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Abstract

Multi-agent systems arise from diverse fields in natural and artificial systems, such as schooling of fish, flocking of birds, coordination of
autonomous agents. In multi-agent systems, a typical and basic situation is the case where each agent has the tendency to behave as other
agents do in its neighborhood. Through computer simulations, Vicsek, Czirók, Ben-Jacob, Cohen and Sochet (1995) showed that such a
simple local interaction rule can lead to certain kind of cooperative phenomenon (synchronization) of the overall system, if the initial states
are randomly distributed and the size of the system population is large. Since this model is of fundamental importance in understanding
the multi-agent systems, it has attracted much research attention in recent years. In this paper, we will present a comprehensive theoretical
analysis for this class of multi-agent systems under a random framework with large population, but without imposing any connectivity
assumptions as did in almost all of the previous investigations. To be precise, we will show that for any given and fixed model parameters
concerning with the interaction radius r and the agents’ moving speed v, the overall system will synchronize as long as the population
size n is large enough. Furthermore, to keep the synchronization property as the population size n increases, both r and v can actually
be allowed to decrease according to certain scaling rates.
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1 Introduction
The collective behavior of multi-agent systems, such

as swarm intelligence, consensus, coordination, is a ma-
jor focus on complex systems, and it has drawn much
attention from researchers in diverse fields, including
biology (O’Brien, 1989; Okubo, 1986; Parrish, Vis-
cido, Grünbaum, 2002; Shaw, 1975), physics (Vicsek
et al., 1995), mathematics(Cucker & Smale, 2007),
computer science (Reynolds, 1987), and control the-
ory (Jadbabaie et al., 2003; Moreau, 2005; Olfati-
Saber, 2006; Savkin, 2004; Ren & Beard, 2005). Scien-
tifically, how locally interacting agents lead to collective
behavior of the overall multi-agent systems is a basic and
challenging problem to be understood.

Of course, different local rules will give rise to different
collective behavior. In this paper, we will study the follow-
ing basic multi-agent systems: n autonomous agents moving
in the plane with the same constant speed and with heading
of each agent updated according to the averaged direction of
its neighbors. This model reflects a typical phenomenon in
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multi-agent systems: each agent has the tendency to behave
as other agents do in its neighborhood (O’Brien, 1989; Vic-
sek et al., 1995). Vicsek et al. (1995) used this model to
investigate the gathering, transport and phase transition in
nonequilibrium systems, and they also pointed out its poten-
tial applications in biological systems involving clustering
and migration. Through computer simulations, Vicsek et al.
showed that the above system will synchronize when the
population density is large and the noise is small. This model
looks simple, but the nonlinear relationship in the model
makes the theoretical analysis quite hard. In a well-known
work, Jadbabaie et al. (2003) initiated a theoretical study for
the synchronization of a related model, and inspired much
subsequent theoretical investigations on similar problems
(see, Cucker & Smale (2007), Liu & Guo (2008a),Moreau
(2005), Ren & Beard (2005), Savkin (2004) among many
others). What Jadbabaie et al. (2003) showed was that the
system will synchronize if the associated dynamical neigh-
bor graphs are jointly connected within some contiguous and
bounded time intervals. It is worth mentioning that a similar
theoretical result was presented in an earlier paper by Tsit-
siklis, Bertsekas, and Athans (1986), but in a rather different
context. However, how to remove or verify the troublesome
connectivity condition imposed on the underlying dynami-
cal systems turns out to be a difficult and challenging issue
in theory, due to the strongly nonlinearly coupled dynam-
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ical equations describing the positions and headings of all
the agents.

A preliminary step towards the above issue has been made
by Liu & Guo (2008a), where a sufficient parameter condi-
tion is given for the connectivity and hence the synchroniza-
tion of the system in a deterministic framework with initial
headings lying in (−π

2 , π
2 ). Some counterexamples are also

given by Han et al. (2006) and Liu & Guo (2008a) to show
that the connectivity of the associated neighbor graphs is
not sufficient for synchronization if the initial headings are
allowed to be in [0, 2π). The main problem with Liu & Guo
(2008a) is that the condition on the model parameters used
there is rather restrictive. There are also a few other pa-
pers which establish synchronization without resorting to a
priori connectivity conditions, by using additional informa-
tion and/or constrains, for example, Cucker & Smale (2007)
studied the model where each agent can interact globally,
and Tahbaz-Salehi & Jadbabaie (2007) introduced a periodic
boundary condition in the model.

Recently, a major advance towards the complete synchro-
nization analysis is made by Tang & Guo (2007), where
a random framework as originally considered by Vicsek et
al. (1995) is used in the analysis of the linearized heading
equations. They proved that the overall multi-agent system
will synchronize with large probability as long as the size of
the population is large enough. However, as mentioned by
Jadbabaie et al. (2003) and Han et al. (2006), the linearized
heading equation may give rise to some unreasonable phe-
nomenon. It is worth pointing out that the random framework
considered by Tang & Guo (2007) is just an assumption on
the initial distribution of all the agents, the subsequent states
together with the associated neighbor graphs, however, may
well change from time to time according to the nonlinear
dynamical models under consideration. This random frame-
work is obviously different from those studied by Frasca,
Carli, Fagnani and Zampieri (2009), Tahbaz-Salehi & Jad-
babaie (2008) and Wu (2006), in either the problem for-
mulations or the required assumptions, where certain con-
nectivity conditions are essentially assumed in these papers.
However, removing or verifying the troublesome connec-
tivity condition of locally interacting nonlinear multi-agent
systems appears to be a “bottleneck” problem in general.

In this paper, we will establish two synchronization theo-
rems for the basic nonlinear model of Vicsek et al. (1995) in
the random framework, without changing the locally inter-
acting laws and without imposing any connectivity condi-
tions. In comparison with the linearized heading equations
studied by Tang & Guo (2007), a key issue now is how to
deal with the difficulties arising from the nonlinear heading
equations. We will give a comprehensive theoretical analysis
with large population, by using some basic facts of Tang &
Guo (2007), together with some estimation for multi-array
martingales and with a detailed analysis for the nonlinear
equations. Intuitively speaking, large population is beneficial
to the connectivity in general, which in conjunction with the
averaging mechanism to be given in equation (3) will ensure
the topology of the dynamical network does not change too
much, and hence ensure the synchronization of the system.
We will give a rigorous proof for this intuition, and the main

results to be established are the following:
i) For any given and fixed model parameters, i.e., the

interaction radius r and the agents’ moving velocity v, the
overall system will synchronize as long as the population
size n is large enough;

ii) To keep the synchronization property as the population
size n increases, both r and v can actually be allowed to
decrease according to certain scaling rates to be given in the
paper.

