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Abst’fact: In this paper, we will present some recent progress in both
global controllability and global asymptotical controllability of affine non-
linear systems. Our method is based on some basic facts in planar topol-
ogy and in the geometric theory of ordinary differential equations. We
will first present a necessary and sufficient condition for global control-
lability of general planar affine nonlinear systems, and then will give its
generalizations to some high dimensional systems. Asymptotical control-
lability results will also be discussed and necessary and sufficient condi-
tions will also be presented. Finally, we will show that the new controlla-
bility criterion can be easily applied to a number of practical examples.
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/
1 Int'roduction

The controllability of nonlinear systems has been studied extensively over the
past three decades, and considerable progress has been made in either analysis
or synthesis by introducing some useful methods, including the well-known dif-
ferential geometric method, see, for example, Isidori (1995), Jurdjevic (1997),
Khalil (1996), Sontag (1998), Agrachev and Sachkov (2004), Sussmann (1978),
Sussmann and Jurdjevic (1972), Hermann and Krener (1977). However, most of
the existing results in the literature on controllability of general nonlinear systems
are of local nature.

As for global controllability, there are two main approaches in the literature.
The first one is to analyze the structure of reachable sets by using, for example,
the Chow’s Theorem Chow (1939) in differential manifold, see, Lobry (1970),
Brockett (1972), Sussmann (1973), Hunt (1930) among others. The other ap-
proach is to study the relationship between local and global controllability, in
which the local results are to be extended to global ones under certain conditions,
where the global topological structure of the manifold in question plays a key
role, see, for example, Hermes (1974), Hirschorn (1976), Aeyels (1985), Caines
and Lemch (2003) among others. Of course, there are also several other results
on global controllability, for example, Hirschorn (1990), Lukes (1972). Due to
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the difficulty of this problem, no complete characterization of global controlla-
bility has been established up to now, and most of the related results are rather
complicated.

To the best of our knowledge, there is lack of a complete characterization
of global controllability even for the following seemingly simple planar affine
nonlinear system,

& = f(x) + g(z)u.

For example, Kaya and Noakes (1997) gave some necessary conditions only, and
Hunt (1980) gave both necessary and sufficient conditions which are distinct.
Further, the paper Aeyels (1984) studied the systems with g being a constant
vector field, where a sufficient condition is given. Some generalizations of these
results may be found in Aeyels (1984) and Hunt (1982). The most general results
up to now seem to have been obtained in the book Nikitin (1994), where under
some hypotheses on f and/or g, some necessary and sufficient conditions on
global controllability of planar affine nonlinear system were obtained. Some
ideas and results in Nikitin (1994) are similar to those to be presented in this
paper, but the conditions used in Nikitin (1994) appear to be unnecessary and
stringent since, for example, the main results in Nikitin (1994) (see, p. 44 and p.
109) cannot include the standard controllability criterion even for linear systems.

In this paper, we will investigate the global controllability by using a new
method to analyze the reachable set. A necessary and sufficient condition to-
gether with a new criterion for global controllability of planar affine nonlinear
systems with single input will be given, under some natural hypotheses on f and
g Sun and Guo (2005b), Sun and Guo (2005a). We will also give some general-
izations to the case where the vector field g has a singular point Sun et al. (2006)
and the high dimensional systems with special structure Sun et al. (2006), Sun
(2006). Our analysis is based on the use of Jordan curve-like Theorem, Poincare-
Bendixson Theorem, Whitney’s smooth extension theorem Whitney (1934), and
some other basic facts in the geometric theory of ordinary differential equations
in the plane. '

In addition, we will also consider another basic concept of nonlinear control
systems—the global asymptotical controllability, a concept closely related to but
somewhat weaker than the global stability. The asymptotic controllability has
also been studied previously in the literature, see e.g., Brockett (1983), Bacciotti
(1992), Sontag (1982), but most of the results are of local nature. In this paper,
we will present a necessary and sufficient condition for global asymptotic con-
trollability of the planar affine nonlinear control systems Sun and Guo (2005c¢).
Similar to the concept of global controllability, we will also give some general-
izations to high dimensional systems.

