (3.3), (3.4) and (3.5), we have
(0F or — yi1)® < 0:(2 4 8ellpel|*) M log(t +7,_1) as. on D. (3.6)
Now, by (1.4), we have
Yer1 = 070 + wepr = 070 + (0] 0, — Yerr) + Yrpr T Wear (3.7

F
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From the definition of c;, we know that
(6] ¢:)* = (1 + ¢ Pipy)
=ay(1 + ‘P'%F(Pt — Pip1)or + ‘PtTPt+1<Pt)
< (2 + Gellepe1”). (3.8)
From (3.6) and the above, we know that on set D,
Yin <3079 + 3007 0t — yin)® +3(Y7 1y +wen)?
<304 (2 + &l 1) + 3D (2 + 8l ||*) log (t + 7-1) + O(dy)
= (3 + 3M6; log(t + re1))d: el
+(60y + 6M oy log(t + ri—q)) + O(dy). (3.9)
By Lemma 3.1, we know that o, = O(log 7). Also, from

2‘5 = Z tr Py — tr Pyy) < tr Py < oo,
j=0

we know that §; — O. Therefore,
Yin < (Bar + 3M b log(t + rio1))difl@l® + Olog(t + 7)) + O(dy).  (3.10)
By the stability of 3(2), it is seen that there exists A € (0, 1) such that

t
uiy = O( Y_XNTE) + Ody). (3.11)
i=0
Hence

1.
lipell® = = Zuf 1+Zut ;= O( X ) + 0. (3.12)

i=0
By the property of (H.1), (3.5) and the fact that P,(¢) is bounded, it follows from (1.9) that

p—1 g—1
ui = O([logz(t + 1 1)] ( ny_i + Z uf_i) + log(t + rtﬁl)). (3.13)
i=0 i=1

Moreover, putting (3.11) into (3.13), we have

2 _O({log (t+7e1) (ZX iy2 +dt)) (3.14)

Hence, by (3.12) and the above equality, we have

le:])® = O(Li1og®(t + 1e1)) + O(dy log™(t + 1e-1)), (3.15)
where L, 2 S A2, Note that

biuy = Ht @+ (0500 — Yri1) + Uis + (brus — 07¢p,),
by (3.12), we have

b?“? < 4@?%)2 + 4(93% - 7/;:-1)2 =+ 4('U:+1)2 +4(byuy — 9T‘Pt>2
= 4(0th)2 + 4<6t.T‘Pt yt—H “+ O(Ly + dy).
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Similar to the proof of (3.10), it is known that
u; = O([oy + 8¢ log(t +71i-1)]0: [l @e||?) + O(Ly) + O(dy +log(t + 7). (3.16)
From (3.12) and the above, we can get
lpell* = O([oe + 6: log(t + re—1 )6l ?) + O(Le) + O(dy + log(t +1¢)).
Substituting (3.15) into this, we have
e lI* = O([eve + 6 log(t + re—1)16, Ly log™ (¢ + 1))
+O([evg + 6, log(t + r1—1)]0:dy log>(t + re—1))
+O(Ly + dy + log(t + 14))
= O([ov + 8¢ log(t + ry—1)]0: Ly log* (t + 14—1))
+O(Ly) + O(d, log® (t +14)). (3.17)
Finally, putting the above into (3.10), we have
Yirr = O([og + 8 log(t + 74-1))67 1og® (¢ + 74-1)) Ly
+O([as + 04 log(t + r4-1)]0: ) Le
+O([ar + 6 log(t + 1e_1)]0eds log® (t 4 1,))
+0(d; + log(t + 7))
= O([as8¢ log(t + 1) + ¢ [6: log(t + 7)]* + ad,
+[8 log(t + 7.)]* + 67 log(t + 1)) Ly
+O(dg log™(t + 1)), (3.18)

That is to say, there exists a random variable ¢ > 0 such that

2/1‘?.;.1 < CftLt + gt:

where f3, &; are defined in (3.1).and (3.2) respectively. By the definition of L,. we know
that y < L;. Furthermore,

Ly = Ut+1 + ALy < (A +ef) L + &

Hence the lemma is proved.
Lemma 3.3. Under the conditions of Lemma 3.2, we have

ol = O((t +7)°d;) as.on D, VYe>0.
Proof. By Lemma 3.2, we know that
Lo < xﬂ[H(H,\ Lef, ]Lo+z/\f { H (142" cf])}gi. (3.19)
7=0 J=t+1

We proceed to estimate the product H il (1+ Atef)).
First, by Lemma 3.1, for any € > 0, there exists ¢ > 0 such that

5ZaJ < elog(ry), V¢
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Also, since Z;;o d; < oo, there is an integer 45 > 0 sufﬁciently large such that