Part of the results in this paper was presented in Liu &
Guo (2008b) without proof details. The rest of this paper
is organized as follows: In Section 2, we will present our
main results; Some notations and preliminary lemmas will
be given in Section 3; The proofs of the main theorems
will be given in Sections 4 and 5 respectively, and some
simulation results will be given in Section 6; Finally, Some
concluding remarks will be made in Section 7.

2 Main Results
The multi-agent system to be studied in this paper is com-

posed of n autonomous agents (or subsystems or particles),
labeled by 1, 2, · · · , n, moving in the plane with the same
absolute velocity, and with each agent’s heading updated
according to the average of the directions of its neighbors
(Vicsek et al., 1995). The neighbors of an agent i(1 ≤ i ≤ n)
at any discrete-time t = 0, 1, 2, · · · are those which lie
within a circle of radius r(r > 0) centered at the agent i’s
current position. Denote the neighbors of the agent i at time
t as Ni(t), i.e.

Ni(t) = {j
∣∣ dij(t) < r}, (1)

where dij(t) =
√

(xi(t)− xj(t))2 + (yi(t)− yj(t))2, and
(xi(t), yi(t)) is the position of the agent i at time t. It is
easy to see that each agent is a neighbor of itself. Each
agent moves in the plane with the same constant absolute
velocity v(v > 0), so its position is updated according to
the following equation:

{
xi(t + 1) = xi(t) + v cos θi(t + 1)

yi(t + 1) = yi(t) + v sin θi(t + 1)
∀i : 1 ≤ i ≤ n, (2)

where θi(t) is the heading of the agent i at time t, which is
updated according to the following average direction of the
neighbors’ velocity:

θi(t + 1) = arctan

∑
j∈Ni(t)

sin θj(t)∑
j∈Ni(t)

cos θj(t)
, ∀i : 1 ≤ i ≤ n. (3)

Through computer simulations, Vicsek et al. (1995)
showed that the above equations (1)-(3) can make all agents
move in the same direction eventually, when the population
size n is large enough. Throughout the paper, synchroniza-
tion means that there exists a constant heading θ, such that

lim
t→∞

θi(t) = θ, ∀i.
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From the description of the above mathematical model,
we can see that the dynamical behavior of the overall sys-
tem is determined completely by the moving velocity v, the
neighborhood radius r and the initial states. Furthermore,
one can observe that the neighbors of each agent are deter-
mined by the positions of other agents via (1), whereas the
positions of agents are determined by the headings via (2),
and moreover, the headings are influenced by the neighbors
via (3) in return. So, there is a complicated nonlinear rela-
tionship between positions and headings of all agents, which
makes a rigorous theoretical analysis quite involved.

The main purpose of this paper is to study the synchro-
nization property of the multi-agent systems (1)-(3) with
large population. We will conduct our analysis under the fol-
lowing simple and natural assumptions on the initial states
of the system, which are similar to those used in the simu-
lation study of Vicsek et al. (1995).
Assumption 1 The initial positions and headings of all
agents are mutually independent, with positions uni-
formly and independently distributed in the unit square S,
and headings uniformly and independently distributed in
[−π + ε0, π − ε0] with arbitrary ε0 ∈ (0, π).

Under Assumption 1, the initial random geometric graph
G0 associated with the initial positions will have some nice
properties, one of which is the connectivity studied in the
celebrated paper of Gupta & Kumar (1998). Other related
nice results may be found in the work of Penrose (2003)
and Xue & Kumar (2004). However, in our paper, we need
a deeper understanding of both the initial graph and the
subsequent dynamic graphs in Sections 3 and 4, which will
enable us to establish the following theorem whose proof is
given in Section 4.
Theorem 2 Under Assumption 1, for any given speed v >
0 and radius r > 0, the multi-agent system described by
(1)-(3) will synchronize almost surely for all suitably large
population.
Remark 3 In Assumption 1, the restriction [−π+ε0, π−ε0]
on the headings can be replaced by [α, α+2π−2ε0] with any
constant α, on which the uniform distribution assumption of
the headings can also be replaced by any other distributions,
save that the synchronized direction will depend on the mean
of the initial heading distributions. Moreover, the following
counterexample will give us some clue why ε0 = 0 may lead
to difficulties in guaranteeing synchronization.
Example 4 Let n = 12, and all agents be distributed on
the unit circle uniformly with the headings being symmetric
as shown in Fig. 1 below. To be precise, let us assume

(xi(0), yi(0)) =
(

cos
(i− 1)π

6
, sin

(i− 1)π
6

)
;

θi(0) =
{

[16− i + 3 · (−1)i]
π

6

}
mod(2π), 1 ≤ i ≤ 12.

Assume further that the absolute velocity satisfies 0 < v ≤
0.1 and the neighborhood radius is taken as r = 0.8. Then
it can be shown that the system will never synchronize, even
if the neighbor graphs are connected all the time(see Liu &
Guo (2008a) ).

Intuitively, when the population size n increases, the den-
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Fig. 1. The initial distribution of positions and headings of all
agents in Example 4.

sity will increase accordingly, and hence it is conceivable
that the interaction radius r can be allowed to decrease with
n, which may be denoted by rn to reflect this situation. Ob-
viously, in this case, the speed v should also decrease with n
in order to ensure synchronization of the system, and again,
we may denote this dependence by vn. The following theo-
rem shows that the multi-agent system (1)-(3) will synchro-
nize if certain scaling rates on rn and vn are satisfied, in ad-
dition to the natural requirements rn = o(1) and vn = o(1)
as n →∞ 1 .
Theorem 5 Let Assumption 1 hold, and let both the inter-
action radius rn and the speed vn depend on n in such a
way that rn = o(1) and

6

√
log n

n
= o(rn), vn = O

(
r6
n

√
n

log3/2 n

)
.