The rest of this paper is organized as follows: Section 2 will introduce both
concepts on global controllability and global asymptotical controllability. Sec-
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tion 3 will present the main results on planar systems and Section 4 will gener-
alize the results to some high dimensional systems. Some illustrative examples
will be given in Section 5. Finally, Section 6 will conclude the paper.

2 Basic Concepts
Consider the following affine nonlinear systems
& = F(x) + G(x)u, (1)

where & € R™ is the state vector, and u € R™ is the input vector, F((x) € R**!,
G(zx) € R*™™ are C!(R™) matrix functions. We need the following definition
of global controllability of nonlinear systems Isidori (1995), Jurdjevic (1997),
Sussmann and Jurdjevic (1972).

Definition 1. The control system (1) is said to be globally controllable, if for
any two points £° and ' € R™, there exists a right continuous control vector
function u(-) sfich that the trajectory of the system (1) under u(-) satisfies (0) =
x° and z(T) f= x' for some finite time T > 0.

Let F(0) = 0, i.e. the origin is a equilibrium point of the vector field F(zx).
Then we need the following definition of local and global asymptotical control-
lability of the system (1) Brockett (1983).

Definition 2. The system (1) is said to be locally asymptetical controllable at
the origin, if there exist two neighborhood U; and U; of the origin, such that for
any initial point 2(0) = x° € Uj, there exists a right continuous matrix control
function u(-) which keeps the trajectory ®(t),t > 0 in U and drives the state
converging to zero, i.e., &(t) — 0ast — 4oo. If Uy = U, = R", then the
system (1) is said to be globally asymptotical controllable.'

In this paper, we will study both global controllability and global asymptot-

ical controllability firstly for general planar systems, then for some high dimen-
sional systems. '

3 Planar Systems

We will consider singular and nonsingular cases separately.

!In some literature the state trajectory does not need to be kept in Uz, e.g. Brockett (1983).
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3.1 Planar Systems without Singularity
Consider the following planar affine nonlinear control systems

1 = fi(z1, x2) + g1(z1, 22)u
&y = fa(x1,22) + go(z1, T2)U,s

2

where f;(z1,2), g;(x1,x2) are locally Lipschitz functions, i = 1,2, and u is
the system control function taking values on R. Denote © = (1, (Eg)T, f(x) =
(fi(x), fg(:l!))T, glx) = (gl(w),gg(w))T and assume that g(-) is nonsingular,
ie,g(x) #0,Yx e R2

First of all, it is easy to show that for any point 2° in R? and for any function
u(t), if det(f(x®), g(x®)) # 0, then the vector field of the control system (2) at
z0 points to one side of the straight-line which passes through the point 2:° with
direction g(x°); and if det(f(x?), g(x®)) = 0, then the vector field parallels to
this straight-line.

The well known Jordan curve Theorem in topology (see, e.g., Armstrong
(1983) pp. 112-115) says that a simple closed curve C in the plane separates the
plane into two disjoint components, of which C is the common boundary. The
proof of the Jordan curve Theorem in Armstrong (1983) actually gives the fol-
lowing assertion : the curve which is homeomorphic to the straight-line with its
two ends extending to infinite separates the plane into two disjoint components?.
We call this result a$ Jordan curve-like theorem.

We are now in a position to give the following definitions.

Definition 3. A control curve of the system (2) is defined to be a solution
(z1(t), z2(t)) of the following differential equation on the plane:

&1 = g1(x1, T2)
&2 = ga(x1,22),
where g;(x),i = 1, 2 are the same as those in (2).

Lemma 1
Any control curve of the system (2) is homeomorphic to the straight-line with its
two ends extending to infinite.

The following theorem gives the necessary and sufficient condition for global
controllability of the system (2).

Theorem 1

The necessary and sufficient condition for global controllability of the control
system (2) is that g1(x) fa(x) — ga(x) f1{x) changes its sign over any control
curve.

2The two ends of a curve T'(t),t € R extending to infinite means that: | (¢)|| — 4oc, when
t — +o00 and —oo.
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We may call the function g1 () f2(x£) — g2(x) f1(x) as the criterion function
for global controllability, denoted as C(x).

Next, we let f£(0) = 0 and investigate the global asymptotical controllability
of the system (2).

