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Abstract

It is fairly well known that there are fundamental differences between adaptive control of continuous-time and discrete-time
nonlinear systems. In fact, even for the seemingly simple single-input single-output control system yt+1 = θ1f(yt) + ut + wt+1

with a scalar unknown parameter θ1 and noise disturbance {wt}, and with a known function f(·) having possible nonlinear
growth rate characterized by |f(x)| = Θ(|x|b) with b ≥ 1, the necessary and sufficient condition for the system to be
globally stabilizable by adaptive feedback is b < 4. This was first found and proved by [4] for the Gaussian white noise case,
and then proved by [8] for the bounded noise case. Subsequently, a number of other type of “critical values” and “impossibility
theorems” on the maximum capability of adaptive feedback were also found, mainly for systems with known control parameter
as in the above model. In this paper, we will study the above basic model again but with additional unknown control parameter
θ2, i.e., ut is replaced by θ2ut in the above model. Interestingly, it turns out that the system is globally stabilizable if and
only if b < 3. This is a new critical theorem for adaptive nonlinear stabilization, which has meaningful implications for the
control of more general uncertain nonlinear systems.
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1 Introduction

It is well known that a fairly complete theory exists for
adaptive control of linear systems in both continuous-
time and discrete-time cases (cf. e.g., [1]-[5]). Extensions
of the existing results on linear systems to nonlinear sys-
tems with nonlinearity having linear growth rate are also
possible (cf. e.g. [16]). However, fundamental differences
emerge between adaptive control of continuous-time and
discrete-time systems when the nonlinearities are al-
lowed to have a nonlinear growth rate. In fact, in this
case, it is still possible to design globally stablizing adap-
tive controls for a wide class of nonlinear continuous-
time systems (cf. [11]), but fundamental difficulties exist
for adaptive control of nonlinear discrete-time systems,
partly because the high gain or nonlinear damping meth-
ods that are so powerful in the continuous-time case are
no longer effective in the discrete-time case. Similarly,
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for sampled-data control of nonlinear uncertain systems,
the design of stabilizing sampled-data feedback is possi-
ble if the sampling rate is high enough (cf.e.g., [13] and
[15]). However, if the sampling rate is a prescribed value,
then difficulties again emerge in the design and analy-
sis of globally stabilizing sampled-data feedbacks even
for nonlinear systems with the nonlinearity having a lin-
ear growth rate. The fact that sampling usually destroys
many helpful properties is one of the reasons why most of
the existing design methods for nonlinear control remain
in the continuous-time even in the nonadaptive case (cf.
[12]), albeit many results in continuous-time still have
their discrete-time counterparts (cf.e.g., [6]).

Knowing the above difficulties that we encountered in
the adaptive control of discrete-time (or sampled-data)
nonlinear systems, one may naturally ask the following
question: Are the difficulties mainly caused by our inca-
pability in designing or analyzing the adaptive control
systems, or by the inherent limitations on the capabil-
ity of the feedback principle? As pointed out in [19], to
answer this fundamental question, we have to place our-
selves in a framework that is somewhat beyond those
of the classical robust control and adaptive control. We
need not only to answer what adaptive control can do,
but also to answer the more difficult question what adap-
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tive control cannot do. This means we need to study
the maximum capability of the full feedback mechanism
which includes all (nonlinear and time-varying) causal
mappings from the data space to the control space, and
we are not only restricted to a fixed feedback law or to
a class of specific feedback laws.

A first step in this direction was made in [4], where the
following basic model is considered:

yt+1 = θ1f(yt) + ut + wt+1, (1)

where θ1 is an unknown parameter, {wt} is Gaussian
white noise sequence, and where f(·) is a known non-
linear function possibly having a nonlinear growth rate
characterized by

|f(x)| = Θ(|x|b) with b ≥ 1.

It was found and proved that the system is a.s. globally
adaptively stabilizable if and only if b < 4 (see, [4]). This
result is also true if the Gaussian noise is replaced by
bounded noises (see, [8]). It goes without saying that this
critical case on the feedback capability naturally gives
an“impossibility result” on the maximum capability of
feedback for the case where b ≥ 4. It is worth pointing
out that such “impossibility result” obviously holds also
for any (more general) class of uncertain systems, which
contains the above basic model class described by (1) as
a subclass.