Then the multi-agent system (1)-(3) will synchronize almost
surely for all large population.

The proof of Theorem 5 is similar to that of Theorem 2,
and will be put in Section 5.
Remark 6 If one wants the multi-agent system to be syn-
chronized to a desired direction, we may apply the “soft
control” idea as proposed by Han et al. (2006) or may in-
troduce some “leaders” into the system. For the later situ-
ation, one may study this problem in two ways regardless
of the independence of initial positions between the lead-
ers and the followers. One way is to adopt a deterministic
treatment by assuming a certain ”uniform” conditions on
the initial states as those given in Proposition 1 of Tang &
Guo (2007), another way is to assume randomly distributed
initial states as in the current framework, see Liu, Han, and
Hu (2009) for details.

3 Some Preliminary Results
The multi-agent system can be regarded as a dynamical

network, and thus graph theory may play a role (cf., Jad-
babaie et al. (2003), Liu & Guo (2008a)). Before proving our

1 Throughout the sequel, the following standard notions will be
used: for two positive sequences {an, n ≥ 1} and {bn, n ≥
1}, an = O(bn) means that there exists a positive constant C
independent of n, such that an ≤ Cbn for any n ≥ 1; an = o(bn)
means that limn→∞ an

bn
= 0.
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theorems, we need some basic notions and concepts from
graph theory (cf., Godsil & Royle (2001), Chung (2000) ).

An undirected graph G = {V, E} is composed of a
vertex (or node) set V = {1, 2, · · · , n} and an edge set
E = {(i, j)} ⊆ V × V , where (i, j) ∈ E is an edge
connecting vertexes i and j, and also means that j is a
neighbor of i, and vice versa. For any vertex i ∈ V , if
(i, i) ∈ E, then it is called a loop of G. The graphs to be
studied in this paper are all undirected and contain loops. A
path of length l in G that connects vertexes i and j means
that there is a sequence of vertexes i1, i2, · · · , il, such that
(im, im+1) ∈ E, 0 ≤ m ≤ l, with i0 = i, il+1 = j. A graph
G is called connected if for any two different vertexes i and
j, there always exists a path that connects them.

The adjacency matrix A = (aij)n×n of graph G is a 0-
1 matrix, where aij = 1 if and only if (i, j) ∈ E. The
degree of vertex i is defined by di =

∑n
j=1 aij , and the

minimum and maximum degrees of the graph G are defined
by dmin = mini{di} and dmax = maxi{di} respectively.
The volume of the graph G are defined to be V ol(G) =∑n

i=1 di. The degree matrix T = (tij)n×n is a diagonal
matrix with diagonal entries tii = di, while P 0 = T−1A is
called the average matrix of the graph G. Furthermore, the
Laplacian of the graph G is defined to be L = T − A. The
normalized Laplacian is defined to be L = T−1/2LT−1/2,
and it is easy to see that L (or L) is a nonnegative definite
matrix, and 0 is the smallest eigenvalue of L (or L) (cf.,
Chung (2000)). Arrange all eigenvalues of L as follows:
0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, and a corresponding set of
unit orthogonal eigenvectors is denoted by {ϕ0, · · · , ϕn−1}
with ϕ0 = (

√
d1/V ol(G), · · · ,

√
dn/V ol(G))τ . Moreover,

the second smallest eigenvalue λ1 is called the algebraic
connectivity ofL, since the connectivity of G is equivalent to
the positivity of the algebraic connectivity λ1. Furthermore,
λ = max{|1−λ1|, |λn−1− 1|} is called the spectral gap of
L, which may play a key role in the synchronization analysis
of multi-agent systems (cf. Tang & Guo (2007) ).

For the mathematical model (1)-(3), the neighbors of
each agent will change over time, and we may use a time-
dependent graph sequence Gt = {V, Et} to describe the
evolution of the underlying system dynamics, where V =
{1, 2, · · · , n} is the set of agents’ indices (vertexes), Et

is the edge set at time t. Edges are formed in the follow-
ing way: if the distance between agents i and j at time
t, denoted by dij(t), satisfies dij(t) < r, then we define
an edge between i and j, denoted by (i, j) ∈ Et. Obvi-
ously, the neighbor graphs formed in this way are undirected,
and contain loops since each agent is a neighbor of itself.
The degree, minimum degree, maximum degree of graph
Gt are denoted by di(t)(1 ≤ i ≤ n), dmin(t), dmax(t),
respectively. The adjacency matrix, degree matrix, average
matrix, and the normalized Laplacian of the graph Gt are
denoted by A(t), T (t), P 0(t) and L(t) respectively. The
eigenvalues of L(t) are accordingly arranged in the follow-
ing way: 0 = λ0(t) ≤ λ1(t) · · · ≤ λn−1(t), and λ(t) =
min{|1 − λ1(t)|, |λn−1(t) − 1|} is the spectral gap of the
graph Gt.

For analyzing the heading equation (3), we rewrite it into

the following equivalent form:

tan θi(t + 1) =
∑

j∈Ni(t)

cos θj(t)∑
k∈Ni(t)

cos θk(t)
tan θj(t), (4)

and put (4) into the following compact matrix form:

tan θ(t + 1) = P (t) tan θ(t), (5)

where tan θ(t) , (tan θ1(t), · · · , tan θn(t))τ , P (t) ,
(pij(t)) is the weighted average matrix of the graph Gt:

pij(t) =





cos θj(t)∑
k∈Ni(t)

cos θk(t)
, if (i, j) ∈ Et;

0, otherwise.
(6)

We will also use the standard average matrix P 0(t) =
(p0

ij(t)), which is actually the linearized version (around
θi(t) = 0) of the above P (t), with entries defined explicitly
by

p0
ij(t) =

{
1

di(t)
, if (i, j) ∈ Et;

0, otherwise,
(7)

where di(t) is the degree of the agent i at time t, which
equals to the cardinality of Ni(t).