The local stabilization issue has been well studied in the literature (see, e.g.,
Isidori (1995), Khalil (1996) and Bacciotti (1992)), for example,

if (m]x_o, g(0)) is controllable, then a locally stabilizing controller can be
easily constructed Hence, the locally asymptotical controllability of many sys-
tems is easy to be verified.

Our purpose here, however, is to study the more difficult globally asymp-
totical gontrollability problems. To this end, we need to introduce several new
concepts.

By the Jordan curve-like theorem, the curve which is homeomorphic to the
straight-line with its two ends extending to infinite separates the plane into two
disjoint com})onents (see Fig 1).

! A
{/ x 2
" Outer Side
0 X,
Inner Side
Figure 1

We are now in a position to give the following definitions.

Definition 4. The inner side of a curve which does not pass through the origin
and is homeomorphic to the straight-line with its two ends extending to infinite,
is defined as one of the above-mentioned components that contains the origin.
The other component is accordingly called the outer side (see e.g.. Fig 1).
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Definition 5. A smooth curve I : y(s) € R?, s € R which satisfies the condi-
tions in Definition 4 is called a P-curve of system (2), if there exists s; € R such
that

L(Sl) <0

holds for some function u, where L(s) £ (f(v(s)) + g(v(s))u, p(s)), and p(s)
is a non-zero normal vector of y(s) which points to the outer side of I

Proposition 1

A control curve T : ~y(s) of system (2) not passing through the origin is a P-curve
if and only if there exists sy, such that (f(v(s1)),p(s1)) < 0, where p(s) is
non-zero normal vector of (s), which points to the outer side of T.

This proposition is obvious, because p(s) is perpendicular to g(7(s)) for any
s. Moreover, for any given control curve v(s) of system (2), p(s) can be taken
as either (—g2, 1) or (g2, —g1)7. Consequently, L(s) can be represented as

L(s) = £{g1(v(s)) f2(7(5)) — g2(7(s)) fr(7(s))}-

From this, we can immediately get the following easily verifiable condition
for a P-curve.

Proposition 2
If the following function

91(7(8)) f2(7(5)) — g2(v(s)) f1 (7 (5))

changes its sign over a control curve ~y(s) not passing through the origin, then
~(s) is a P-curve.

The following theorem characterizes the additional condition needed for global
asymptotical controllability, in addition to local asymptotical controllability.

Theorem 2

Let the system (2) be locally asymptotically controllable at the origin. Then the
necessary and sufficient condition for global asymptotical controllability of the
control system is that any control curve I' : y(t) of the system not passing through
the origin is a P-curve.

Remark 1. From Theorem 2, one can see that if there exists a control curve for the
system (2) which is not a P-curve, then the system cannot be globally stabilized
(see Khalil (1996)) by any control function u.
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3.2 Planar Systems with Singularity

Now we consider the case where the control vector g(z) is allowed to have a
singular point, namely the following systems:

i1 = filzy, z2) + 91(21, T2)u
&g = fa(z1,22) + g2(x1, T2)U,8

3)

where g or —g is locally asymptotically stable at the origin and g(0) = 0,
glz) # ‘_g,\f x € R2\0, f and g are the same as those in (2).> Without loss
of generality, we suppose that g(x) is locally asymptotically stable (see Khalil
(1996)).

By Poincare-Bendixson Theorem and J ordan curve Theorem, every trajectory
of the vector field g() either tends to a singular point, or extends to infinite,
or spirals around a limit cycle. We are now in position to give the following
definition.

Definition 6, A regular control curve of the system (3) is defined to be a so-
lution trajectory of the vector field g(x) on the plane, which is either a nonzero
closed curve or a curve whose two ends extend to infinite.

Theorem[3

For the control system (3), let £(0) # 0 and D is the domain of attraction of
g(x). Then the system (3) is globally controllable, if and only if there are no
points €., x_ € D\O such that

C((P(m+,t))>0 Vt€T+7
Clp(x_,t)) <0 VieT.,

and C(x) changes its sign over every regular control curve, where C(x) is the
criterion function defined by g1(x)f2(x) — g2(x) f1(x), p(T«,t) denotes the
trajectory of the vector field g(x) passing through the point . and T, is the
existence interval of the trajectory p(&«,t) and the star x denotes the sign +
or —.