Later on, the above “impossibility result” was extended
to systems with multiple unknown parameters and with
Gaussian white noise sequence by providing a polyno-
mial rule (see, [17]). Similar results can also be obtained
for the case where the uncertain parameters lie in a
bounded known region with Gaussian white noises again,
but with a more general system structure (see, [19]).
More recently, [9] proved that the polynomial rule of [17]
does indeed gives a necessary and sufficient condition
for global feedback stabilization of a wide class of non-
linear systems with multiple unknown parameters and
with bounded noises.

It is worth pointing out that, for nonlinear systems with
nonparametric uncertainties, fundamental limitations
on the capability of adaptive feedback may still exist
even for the case where the nonlinearities have a linear
growth rate. For example, for the following first-order
nonparametric control system:

yt+1 = f(yt) + ut + wt+1; t ≥ 0; y0 ∈ R1,

where the unknown function f(·) belongs to the class of
standard Lipschitz functions defined by:

F(L) = {f(·) : |f(x)− f(y)| ≤ L|x− y|, ∀x, y}

and where the noise sequence is bounded. It was found
and proved by [19] that the maximum “uncertainty ball”
that can be stabilized by adaptive feedback is F(L) with

L =
3
2
+
√

2. This critical case again gives an “impossibil-

ity result” for the case where f ∈ F(L) with L >
3
2

+
√

2.
A key observation for this phenomena is that the non-
parametric uncertainty essentially depends on infinite
number of unknown parameters. Related “impossibility
results” are also found for sampled-data adaptive con-
trol of nonparametric nonlinear systems in [20].

However, all the results mentioned above assume that
the parameter in front of the control law is known. A
challenging problem that is important both practically
and theoretically is to understand what will happen if
the control parameter is also unknown. The main pur-
pose of this paper is to answer this fundamental problem
by establishing a new critical theorem for a basic class of
uncertain nonlinear systems, which naturally has mean-
ingful implications for either practical applications or for
understanding more general uncertain systems.

2 Main Result

In this paper, we consider adaptive control of the follow-
ing basic uncertain system

yt+1 = θ1f(yt) + θ2ut + wt+1, (2)

where {ut} and {yt} are the system input and output
processes, both θ1 and θ2 are unknown parameters, {wt}
is a disturbance process, and f(·) : R → R is a known
function. To study the capability of adaptive feedback,
we need the following assumptions:

A1) The unknown parameter vector θ = (θ1, θ2)τ be-
longs to a bounded domain [θ1, θ1]× [θ2, θ2] ⊂ R×R,
and the interval for θ2 does not contain 0.

A2) The noise sequence {wt} belongs to a class of
bounded sequences with an unknown bound w > 0,
i.e.,

sup
t≥1

|wt| ≤ w. (3)

A3) The nonlinear function satisfies |f(x)| = Θ(|x|b) as
|x| → ∞, in the sense that there exist some constants
x′ > 0 and c2 > c1 > 0 such that

c1 ≤ |f(x)|
|x|b ≤ c2, ∀|x| > x′, (4)

where b ≥ 1 is a constant reflecting the rate of nonlin-
ear growth.

We are interested in designing a feedback control law
which robustly stabilizes the system (2) with respect to
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any possible θ and {wt} under the assumptions A1)-
A2).

First, we restate the definition of a feedback control law
(cf, [19]).

Definition 2.1 A sequence {ut} is called a feedback con-
trol law if at any time t ≥ 0, ut is a (causal) function of
all the observations up to the time t: {yi, i ≤ t}, i.e.,

ut = ht(y0, · · · , yt) (5)

where ht(·) : IRt+1 → IR1 can be any Lebesgue measur-
able (nonlinear) mapping.

We also need a definition of adaptive stabilizability in
the sense of bounded input and bounded output.

Definition 2.2 The system (2) under the assumptions
A1)-A3) is said to be globally stabilizable, if there exists
a feedback control law {ut} such that for any y0 ∈ R1,
any θ, any {wt} satisfying A1)-A2), the outputs of the
closed-loop system are bounded as follows:

sup
t≥0

|yt| < ∞. (6)

The main result of this paper is as follows:

Theorem 2.1 The system (2) under the assumptions
A1)-A3) is adaptive stabilizable if and only if b < 3.