To prove our first theorem, Theorem 2, we need to con-
sider the following set:

Rj = {i : (1− η)r ≤ dij(0) ≤ (1 + η)r} , (8)

where η can be taken as a small constant which will be
specified in the paper as follows:

η =

(
min(

√
πr2/4,

√
π/64)

)5

3 · 213 · (r +
√

6)4
. (9)

The cardinality of Rj will be denoted as Rj , and Rmax ,
maxj Rj .

To analyze Rmax and to prove the theorem, we need to
estimate some characteristics of both the initial random geo-
metric graph G0 and the headings at time t = 1. For this, we
need the following multi-array martingale theorem whose
proof can be carried out following the lines of Lemma 3.1
of Huang & Guo (1990), see Appendix A.
Lemma 7 For any fixed n and 1 ≤ k ≤ n, let {wt(k, n),
Ft(k, n), t ≥ 1} be a martingale difference sequence which
satisfies |wt(k, n)| ≤ 1, a.s.,∀ 1 ≤ t, k ≤ n. Also, for any
fixed k, n, let ft(k, n) be Ft(k, n)-measurable for all t, with
|ft(k, n)| ≤ 1, a.s., 1 ≤ t, k ≤ n. Then almost surely for
large n,

max
1≤k≤n

∣∣∣∣∣∣

n−1∑

j=1

fj(k, n)wj+1(k, n)

∣∣∣∣∣∣
≤ 3Cw(n)

4
Sn + 3 log n,
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where Sn and Cw(n) are respectively the upper bounds of

max
1≤k≤n

n∑

j=1

f2
j (k, n) and max

1≤k,j≤n
E

[
w2

j+1(k, n)|Fj(k, n)
]
.

Throughout the sequel, all analysis will be carried out un-
der Assumption 1 without explanations. Let the unit square
S be divided into Mn equally small squares, labeled from
left to right and from top to bottom as Sj , j = 1, · · · ,Mn

with Mn = b 1
an
c2, where an satisfying

√
log n/n = o(an)

and an = o(1). Denote the number of agents in Sk(1 ≤ k ≤
Mn) as Nk. Then, the following estimation holds almost
surely for large n,

max
1≤k≤Mn

Nk = na2
n(1 + o(1)). (10)

This result can be established by directly applying the Borel-
Cantelli Lemma to Lemma 4 of Tang & Guo (2007), it can
also be proved simply by using Lemma 7.

Based on (10), it is readily found that the asymptotic
properties of the characteristics established by Tang & Guo
(2007) for the random geometric graph G0 actually hold
almost surely, which can be summarized in the following
lemma.
Lemma 8 For the initial random geometric graph G0, the
following results hold almost surely for all large n :

1) The maximum and minimum degrees satisfy

β−1n(1 + o(1)) ≤ dmin(0) ≤ dmax(0) ≤ n,

where β can be taken as

β = max
(
64/π, 4/πr2

)
. (11)

2) The maximum number of agents in (8) satisfies

Rmax ≤ 4nπηr2(1 + o(1)). (12)

3) The spectral gap satisfies

λ̄(0) ≤ 1− πr2

512(r +
√

6)4
(1 + o(1)).

By using the above multi-array martingale estimation the-
orem, we can get the following estimation of the initial head-
ings:
Lemma 9 For large n, we have

1) max
1≤i≤n

∣∣∣∣∣∣
∑

j∈Ni(0)

sin θj(0)

∣∣∣∣∣∣
≤ C1bn, a.s.

2) max
1≤i≤n

∣∣∣∣∣∣
∑

j∈Ni(0)

(cos θj(0)− C2)

∣∣∣∣∣∣
≤ C3bn, a.s.

where bn =
√

n log n, and C1, C2, C3 are constants whose
values can be found in the proof to be given in Appendix B.

By the above lemma, we can obtain the estimation of the
averaged headings as follows:
Corollary 10 For θi(t) defined by (3), we have for large n

1) max
1≤i≤n

| tan θi(1)| ≤ C4
bn

n
, a.s.;

2) max
1≤i≤n

| cos θi(t)− 1| ≤ C5
bn

n
, a.s., ∀t ≥ 1,

where C4 and C5 are constants whose values can be found
in the proof to be given in Appendix C.
Remark 11 From the above corollary, we see that for large
n, θi(1) ∈ (−π/2, π/2),∀i almost surely. We remark that
some biological systems do exhibit rapid transition from dis-
ordered to highly synchronized behavior when the popula-
tion density is suitably high, see, e.g., Makris et al. (2009).
However, θi(1) ∈ (−π/2, π/2),∀i does not mean that the
system can reach synchronization eventually. In fact, the re-
quired proof appears to be rather complicated, as will be
seen in the paper.

To analyze the changes of the dynamical graphs asso-
ciated with the multi-agent systems, we need to know the
“perturbation” properties of the average matrix, which are
given in the following lemma:
Lemma 12 (Tang & Guo, 2007). Let G be an undirected
graph , and let Ĝ be another undirected graph formed by
changing the neighbors of G. If for any node k, the number
of its neighbors changed satisfies Rk ≤ Rmax < dmin, then
the corresponding average matrices P 0 and P̂ 0 satisfy

‖P 0 − P̂ 0‖ ≤ Rmax

dmin

(
dmax + dmin

dmin −Rmax

)
.

All the above auxiliary results will be used in the proof
of the next section.

4 Proof of Theorem 2
The main purpose of this section is to prove Theorem

2 for the multi-agent system defined by (1)-(3) with the
nonlinear heading equation and with any given and fixed
model parameters v and r. The proof is proceeded with two
lemmas.
Lemma 13 The L2-norm of the difference between the
weighted average matrix P (t) and the average matrix
P 0(t), defined respectively by (6) and (7), denoted by

P̃ (t) = P (t)− P 0(t) , (p̃ij(t)), (13)

is bounded by

‖P̃ (t)‖ ≤ 2C5

√
n log n

dmin(t)
(1 + o(1)), t ≥ 1, (14)

where C5 is defined as in Corollary 10, and dmin(t) is the
minimum degree of the graph Gt associated with the dy-
namical system.
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Proof: By (6) and (7), the entries p̃ij(t) of the matrix
P̃ (t) satisfy

p̃ij(t) =





cos θj(t)∑
k∈Ni(t)

cos θk(t)
− 1

di(t)
, if (i, j) ∈ Et

0, otherwise
, (15)

where di(t) is the degree of the agent i at time t. For any i
and j such that (i, j) ∈ Et, by 2) of Corollary 10, we have

|p̃ij(t)| =
∣∣∣
∑

k∈Ni(t)
(cos θj(t)− cos θk(t))

di(t)
∑

k∈Ni(t)
cos θk(t)

∣∣∣

≤ 2C5di(t) bn

n

d2
i (t)

(
1− C5

bn

n

) ≤ 2C5

di(t)

√
log n

n
(1 + o(1)), a.s.

where that fact bn/n = (log n/n)1/2 is used in the above
inequality. Hence, we have for t ≥ 1,

‖P̃ (t)‖ ≤ n max
i,j

|p̃ij(t)| ≤ 2C5

√
n log n

dmin(t)
(1 + o(1)).