In particular, if the domain of attraction D is bounded, then the system (3) is
globally controllable, if and only if the criterion function C(x) changes its sign
over every regular control curve.

Remark 2. Theorem 3 is a generalization of the Theorem 4.3 in Nikitin (1994),
where the vector field g or —g is assumed to satisfy a stronger condition, i.e. the
global asymptotical stability condition. Here we only need local asymptotical
stability, thanks to the Poincare-Bendixson Theorem.

3A vector field g(-) is said to be locally asymptotical stable at the origin if its flow & = g(x) is
0 at the origin.



134 On Controllability of Some Classes of Affine Nonlinear Systems

Now, we consider a kind of the degenerate case of the control system (3),
where the domain of attraction D of g(x) degenerates into a point 0. If we view
the point 0 as a degenerate control curve of the systems (3), we have the following
corollary.

Corollary 1

Suppose f(0) # 0 and every control curve of the systems (3) is a closed curve.
Then the control system (3) is globally controllable, if and only if the criterion
Sunction C(x) changes its sign over every nonzero control curve.

In some cases, it is not difficult to verify whether every control curve of the
systems (3) is a closed curve. For example, if there is a Lyapunov function V' (x),
such that V(z) > 0 forany = € R?\0,V(0) = 0, V(z) — +ocas ||| — +oo,
and V (x) satisfies C%vT g1+ % g2 = 0, then every trajectory of the vector field
g(z) is aclosed curve, or every control curve of the systems (3) is a closed curve.

Next, we consider the global asymptotical controllability of the system (3).
In this case, it is more complicated to define the P-curve, and we only consider a
simple case where f(0) = 0, f(a) # 0,g(a) =0, g(z) # 0,V x € R?\ a and
each solution trajectory of the vector field g(x) is a closed curve. Consequently,
except £ = a, every control curve of the system separates the plane into two
disjoint components by the Jordan curve Theorem. Therefore, we may define the
inner side of a control curve as the part that contains the origin, and the other
part as the outer side. We are now in a position to give the following definition.

Definition 7. A smooth simple closed curve I' : «(s),s € I on the plane, is
called a P-curve of the system (3), if there exists s; € I such that

L(S]) <0

holds for some function u, where L(s) £ {f(v(s)) + g(v(s))u, p(s)), and p(s)
is a non-zero normal vector of v(s) which points to the outer side of T

Proposition 3

A control curve T : v(s) of system (3) not passing through the origin is a P-curve
if and only if there exists sy, such that (f(v(s1)),p(s1)) < 0, where p(s) is
non-zero normal vector of v(s), which points to the outer side of T.

Theorem 4

Let the system (3) be locally asymptotically controllable at the origin. Then the
necessary and sufficient condition for global asymptotical controllability of the
control system is that any control curve I : ~y(t) of the system not passing
through the origin is a P-curve.
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4 High Dimensional Systems

We will consider two kinds of generalizations in this section.

4.1 Systems with Triangular-like Structure

We will first generalize Theorem 1 to the following nonlinear affine control sys-

tems with a triangular-like structure :
/

iy = fi(z1,z2) + 91(71,72)23
io = fo(z1,22) + ga(T1,T2)T3

i i3 = fa(z1, T2, 23) + g3(T1, T2, T3) T4 (4

En = fal1,Z2,.. .+ Tn) + gn(T1, T2, ...  Tn)U,

where f;,9;"€ Ccr—2,i = 1,2,...,n, namely they are functions with (n—2)
times continuous partial derivatives, g(x1,z2) = (g1{x1, xz),gg(ml,zg))T #0
for any (z4,z2)T € RZ, gi(z1,22,...,%;) # O for any (x1,Z9,...,3:)7 €
R:,i=3 / ..,n and u is a right-continuous control function taking values on R.
The key idea here is to take the advantage of the triangular-like structure and
to apply the results on planar affine nonlinear systems to the following z;-2
subsystem :
&1 = fi(z1,z2) + g1(@1, 22)V
£y = fa(x1,22) + ga(z1, Z2)0.

Then we have the following theorem.