Remark 2.1 In comparison with the related results es-
tablished in [4] and [8] as explained in the Introduction,
we see that the critical nonlinear growth rate reflecting
the maximum capability of the feedback mechanism is re-
duced from b = 4 to the current b = 3, due to the addi-
tional uncertainty in the input channel.

3 The Proof of Sufficiency

The proof of sufficiency is constructive. We will design
a simple adaptive control law, which robustly stabilizes
the system (2) for any b < 3.

3.1 The Parameter Estimation

Without loss of generality, we can suppose that |y0| > x′
is large enough. This is because we can let ut = 0, t =
0, 1, · · · until there exists some |yt′ | large enough, and
then we can take yt′ as y0. Otherwise, if we can not find
such yt′ , the sufficiency part is proven trivially.

Now, we denote ϑ1 =
θ1

θ2
, ϑ2 =

1
θ2

. Without loss of

generality, suppose θ2 > 0. By A1), it is easy to see that

ϑ1 ∈ [
θ1

θ2

,
θ1

θ2

] and ϑ2 ∈ [
1
θ2

,
1
θ2

]. For the convenience

of later use, we also denote ϑ1 =
θ1

θ2

, ϑ1 =
θ1

θ2

, ϑ2 =

1
θ2

, ϑ2 =
1
θ2

. Obviously, ϑ2 and ϑ2 are both positive

numbers.

Let us take u0 = 0 and rewrite the system (2) into the
following form:

yt+1 = εtf(yt) + wt+1, (7)

where by definition

εt = θ1 − θ2βt = θ2(ϑ1 − βt) and βt = − ut

f(yt)
.

Now for any t ≥ 2, let mt := argmax
0≤i≤t−1

|f(yi)|, then define

it :=





argmax
0≤i<mt

|f(yi)|, |yt| ≤ |ymt
|

mt, |yt| > |ymt
|

(8)

jt := argmax
0≤i<it

|f(yi)| (9)

we can then define the parameter estimate for (ϑ1, ϑ2)
at time t ≥ 2 as

ϑ̂1,t =

∣∣∣∣∣
−uit −yit+1

−ujt
−yjt+1

∣∣∣∣∣
∣∣∣∣∣
f(yit) −yit+1

f(yjt
) −yjt+1

∣∣∣∣∣

; ϑ̂2,t =

∣∣∣∣∣
f(yit) −uit

f(yjt
) −ujt

∣∣∣∣∣
∣∣∣∣∣
f(yit) −yit+1

f(yjt
) −yjt+1

∣∣∣∣∣

(10)

This estimate is defined through solving the following
system equation for (ϑ1, ϑ2):

{
−uit

= ϑ1f(yit
) + (wit+1 − yit+1)ϑ2

−ujt = ϑ1f(yjt) + (wjt+1 − yjt+1)ϑ2

(11)

by setting the noise to be zero. The error of the param-
eter estimate at time t ≥ 2 are denoted by

ϑ̃1,t = ϑ1 − ϑ̂1,t, ϑ̃2,t = ϑ2 − ϑ̂2,t. (12)

Now, notice that by (7)

yjt+1

f(yjt)
· yit+1

f(yit)
=

(
εjt

+
wjt+1

f(yjt)

)(
εit +

wit+1

f(yit)

)
,
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hence
(

εjt
+

wjt+1

f(yjt
)

)(
εit

+
wit+1

f(yit
)

)
< 0 (13)

will imply that
yjt+1

f(yjt
)

and
yit+1

f(yit
)

have different signs.

The following lemma gives the range of the estimate
error in this situation.

Lemma 3.1 If (13) holds, then for t ≥ 2,

|ϑ̃1,t| ≤ ϑ2w
|yit+1|+ |yjt+1|
|f(yit

)yjt+1| .