This completes the proof of the lemma. ¤
Next, we further estimate the upper bound for max

1≤s≤t
‖P̃ (s)‖,

or equivalently, the lower bound to min
1≤s≤t

dmin(s) by the

above lemma. Obviously, this depends essentially on the
estimation for the distance dij(t) between any two agents.
Lemma 14 For the multi-agent system defined by (1)-(3),
the dynamical distances dij(t) between any agents and the
difference matrix P̃ (t) defined in Lemma 13 satisfy the fol-
lowing properties almost surely for large n:

1) For any agents i and j, their distance satisfies

|dij(t)− dij(0)| ≤ ηr, ∀t ≥ 0, (16)

where η is defined as in (9).
2) For any t ≥ 0, the difference matrix P̃ (t) satisfies:

ε1(t) ≤ πr2

3 · 512
√

β(r +
√

6)4
, (17)

where β is the constant defined by (11), and

ε1(t) , sup
1≤s≤t

‖ P̃ (s) ‖, ε1(0) = 0. (18)

Proof. It is not difficult to see that the two inequalities (16)
and (17) are actually coupled in the sense that proving one
needs the other. Hence, in the following, we will prove that
(16) and (17) hold simultaneously by induction. First, for
the case where t = 0, these two inequalities hold obviously.

Now, let us assume that for some t ≥ 0, (16) and (17)
hold for all 0 ≤ s ≤ t, i.e., for any i and j, we have

|dij(s)− dij(0)| ≤ ηr, a.s., (19)

and

ε1(s) ≤ πr2

3 · 512
√

β(r +
√

6)4
, (20)

We will prove that both (16) and (17) hold for s = t + 1.
By the position update law (2), we can deduce that

|dij(t + 1)− dij(t)| ≤ vδ(t + 1), ∀ t ≥ 0, (21)

where

δ(t) = max
1≤i,j≤n

{tan θi(t)− tan θj(t)}. (22)

By (21), we have

|dij(t + 1)− dij(0)| ≤
t+1∑
s=1

|dij(s)− dij(s− 1)|

≤ v

t+1∑
s=1

δ(s). (23)

Note that the “linear” time-varying equation for tan θ(t)
defined by (5) has essentially the same form as that for θ(t) in
Lemma 2 of Tang & Guo (2007). So, we have for 0 ≤ s ≤ t,

δ(s + 1)

≤
√

2β
(
λ(0) +

√
βTs

)s ‖ tan θ(1) ‖, (24)

where λ̄(0) is the spectral gap of the initial graph, and

Ts , sup
1≤k≤s

‖ P (k)− P 0(0) ‖ (25)

≤ sup
1≤k≤s

‖ P (k)− P 0(k) ‖ + sup
1≤k≤s

‖ P 0(k)− P 0(0) ‖ .

By (18), the first term of the right-hand side is exactly
ε1(s). We now proceed to estimate the second term
sup1≤k≤s ‖P 0(k)− P 0(0)‖.

By (19), one can see that the number of neighbors changed
at any time s(1 ≤ s ≤ t) in comparison with that at time
t = 0 is bounded by Rmax defined for (8). Furthermore,
note that the graph Gt is undirected for all t ≥ 0. Thus, by
Lemmas 8 and 12 and the value of η given in (9), we have

‖P 0(s)− P 0(0)‖ ≤ Rmax

dmin(0)

(
dmax(0) + dmin(0)
dmin(0)−Rmax

)

≤ 4nβπηr2

n
· 2n

β−1n− 4nπηr2
(1 + o(1))

≤ 16πβ2r2η(1 + o(1))

≤ πr2

3 · 512
√

β(r +
√

6)4
, ε2, a.s., 1 ≤ s ≤ t.
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Furthermore, by this, (11), (20), (25) and Lemma 8, we can
deduce that

λ(0) +
√

βTs

≤ λ(0) +
√

β (ε1(s) + ε2)

≤ 1− πr2

3 · 512(r +
√

6)4
(1 + o(1)), a.s. (26)

Substituting (26) into (24), we have for s ≤ t

δ(s + 1) ≤
√

2β(λ′)s‖ tan θ(1)‖, (27)

where λ′ = 1− πr2

3·512(r+√6)4
(1 + o(1)).

Note that by 2) of Corollary 10, we have for large n,
θi(s) ∈ (−π/2, π/2) for any s ≥ 1 and i. So, by (4), it is
not difficult to see that {δ(s), s ≥ 1} is a non-increasing
sequence .

Now, we are in a position to continue the estimation of
(23). Set

s0 , min{s :
√

2β(λ′)s−1 ‖ tan θ(1) ‖≤ δ(1)},

then it is not difficult to see that

s0 ≤ −M

log λ′
+ 2, with M = − log

δ(1)√
2β ‖ tan θ(1) ‖ , (28)

where M > 0 because δ(1) ≤ √
2β‖ tan θ(1)‖ .