&)

Theorem 5

The control system (4) is globally controllable if and only if its subsystem (5)
is globally controllable, namely the criterion function C(x) of the system (5)
changes its sign over every control curve on the plane (z1,2).

Remark 3. Similarly, if the subsystem (5) of the systems (4) has a singular point
at the origin, but satisfies the conditions of Corollary 1, then Theorem 5 is also
valid.

Similar to the previous section, we can also generalize Theorem 2 to the
system (4) with a triangular-like structure.

The key idea here is also to take the advantage of the triangular-like structure
and to apply the results on planar affine nonlinear systems (o the x1-x2 subsystem
(5) of the system (4). Let f;(0) = 0,7 =1, 2,...,n, we then have the following
theorem.
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Theorem 6

Let the system (4) be locally asymptotically controllable at the origin. Then the
necessary and sufficient condition for global asymptotical controllability of the
control system is that its subsystem (5) is globally asymptotically controllable,
namely any control curve of the subsystem (5) not passing through the origin is
a P-curve on the plane (z,, z2).

Remark 4. Similarly, if the subsystem (5) of the systems (4) satisfies the con-
ditions of Theorem 4, then Theorem 6 is also valid. Moreover if there exists a
control curve for the subsystem (5) which is not a P-curve, then the system (4)
cannot be globally stabilized by any control function u.

4.2 Systems with n — 1 Controllers

Now, we generalize Theorem 1 to the n dimensional systems with n — 1 con-
trollers. Here we should note that a similar but more general model had been
ever studied in Hunt (1982) and Nikitin (1994), however, the necessary and suf-
ficient condition for global controllability is not given.

Consider the following system

n-—1
&= f(x)+ ) b, (6)
i=1
where f(x) is locally Lipschitz vector function, z € R", the vectors b;(i =
1,2,...,n — 1) are time-invariant and linearly independent, the control vector is
denoted as u = (uy, ua, ..., up—1)".
Since b; (i = 1,2,...,n — 1) are independent, there is a nonzero vector ¢
such that
(e, b;) =0, 1=1,2,....,n—-1,

where (-,-) denotes the inner product of two vectors. We need the following
definition of control hyperplane.

Definition 8. The control hyperplane of the system (6) is a hyperplane which
passes through any point z° and takes the vector ¢ as its normal vector, namely
the hyperplane

(x—2°c)=0, x € R™.
Theorem 7
The necessary and sufficient condition for global controllability of the system (6)
is that the function det( f(x), b1, be, ..., by) changes its sign over every control

hyperplane.
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Next, we generalize Theorem 2 to the n dimensional system (6) with n — 1
controllers.

It is easy to know that every hyperplane in R™ separates R™ into two disjoint
components. Now, we first give the following definition.

Definition 9. The inner side of a hyperplane which does not pass through the
origin, is defined as one of the two above-mentioned components that contains
the origin. The other component is accordingly called the outer side.

Deﬁnitio/ti 10. A hyperplane H : h(S), parameterized by S, not passing through
the origin is called a P-hyperplane of system (6), if there exists Sy such that

L(S)) <0

-

holds for some control vector w, where

n—1
L(S) 2 (F(h() + Y _ 9:(h(8))ui, (S)),
’ 1
and p(S) is a non-zero normal vector of h(S) which points to the outer side of
the hyperp}ane H.

Propositfon 4

A control hyperplane of system (6) not passing through the origin is a P-hyper-
plane if and only if there exists S, such that (£(h(S)),p(h(S))) < O, where
p(S) is the non-zero normal vector of h(S), which points to the outer side of H.

Let £(0) = 0. Then we have the following theorem.

Theorem 8

Let the system (6) be locally asymptotically controllable at the origin. Then the
necessary and sufficient condition for global asymptotical controllability of the
control system is that any control hyperplane of the system not passing through
the origin is a P-hyperplane.