( )lpia Vi

Without loss of generality, we assume that 0 < § < 1 and % > 1. Note that
L+ A efy =14 X7 ¢([ay0;10g(j + r)]* + o[, log(j + )
+ayd; + [0 log(j +1,)* + 67 log(j + 7))
< (14 A efoy6;log(5 4+ 7)])2)(1 + A ea; (65 log(j + 7,)))
X(1+ X" teayd;) (1 + A" e[d; log(j + i)t
x (14 /\“1053. log(j + r,)). (3.20)

As proved in ref. [6],
t

1T a+atca;6; 1080 + ) < (t+1)%, (3.21)
J=it1
t
1T @+ 2 ea,s;) = 0@). (3.22)
J=itl

Then by the inequalities
zy<(1+2)1+y), 220 y>0,
1+2" e, nzl x>0,

we know that, forall ¢ > i > %0,

IT o+ Aels; tog (G + 7))

o

J=idl
174
<e ( < ) Z d;log(j +r; )
J=mik1
t
gexp([ ( ) ZéJlOg(lL'f’T't))
i1
S(t+7)5, " (3.23)

t

1T @+ a7 casfs; 1080 +r))17)

J=i+l
< ﬁ (1+ bay) ﬁ (1+E5§’10g3(j+7’j))
“ =i+l =il
g. <o (53 o)on(55(5)" 3 aati+ry)
J=itl J=it+1
<riew ([35(2)" 3 ] oxti+n)

J=i+1

= O((t +1,)%), (3.24)
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and
t

H (14 A""ed?log(j + 1))

je=itl
t t
< JT @+x7e;) J] (1051080 + 7))
j=itl =il
. t t
<exp (£30 6 exp (Y olonli+7)
=it j=itl
t
— 0 exp (Roglt + )] 3 &)) = Ot +70°). (3.25)
je=itl

Then combining (3.20)—(3.25), we have
t
[T a+xtef) =0+ ™), i > . (3.26)
Ge=idl
Finally, substituting this into (3.19), and note that 0 < A < 1, we have
Lyt = O((t + 1) d; log'(t+11)), Ve >0.
Then by Lemma 3.2 and the arbitrariness of £, we know that

yi, < L = O((T+ re)°d;), Ve>0.

From this and (3.11), we know that u? = O((t + 7+)°d), V& > 0. Finally, from (3.12),
we can see the lemma is true.
Now we are in the place to prove the main result.
Proof of Theorem 2.1. By (3.7), we have
t

. . oK p 2
Ripy = E (Yjrr — Yo — Wi1)
3=0

t
- . w2
= Z (.HJT%DJ‘ + (917'1999' - 'yj+1))
j=0

t t
<23 (0T, +2) (05— yia)” (3.27)
— —
From (3.6) and (3.8), it follows that

t t
Rt <2 (24 85 llwsll®) + 2M > [6;(2 + 85l *) log(j + 7i1)]
=0 =0

t i
=43 oy +4M Yy 6;log(j +75-1)

=0 =0
t
+0( Y layb, + 6 logl + 15l i)'y

4=0
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t
O(log 1) + 4M log(t + ;) Z d;

J=0
t t
O (8, + ) a3 o+ 30, ol 4+, )
J=0 J=0
=O0(log(t+ 1))+ 0O ( 51;1;%{5] (7 +7;)°d; Hog(t + rt)) (3.28)

Therefore, for (2.11), it suffices to prove that r; = O(t). From the above, we have
Rt+1 = O((f -+ i"t)Edt).
By (3.27) and the assumptions on {y7} and {w,}, it follows that
t+1

ZJJ O(Rey1) +O(1)
=O0((t+r)°d) +O(t), Ve>O0. (3.29)
From this and condition (A.2), it follows that
¢ t4+1 t+1
Zu.;- = O(Zy}) +O<Zw;)
§=0 =0 j=0
= O((t+r)d)+O(t), Ve>0. (3.30)

Then from the definition of r;, we have for any ¢ > 0,

ro=1+ 3 lgslF = O((¢ + r)°dy) + O(1)

j=0
=0() +O0((t+ 1)), ¥ye(2/8,1).
By taking « small enough such that £ + v < 1, we get

(O

- LAY
..0(1)+o((1+ f) )
From this we get 7, = O(t), and hence
Ry = O(logt)+ O(s;) as. onD,

where €, is defined by (2.12). Obviously, R, = o(t). Hence the proof of the theorem is
completed.
Remark 3.1.  In the above, we have discussed the SISO system. Actually the result

in Theorem 2.1 can be extended to the multidimensional case. That s, if {1}, {w:}, {wy}
are all m-dimensional in (1.1), and

A() =1+ A2+ 4 AP, p=>1,
B(z) = Bl -+ BQS -+ Bqu 1 q =2 > l,
where A;, 1 <@ < p; B, 1 < j < q are unknown matrix coefficients and P, q are the

upper bounds for the true 01ders, we can also obtain the cautious control under the corre-
sponding assumptions (see ref. [7]), which has the same convergence rate as in Theorem
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2.1. The analysis is similar to the SISO case, but more complicated.
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