Proof. First, the equation

{
yit+1 = θ1f(yit) + θ2uit + wit+1

yjt+1 = θ1f(yjt
) + θ2ujt

+ wjt+1

can be rewritten as (11). Solving (11), we get





ϑ1 =

∣∣∣∣∣
−uit wit+1 − yit+1

−ujt
wjt+1 − yjt+1

∣∣∣∣∣
∣∣∣∣∣
f(yit) wit+1 − yit+1

f(yjt
) wjt+1 − yjt+1

∣∣∣∣∣

ϑ2 =

∣∣∣∣∣
f(yit

) −uit

f(yjt) −ujt

∣∣∣∣∣
∣∣∣∣∣
f(yit

) wit+1 − yit+1

f(yjt) wjt+1 − yjt+1

∣∣∣∣∣

. (14)

Then by (10) and (12), we can compute that

ϑ̃1,t =

∣∣∣∣∣
−uit

wit+1 − yit+1

−ujt wjt+1 − yjt+1

∣∣∣∣∣
∣∣∣∣∣
f(yit

) wit+1 − yit+1

f(yjt) wjt+1 − yjt+1

∣∣∣∣∣

−

∣∣∣∣∣
−uit

−yit+1

−ujt −yjt+1

∣∣∣∣∣
∣∣∣∣∣
f(yit

) −yit+1

f(yjt) −yjt+1

∣∣∣∣∣

=
f(yjt

)uit
− f(yit

)ujt

f(yit)(wjt+1 − yjt+1)− f(yjt)(wit+1 − yit+1)
·

yit+1wjt+1 − yjt+1wit+1

f(yit
)yjt+1 − f(yjt

)yit+1

= ϑ2
yit+1wjt+1 − yjt+1wit+1

f(yit)yjt+1 − f(yjt)yit+1
, (15)

where the last equality follows from the expression of ϑ2

in (14).

Now, by (13) and the argument above, we have

|f(yit)yjt+1 − f(yjt)yit+1|
=

∣∣∣ yjt+1

f(yjt
)
− yit+1

f(yit
)

∣∣∣ · |f(yjt
)f(yit

)|
≥ |f(yit

)yjt+1|. (16)

Hence by (15) and (16), we have

|ϑ̃1,t| ≤ ϑ2w
|yit+1|+ |yjt+1|
|f(yit

)yjt+1| .

The proof is thus completed. ¥

3.2 The Design of adaptive Control

In this subsection, we will discuss the design of adaptive
control and prove the sufficiency part of Theorem 2.1.

To design the control which can stabilize the system (2),
we need to define a sequence of subscripts tk for the
output sequence {yt}:
{

t0 = 0

tk+1 = inf{t > tk : |f(yt)| > |f(ytk
)|}

. (17)

then, we have

|f(yt)| ≤ |f(ytk
)| < |f(ytk+1)|, for any tk < t < tk+1.

Now, let ∆t := ϑ2w
|yit+1|+ |yjt+1|
|f(yit

)yjt+1| , for k = 1, 2, · · ·
where ϑ2 and w are defined in subsection 2.1 and (3)
respectively. We can define

βt =





0, 0 ≤ t < t1

2ϑ1, t1 ≤ t < t2

ϑ̂1,t − 2∆t, t2k ≤ t < t2k+1, k ≥ 1

ϑ̂1,t + 2∆t, t2k+1 ≤ t < t2(k+1), k ≥ 1

,(18)

then the control can be designed by

ut = −βtf(yt). (19)

Remark 3.1 Notice that by (8), (9) and the definition
of ∆t, we know

ϑ̂1,t − 2∆t = ϑ̂1,tk
− 2∆tk

for tk ≤ t < tk+1.

To prove that the controller designed by (18) and (19)
can stabilize the system (2), we proceed to analyze the
closed-loop system.
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Proposition 3.1 For the system (2) with the controller
designed by (18) and (19), the following statements hold
for all k ≥ 2 with |y0| sufficiently large:
(i) |ytk

| ≤ 2c2|εtk−1 ||ytk−1 |b.
(ii) |ytk−2+1| ≥ 1

4
|ytk−1 |.

(iii)
(

εtk−1 +
wtk−1+1

f(ytk−1)

)(
εtk−2 +

wtk−2+1

f(ytk−2)

)
< 0.

(iv) |εtk
| = O

(∣∣∣∣∣
ytk

yb+1
tk−1

∣∣∣∣∣

)
.