5 Some Examples

——Example 1
Consider the following second-order linear systems

& = Az + Bu, @)

where ¢ = ( 1 ),Az(a“ a2 ),Bz ( b >
) ) az; Q22 b2
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Let A = det(B,AB), ie. A = aglb% + agnbibe — a11b1be — alzb%. The
control curves are

{ 1 = b1t+Cl ,t c (—OO,+OO), (8)

Ig = bgt + Ca
where c; and c; are arbitrary constants. Therefore, its criterion function C(x) is

ba(a1171 + a1222) — bi(az1w1 + agazs)
= bo(a1 (b1t 4 c1) + ara(bat +c2))
—b1 (a1 (b1t + ¢1) + aga(bat + c2))
= (bib2a11 + b3a12 — ag1b? — agebibo)t
+(b2a11c1 + baarace — biagicy — biagcs)
= —At+ (baaric1 + baaizca — brasica

—bragcs).

Hence, A # 0, i.e., (4, B) is controllable, is the necessary and sufficient
condition for the criterion function bs(a11x1 + a1222) — b1(ag121 + a2az2) to
change its sign over any control curve defined by (8). This example shows how
the standard result in linear systems can be deduced from Theorem 1. O

Next, we consider another example where the control curve cannot be solved
explicitly.

—— Example 2 1

Consider the following planar affine nonlinear system

i1 = fi1(z1, ) + cos(z? + z2)u ©)

&2 = fo(z1,z2) + sin(xf + w%)u

L |

Let us denote « = (z1,z2)7, g(x) = (cos(x? 4+ z2),sin(z? 4+ z2))7, and let

fi(z1,z2) 0 sin(x? + 23)
= y M = y N = X .
f(@) ( fa(z1, z2) (@) T () cos(x? + z2)
Furthermore, let D¢ and D, be two open discs centered at the origin with radius

1 and 2 respectively. By a standard result in differential manifold (see Berger and
Gostiaus (1988) pp. 106-109), there exists a smooth function §(x) on R? which

satisfies
{ 1, x €Dy

0<8(x) <1, 6(x) = 0, x¢ D,
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Now, let f(z) = 0(x) M () + (1 — 6(z)) N (), then f(x) is smooth func-

tion on R? and f(0) = 0. It is easy to check that (4%3—”@_0, (0)) is control-
lable, and each solution of differential equations defining the control curve

&y = cos(z? + x3)

@y = sin(z? + 73) (10
will extend to infinite. Therefore, for any control curve there must be some parts

which lie outside of Ds.
1t is easy to see that for & out of the disc Dy, the criterion function

91(@) f2(®) — ga(x) fi(w) = cos*(ai + a3) — sin’(a] +23)

= cos(2(z? +3)) = cos(2r?), ()

where 7 = /% + 3. :

Since each control curve y(t),t € R defined by equations (10) will extend
to infinite, we know that the function in (11) will change its sign on each control
curve. Hence, by Theorem 1, the system is globally controllable. O

—— Example 3
Consider the following system
&1 = —sinz cos Tg + sinzg exp(—z1)u

. . 2 (12)
@9 = sin’zy + cos zgexp(—1)u.

It has been shown that this system is locally linearizable but not globally
lincarizable (see Cheng et al. (1985)). Here, we will show that this system is
actually not globally controllable.

Note that one of the control curves of the system (12) is

z1=Int,t >0
1:2:'722,

and that on th1s curve, we have its criterion function C(z) = g1(z)fa(z) —
g2(x) f1(x) = 1 > 0,V t > 0 which does not change its sign. Hence, the system
is not globally controllable by Theorem 1. Furthermore, it can be shown that the
system is not globally stabilizable by Remark 1. O

Next, we consider a bacterial respiration model which was proposed by Degn
and Harrison as a description of the existence of a maximal oxygen consumption
rate at low oxygen concentration in Klebsiella Aerogenes cultures (see Colonius
and Kliemann (2000) pp. 365-367).
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—— Example 4
Consider the following bacterial respiration model

T b—x L1772
1=b—z —
1+ gqz? (13)
. a T1T2
iy =@ —,
« 2 1+ gz?

where a and ¢ are positive constants, b is critical parameter, depending on the
concentration rates in the underlying chemical reaction scheme.
, !

Obviously, we have a control curve { ;1 i 8’ teR and its criterion func-
2 =Y
tion C(x) = g1(x) fo(x) — g2(z) f1(x) = a > 0,V ¢ € R. Hence, the system

(13) is not globally controllable. O

Now, we show that the new theorems can be easily applied to some engineer-
ing examples.