Following the proof idea of Proposition 1 in Tang & Guo
(2007), by (27) and (28), we have

v

t+1∑
s=1

δ(s) = v

(
s0−1∑
s=1

δ(s) +
t+1∑
s=s0

δ(s)

)

≤ v(s0 − 1)δ(1) + v
√

2β(λ′)s0−1 ‖ tan θ(1) ‖
t+1∑
s=s0

(λ′)s−s0

≤ vδ(1)
( −M

log λ′
+ 1 +

1
1− λ′

)

≤ vδ(1)
1− λ′

(
2 +

1− λ′

− log λ′
M

)
≤ vδ(1)

1− λ′
(2 + M) , (29)

where for the last inequality, we have used the fact that
log x ≤ x− 1 < 0, ∀ 0 < x < 1. Furthermore, to estimate
δ(1)M , by Corollary 10 we have for large n,

δ(1) ≤ 2max
i
| tan θ1≤i≤n(1)| ≤ 2C4

bn

n
, a.s.; (30)

‖ tan θ(1) ‖≤ √
n max

1≤i≤n
| tan θi(1)| ≤ C4

bn√
n

, a.s. (31)

Moreover, since −x log x is increasing for 0 < x < 1
e , by

(29), (30) and (31), we have for large n

v
t+1∑
s=1

δ(s)

≤ 2vC4
bn

n

1− λ′


2 + log

√
2max

(
64
π , 4

πr2

)√
nC4

bn

n

2C4
bn

n




= O

(√
log n

n
log n

)
≤ ηr, a.s., (32)

where the last inequality holds for large n. Thus by (23) and
(32), we see that (16) holds for s = t + 1 .

Finally, we prove that (17) holds at time t+1. Since (16)
holds at time t + 1, we see that the number of each agent’s
neighbors changed at time t + 1 in comparison with its
neighbors at the initial time does not exceed Rmax defined
for (8). Thus, by Lemma 8 and the value of η given in (9),
we see that

dmin(t + 1) ≥ dmin(0)−Rmax

≥ 1
2

min
(

πr2

4
,

π

64

)
n(1 + o(1)) (33)

holds almost surely for large n. By substituting (33) into
(14), we obtain

‖P̃ (t + 1)‖ ≤ 2C5

√
n log n(1 + o(1))
dmin(t + 1)

= O

(√
log n

n

)
,

which implies that for large n we must have

‖P̃ (t + 1)‖ ≤ πr2

3 · 512
√

β(r +
√

6)4
(34)

holds almost surely. Combining this with the induction as-
sumption (20), we see that (17) holds at time t + 1. There-
fore, by induction, (16) and (17) hold almost surely for all
t ≥ 0. This completes the proof of the lemma. ¤

Proof of Theorem 2.
From the proof of Lemma 14, we see that (27) holds for

all t ≥ 0, i.e.,

δ(t + 1) ≤
√

2β(λ′)t‖ tan θ(1)‖, (35)

where λ′ = 1 − πr2

3·512(r+√6)4
(1 + o(1)). Consequently,

δ(t) → 0 exponentially fast. Moreover, by 2) of Corollary
10, we know that for large n, θi(t) ∈ (−π/2, π/2) for any
t ≥ 1 and i. So, by (4) we know that max1≤i≤n tan θi(t)(resp.,
min1≤i≤n tan θi(t)) is a non-increasing (resp., non-decr
easing) bounded sequence, and thus has finite limit. By this
and (35), we further have

lim
t→∞

max
1≤i≤n

tan θi(t) = lim
t→∞

min
1≤i≤n

tan θi(t).
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Hence the system (1)-(3) will synchronize. This completes
the proof of Theorem 2. ¤
Remark 15 In comparison with the work of Tang & Guo
(2007), we should note that the upper bound of ε1(t) defined
by (18) is automatically zero for the “linearized” model
studied there, whereas estimating this upper bound in Lem-
mas 13 and 14 is a key step here. Moreover, the synchro-
nization property of Tang & Guo (2007) was proven by ver-
ifying the connectivity of the associated dynamical neighbor
graphs Gt, whereas in our Theorem 2, the synchronization
was proven by a simpler way without establishing the con-
nectivity of Gt. However, this property does indeed hold,
which can be verified along the lines of Tang & Guo (2007).

5 Proof of Theorem 5
In this section, we will give the proof of Theorem 5.

Similar to the proof of Theorem 2, we need to estimate
some characteristics of the initial graph G0 and the heading
property at t = 1 for the case where v and r depend on n,
denoted by vn and rn to reflect this situation. For this case,
(1) defining the neighbor set of the agent i is changed to the
following:

Ni(t) = {j
∣∣ dij(t) < rn}. (36)

Accordingly, the set Rj is changed to the following one:

Rj = {i : (1− ηn)rn ≤ dij(0) ≤ (1 + ηn)rn} . (37)

where ηn and rn are taken as follows:

ηn =
r2
n

288× 320
,

6

√
log n

n
= o(rn), rn = o(1). (38)

To prove Theorem 5, we need to consider the following
new sets:

R′j = {i : (2− ηn)rn ≤ dij(0) ≤ (2 + ηn)rn}, (39)
N ′

j(t) = {i : dij(t) < 2rn} , t ≥ 0. (40)

Denote Rj , R
′
j and n′j(t) as the cardinality of Rj ,R′j

and N ′
j(t) respectively, and Rmax , maxj Rj , R′max ,

maxj R′j .
For the initial graph G0, the following lemma is given by

Tang & Guo (2006), whose proof is similar to those with
fixed r (see, Tang & Guo, 2007).
Lemma 16 For the initial random geometric graph G0, the
following results hold almost surely for large n:

1) The maximum and minimum degrees satisfy

dmax(0) = nπr2
n(1 + o(1)),

dmin(0) =
1
4
nπr2

n(1 + o(1)). (41)

2) The maximum number of agents in (37) satisfies

Rmax = 4nπηnr2
n(1 + o(1)). (42)

3) The spectral gap satisfies

λ(0) ≤ 1− r2
n

144
(1 + o(1)). (43)

By the similar methods as those in Lemma 16, we have
the following results:
Lemma 17 The number of agents in the set N ′

i (0) defined
by (40) satisfies

max
1≤i≤n

n′i(0) = 4nπr2
n(1 + o(1)), a.s.

min
1≤i≤n

n′i(0) = nπr2
n(1 + o(1)), a.s. (44)

Furthermore, the maximum number of agents in (39) satisfies

R′max = 8nπηnr2
n(1 + o(1)), a.s. (45)

Similar to the proof of Lemma 9, we can obtain the fol-
lowing results:
Lemma 18 For large n, we have

1) max
1≤i≤n

∣∣∣∣∣∣
∑

j∈Ni(0)

sin θj(0)

∣∣∣∣∣∣
≤ C1fn, a.s.