—— Example 5
A field-controlled DC motor can be described by

Ty =—ax1 +Uu
Ty = —bzy + p—cxi23 (14)
i‘3 = 9.’L‘1$2 — deg,

where 1, T2, x3 and u represent the stator current, the rotor current, the angular

velocity of the motor shaft and the stator voltage respectively, a, b, c,d, 8 and p
are positive constants (see Khalil (1996) pp. 51-52).

According to Theorem 5 and Remark 3, we need to investigate the global
controllability of the following system first:

Ty = —bxs + p — cx3v
2 2T P —CT3 (15)

T3 = —dxs + Oxqv.

It is easy to know that the system (15) satisfies the condition of Corollary 1 and
the trajectories of the vector field (—czs, 6z2)7 are ellipses

(M cos(Vebt), \Wosin(vVebt)), A > 0,t € R.

By Corollary 1, the control system (15) is globally controllable if and only if its
criterion function change its sign for any control curve, i.e. the following function

(d —b)ers® + Veps —cd), s € [~1,1] (16)
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change its sign for any A > 0, where every A corresponds a control curve.

If d — b = 0, obviously, as long as A is large enough, (16) will be negative for
any s € [—1,1].

If d — b < 0, we have

A = cp? +4(d — b)d(c)h)?.

Obviously, as long as A is large enough, A will be negative. Therefore (16) will
be negative for any s € [—1,1].

If d—b > 0, the equation (d — b)cAs? + v/cps — cdX = O has a positive and a
negative roots. Because (d — b)eA(—1)2 + /cp(—1) — cd\ = —beh —\/ep < 0,
the negative root must be less than —1. Similarly, as long as A is large enough,
we have (d — b)cA + v/cp — edd = —beh + +/ep < 0, therefore the positive root
must be greater than 1. Hence, (16) will be negative for any s € [—1,1] as long
as A is large enough.

In summary, the system (15) is not globally controllable. Therefore the sys-
tem (14) is not globally controllable by Theorem 5 and Remark 3.

Now, we investigate the global asymptotical controllability of the system
(14). Obviously, the system has an equilibrium point E = (0, £,0)*. Since
it can be locally exactly feedback linearized in some neighborhood of the point
FE (see Isidori (1995)), this system is locally stabilizable.

Let us make a transformation y; = z1,¥2 = T2 — %,yg = x3. Then the
system (14) changes to

71 =—ayitu
P2 = —by2 — cy1y3 17
g = Oy1 (v + £) — dys.

It can be shown that the corresponding control curves are ellipses
(Mecos(Vebt) — g,/\\/gsin(\/gt)), A>0,teR.

It is easy to know that Ay = 3&—\}5 corresponds to the control curve passing

through the origin as in Figure 2, denoted by I'o. Therefore,
L(s) = (d — b)eAs® + veps —cdA, s € [-1,1].

Next, we prove this system is globally asymptotically controllable by consid-
ering two cases.

Casel. d—b=0

In this case the function L(s) reduces to a linear function. It can be seen that

when \ < #, L(s) changes its sign, but when A > g%, L(s) is negative.



142 On Controllability of Some Classes of Affine Nonlinear Systems

=l
=)
=

0

Figure 2

Case2.d—b+#0

We have L(—1) = —beh — /cp and L(1) = —beX + +/cp. Therefore, by
‘continuity, the range of the function L(s) includes [—bcA — y/cp, —beA + /cp).

Obviously, when A < 5%, the function L(s) changes its sign, and when
A> 3\%, L(s) remains to be negative.

In summery, any control curve of the subsystem (15) is a P-curve, therefore
the system (14) is globally asymptotically controllable by Theorem 6 and Remark

4, (]

——Example 6 1

A field-controlted DC motor with negligible shaft damping term —dxs may be
represented by a third-order model of the form

T, = —ax1+Uu
do9 = —bxo + p = cr1T3 (18)
:i)g = 9.’1,'1.’132,

where a, b, ¢, § and p are positive constants (see Khalil (1996) p. 530).

In a similar method to the above example, the control system (18) is globally
controllable if and only if the following function

—behs? + /eps = s(—bchs + v/cp), s€[-1,1] (19)

change its sign for any A > 0, where each A corresponds to a control curve.
It is easy to know that (19) change its sign for any A > 0,
Hence, the control system (18) is globally controllable. O
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—— Example 7
Consider the following model of a permanent magnet synchronous motor :

di
Ldﬁ = —Rgsiqg +npwLlgig +uq
di
qu = —Ryiq — npwLaiq — npw® + uq (20)
dw 3 .. .
= = gl — Lo)iaiq + Pig) — 71,

where i4 and i, are d — g axis currents, w is the motor speed, uq and u, are d — g
axis voltages, Lq, Ly and J are nonzero positive constants, Rs, np, ® and 71, are
positive constants (see Guo et al. (2005)).

The control hyperplane of the system (20) is w = ¢, and it is easy to know
that the function
3np((La — Lq)igiq + ®ig) — 7L
J

changes its sign over every control hyperplane. Hence, by Theorem 7 we know
the system (20) is globally controllable.

det(f(a:), bl, bg) =

It may be noticeable that the global controllability of this system can also be
guaranteed when either the control ug or u, fails.

. . RS _n _ Rs
First, let (21,22, 23)T = (Lata, Lqiq, Jw)T, a = o b=F,c= = d=

®b, B = %%» h= 32" ij' Then the system (20) can be re-represented as

T1 = —axy + brozs + ug
Ty = —CTy — brizs — drs + uqg 21
3 = Br129 + hxo — TL.

Here, we only investigate the case where the control u, fails. Therefore the
system (21) becomes to be

1 = —ax1 + broxs + ug
i?g = —CI9 — b:L‘1:133 - d(IJg (22)

I3 = fx1x9 + hzo — 7L
By Remark 3, we need only to consider the following subsystem :

3:32 = —cxy — dxs — bzav 23)
I3 = hxo — 1 + Brov.
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Let us assume that 5 > 0 (or Lg > Lg). As in example 5, the control curves
of the systems (23) are ellipses (Av/bcos(v/BBt), A\v/Bsin(vbt)), A > 0,t €

R, and the criterion function is
C(s) = M—cBbAcos? s — (df — bh)\/bBAsin scos s — r.b+y/Bsin s),

where s =«/bft and each A > 0 corresponds to a control curve.

Note that C(§) = —A7pby/f < 0 and C(—%) = Arpby/B > 0. Therefore,
by Theorem 5 and Remark 3, the system (20) is also globally controllable when
the control u, fails. O

——Example 8
The Jet engine compression systems may be written as

R=—0R? - oR(2¢+ ¢?)
d= 454"~ 24° ~ 3Ry - 3R (24)
¢ = —Uu,

where R, ¢, and u are the normalized stall cell squared amplitude, the mass
flow, the pressure rise and the mass flow through the throttle respectively, o is
constant positive parameter (see Krstic et al. (1995) pp. 67-68).

According to Theorem 5, we need only to investigate the global controllabil-
ity of the following system:

R =—0R?—0R(2¢ + ¢
. 25
¢=—g¢2“%¢>3—3R¢—3R—v. 25)

Since the control curve is R = L with L being any constant. So the criterion
function C is

oR?+ 0R(2¢ + ¢*) = oR(R +2¢ + ¢%) = oR[(¢ + 1)> + R — 1].

By Theorem 1, the system (25) is not globally controllable, because the criterion
function C > 0 over the control curve R = L for any ¢ € R with L > 1. Hence,
the system (24) is not globally controllable by Theorem 5. O

6 Concluding Remarks

In this paper, we summarized some recent results obtained on both global con-
trollability and global asymptotical controllability of some classes of affine non-
linear systems. These results were obtained by introducing a new method based
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on some basic facts in planar topology and in the geometric theory of ordinary
differential equations. Necessary and sufficient conditions (together with a new
criterion) for controllability are established first for general planar affine nonlin-
ear systems and then for two classes of high dimensional nonlinear systems. A
number of examples, both mathematical and practical, are given to show that how
our new criterion can be easily applied. For future investigation, it is desirable to
extend the main results of this paper to more general high dimensional nonlinear
control systems.
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