2) max
1≤i≤n

∣∣∣∣∣∣
∑

j∈Ni(0)

(
cos θj(0)− C2

)
∣∣∣∣∣∣
≤ C3fn, a.s.

where fn =
√

nπr2
n log n(1 + o(1)), and C1, C2 and C3

take the same values as those in Lemma 9.
By the above lemma, we can derive the following corol-

lary, whose proof is similar to that of Corollary 10.
Corollary 19 For large n, we have

1) max
1≤i≤n

| tan θi(1)| ≤ C6
fn

nr2
n

, a.s.

2) max
1≤i≤n

| cos θi(t)− 1| ≤ C7
fn

nr2
n

, a.s.,∀t ≥ 1,

where C6 and C7 are constants independent of n.
For the case where vn and rn depend on n, we have the

following lemma:
Lemma 20 For t ≥ 1, the L2-norm of the difference be-
tween the weighted average matrix P (t) and the average
matrix P 0(t), defined by (13), is bounded by

‖P̃ (t)‖

≤ 2C7(1 + o(1))
dmin(t)

√√√√π log ndmax(t) max
1≤i≤n

n′i(t)

nr2
n

. (46)

Proof. Since P̃ (t) has a similar expression as in the previ-
ous case, we know that for any i and j such that (i, j) ∈ Et,
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(38) and 2) of Corollary 19 will give

|p̃ij(t)| =
∣∣∣∣∣

∑
k∈Ni(t)

(cos θj(t)− cos θk(t))

di(t)
∑

k∈Ni(t)
cos θk(t)

∣∣∣∣∣

≤
2C7di(t) fn

nr2
n

d2
i (t)

(
1− C7

fn

nr2
n

)

=
2C7

di(t)

√
π log n

nr2
n

(1 + o(1)), a.s., (47)

where di(t) is the degree of the agent i at time t.
To estimate ‖P̃ (t)‖, we need to introduce the following

sets:

Nij(t) = {l : dil(t) < rn, djl(t) < rn}

and Zi(t) = {j : Nij(t) 6= ∅}. Moreover, denote nij(t)
and zi(t) as the cardinality of the sets Nij(t) and Zi(t)
respectively. Obviously, we have

max
1≤i,j≤n

nij(t) ≤ min{ni(t), nj(t)} ≤ dmax(t); (48)

max
1≤i≤n

zi(t) = max
1≤i≤n

n′i(t), (49)

where n′i(t) is the cardinality of N ′
i (t) defined by (40). By

Gěrschgorin Disk Theorem (cf., Horn & Johnson (1985)),
we have

‖P̃ (t)‖ = max
1≤i≤n

√
λi(P̃ (t)P̃ τ (t))

≤
(

max
1≤i≤n

n∑

j=1

n∑

l=1

|p̃il(t)p̃jl(t)|
)1/2

≤
(

max
1≤i≤n

∑

j∈Zi(t)

∑

l∈Nij(t)

|p̃il(t)p̃jl(t)|
)1/2

≤
√

max
1≤i,j≤n

nij(t) max
1≤i≤n

zi(t) max
ij:(i,j)∈Et

|p̃ij(t)|2. (50)

By substituting (47), (48) and (49) into (50), we have

‖P̃ (t)‖ ≤ 2C7(1 + o(1))
dmin(t)

√√√√π log ndmax(t) max
1≤i≤n

n′i(t)

nr2
n

.

This completes the proof of the lemma. ¤
By the above analysis, the asymptotic properties of the

initial random geometric graph G0 and the heading prop-
erties at time t = 1, we can obtain the following lemma,
whose proof is similar to that of Lemma 14.
Lemma 21 For the multi-agent system (1)-(3), let rn satisfy
(38), and let the velocity vn satisfy

vn ≤
√

nr6
n

2
√

π · 1442 · 640 · C6 log3/2 n
.

Then, the dynamical distance dij(t) between any agents and
the difference matrix P̃ (t) defined in Lemma 20 satisfy the
following properties almost surely for large n:

1) For any agents i and j, their distance satisfies

|dij(t)− dij(0)| ≤ ηnrn(1 + o(1)), ∀t ≥ 0,

with ηn defined by (38).
2) For any t ≥ 0, the difference matrix P̃ (t) satisfies

ε1(t) = o(r2
n),

where ε1(t) is defined as follows:

ε1(t) , sup
1≤s≤t

‖P̃ (s)‖, ε1(0) = 0.

Following the proof ideas of Theorem 2 and using the above
lemmas, one can establish Theorem 5 in a similar way.

6 Simulation result
In this section, we demonstrate the simulation result. Here,

the initial positions and headings of all agents satisfy As-
sumption 1 with ε0 = π/50, the speed of the agents and the
neighborhood radius are taken as v = 0.03 and r = 0.5 re-
spectively. Fig. 2 shows how the probability of synchroniza-
tion changes with the number of agents. From this simula-
tion, we see that the system will synchronize almost surely,
when the number of agents is equal to or greater than 55.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.9

1

Number of agents

P

Fig. 2. Simulation result for the system with v = 0.03, r = 0.5
and ε0 = π/50.

7 Concluding remarks
A key issue in the investigation of multi-agent systems is

to understand how locally interacting agents (or subsystems)
lead to the collective behavior of the overall systems. In this
paper, we provided a theoretical analysis for a basic class
of multi-agent systems with local interactions in a random
framework with large population, without imposing any a
priori connectivity conditions on the dynamical systems to
be studied. This solves a challenging problem in this direc-
tion. We remark that similar methods may also be used to
study other related problems and systems, for example, three
dimensional systems, the leader-follower problems, as well
as other problems with more complicated system structures.
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Appendix A. Proof of Lemma 7.
Following Huang & Guo (1990), we consider

Si(k, n) =
i∑

j=1

fj(k, n)wj+1(k, n), S0(k, n) = 0,

Ti(k, n) = e
{

Si(k,n)− 3
4

∑i

j=1
E[w2

j+1(k,n)|Fj(k,n)]f2
j (k,n)

}
,

where 1 ≤ i, k ≤ n.
Note that {Ti(k, n),Fi(k, n), 1 ≤ i ≤ n} is a super-

martingale (cf. Stout,1974), so we have

P
{

max
1≤k≤n

max
1≤i≤n

log Ti(k, n) > 3 log n
}

≤
n∑

k=1

P

{
max

1≤i≤n
Ti(k, n) > exp {3 log n}

}

≤
n∑

k=1

n−3 = O(n−2),

where Corollary 5.4.1 of Stout (1974) is used in the last
inequality. Hence, by Borel-Cantelli Lemma , we have for
large n

max
1≤k≤n

max
1≤i≤n

log Ti(k, n) ≤ 3 log n, a.s.

From this, it is not difficult to see that

max
1≤k≤n

max
1≤i≤n

Si(k, n)

≤ max
1≤k≤n

3
4
Cw(n)

n∑

j=1

f2
j (k, n) + 3 log n, a.s. (A.1)

The similar result holds also for {−Si(k, n)}. Therefore, the
assertion of Lemma 7 holds almost surely for large n. ¤
Appendix B. Proof of Lemma 9.

1) For 1 ≤ i ≤ n, set

F0(n) = {∅,Ω},
Fi(n) = σ {θj(0), (xq(0), yq(0)), j ≤ i, 1 ≤ q ≤ n} .

Clearly, for any n and 1 ≤ j ≤ n, I(j ∈ Ni(0)) is Fi(n)-
measurable for any i, where I(·) is the indicator function.
Under Assumption 1, we have for any 1 ≤ j ≤ n,

E[sin θj(0)|Fj−1(n)] = E sin θj(0) = 0,

E[sin θ2
j (0)|Fj−1(n)] = E sin θ2

j (0)

=
1
2

+
sin 2ε0

4(π − ε0)
, C0.

So for any positive integers n, {sin θj(0),Fj(n), 1 ≤ j ≤
n} is a martingale difference sequence with constant condi-
tional variance. By Lemma 8, we have

max
1≤i≤n

n∑

j=1

I(j ∈ Ni(0)) = dmax(0) ≤ n. (B.1)

Set cn = 2
√

log n
C0n , it is easy to see that |cn| ≤ 1. Thus, by

Lemma 7, we have for large n

max
1≤i≤n

∣∣∣∣∣∣
∑

j∈Ni(0)

sin θj(0)

∣∣∣∣∣∣

=
1
cn

max
1≤i≤n

∣∣∣∣∣∣

n∑

j=1

cnI(j ∈ Ni(0)) sin θj(0)

∣∣∣∣∣∣

≤ 1
cn

{
3C0c

2
ndmax(0)

4
+ 3 log n

}

= 3

√(
1
2

+
sin 2ε0

4(π − ε0)

)
n log n, a.s. (B.2)

2) By Assumption 1, we have for any n

E {cos θj(0)|Fj−1(n)} =
sin ε0

π − ε0
, C2, 1 ≤ j ≤ n,

E

{(
cos θj(0)− C2

)2∣∣∣Fj−1(n)
}

=
1
2
− sin 2ε0

4(π − ε0)
−

(
sin ε0

π − ε0

)2

1 ≤ j ≤ n.

So, for any n, {cos θj(0) − C2,Fj(n), 1 ≤ j ≤ n} is also
a martingale difference sequence with constant conditional
variance. Thus, following the proof idea of (B.2), by (B.1)
we have for large n

max
1≤i≤n

∣∣∣∣∣∣
∑

j∈Ni(0)

(cos θj(0)− C2)

∣∣∣∣∣∣

≤ 3
{[

1
2
− sin 2ε0

4(π − ε0)
− C2

2

]
n log n

}1/2

, a.s.

This completes the proof of the lemma. ¤

Appendix C. Proof of Corollary 10.
1) By Lemma 8, we have for 1 ≤ i ≤ n,

bn

di(0)
= O

(
bn

n

)
= O

(√
log n

n

)
= o(1), a.s. (C.1)
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Therefore, by (3), (C.1) and Lemma 9, we have

max
1≤i≤n

| tan θi(1)| = max
1≤i≤n

|∑j∈Ni(0)
sin θj(0)|

|∑j∈Ni(0)
cos θj(0)|

≤ max
1≤i≤n

C1bn

C2di(0)− C3bn
=

C1bn

C2dmin(0)− C3bn

=
C1

C2

bn

dmin(0)
(1 + o(1)) = O

(
bn

n

)
, a.s.

This completes the first inequality of the corollary.
2) First, we consider the asymptotic property of max

1≤i≤n
(1−

cos θi(1)). By (3), for any i, we have

cos θi(1)

=

∑
j∈Ni(0)

cos θj(0)
{( ∑

j∈Ni(0)

sin θj(0)
)2

+
( ∑

j∈Ni(0)

cos θj(0)
)2} 1

2
.(C.2)

So by (C.1), Lemma 9 and the elementary inequality√
a2 + b2 ≤ a + b, a, b ≥ 0, we have

1 ≥ cos θi(1) ≥ C2di(0)− C3bn

{(C2di(0) + C3bn)2 + (C1bn)2}1/2

≥ C2di(0)− C3bn

(C2di(0) + C3bn) + C1bn

=
C2 − C3gin

C2 + (C3 + C1)gin
, a.s., (C.3)

where gin = bn

di(0)
. Furthermore, by (C.1), (C.3) and Lemma

8, we can obtain

max
1≤i≤n

| cos θi(1)− 1| ≤ max
1≤i≤n

(C1 + 2C3)gin

C2 + (C1 + C3)gin

= O

(
bn

dmin(0)

)
= O

(√
log n

n

)
= o(1), a.s. (C.4)

Moreover, by this fact and 1) of Corollary 10, it is easy to
see that for large n, θi(1) ∈ (−π/2, π/2), ∀i. Hence, by the
heading update equation (3), we know that min

1≤i≤n
cos θi(t)

is non-decreasing for t ≥ 1, so we have

max
1≤i≤n

(1− cos θi(t)) ≤ max
1≤i≤n

(1− cos θi(1)), ∀t ≥ 1,

which in conjunction with (C.4) yields the desired result 2).
This completes the proof of Corollary 10. ¤
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