Proof. (i) For |ytk
| large enough, by (7) we have

1
2
|ytk

| ≤ |ytk
| − |wtk

| ≤ |ytk
− wtk

|
= |εtk−1||f(ytk−1)|. (20)

Moreover, since tk−1 ≤ tk−1 < tk, by (18) and Remark
3.1 we know that βtk−1 = βt(k−1) for all k ≥ 0, which
implies that εtk−1 = εt(k−1) . Hence (20) gives

|ytk
| ≤ 2|εtk−1||f(ytk−1)| ≤ 2|εtk−1 ||f(ytk−1)| (21)

≤ 2c2|εtk−1 ||ytk−1 |b.

(ii) By (21), we have

1
2
|ytk−1 | ≤ |εtk−2 ||f(ytk−2)| ≤ |ytk−2+1|+ w,

which gives (ii) for sufficiently large |ytk−1 |.

(iii) In fact, we need only to show for any k ≥ 0,

εt2k
+

wt2k+1

f(yt2k
)

> 0; (22)

εt2k+1 +
wt2k+1+1

f(yt2k+1)
< 0. (23)

We will prove it by induction. First we consider the cases
where t = t0 = 0 and t = t1 respectively.

For t = 0, by (18) and the definition of εt, we have

εt0 = θ2(ϑ1 − βt0) ≥ θ2ϑ1. (24)

Then, for |yt0 | large enough, the above inequality gives

εt0 +
wt0+1

f(yt0)
≥ θ2ϑ1 −

w

|f(yt0)|
> 0.

For the case of t = t1, it can be proven similarly that
(23) holds.

Now, suppose (22) and (23) hold for some k ≥ 0. For
t = t2(k+1), since it = t2k+1 and jt = t2k, by assumption,
we have (13) holds. Hence from Lemma 3.1, |ϑ̃1,t2(k+1) | ≤
∆t2(k+1) . Consequently,

εt2(k+1) = θ2(ϑ1 − βt2(k+1))

= θ2(ϑ1 − ϑ̂1,t2(k+1) + 2∆t2(k+1))

= θ2(ϑ̃1,t2(k+1) + 2∆t2(k+1))
≥ θ2∆t2(k+1) .

As a result, we have

εt2(k+1) +
wt2(k+1)+1

f(yt2(k+1))
≥ θ2∆t2(k+1) −

w

|f(yt2(k+1))|

≥w
|yt2k+1+1|+ |yt2k+1|
|f(yt2k+1)yt2k+1| − w

|f(yt2(k+1))|
≥ w

|f(yt2k+1)|
− w

|f(yt2(k+1))|
> 0.

The claim (23) also holds for t = t2k+3 by a similar
reasoning as that for t = t2(k+1).

Hence, by induction we know that (iii) is true.

(iv) At time t = tk, it is easy to see that it = tk−1 and
jt = tk−2. Then by (ii) and (iii) ,

∆tk
= ϑ2w

|yit+1|+ |yjt+1|
|f(yit

)yjt+1|
= ϑ2w

|ytk−1+1|+ |ytk−2+1|
|f(ytk−1)ytk−2+1|

= O

(∣∣∣∣∣
ytk

yb+1
tk−1

∣∣∣∣∣

)
.

Hence, by Lemma 3.1, we have for k ≥ 2

|εtk
|= θ2|ϑ1 − βt| = θ2|ϑ1 − ϑ̂1,tk

± 2∆tk
|

≤ θ2(|θ̃1,tk
|+ 2∆tk

) ≤ 3θ2∆tk

= O

(∣∣∣∣∣
ytk

yb+1
tk−1

∣∣∣∣∣

)
.

This completes the proof. ¥

The sufficiency proof of Theorem 2.1. We use a
contradiction argument to prove that supt≥0 |yt| < ∞.
Suppose there exist some y0 ∈ R1, some {θ1, θ2} and
some sequence of {wt}, such that for the control defined
in (19), supt≥0 |yt| = ∞. Then for the subscript sequence
{tk} defined in (17), we have k →∞.
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Also note that, by Proposition 3.1 (i) and (iv), the sys-
tem (2) at time tk+1 satisfies

|ytk+1 | ≤ 2c2|εtk
||ytk

|b = O

(∣∣∣ ytk

ytk−1

∣∣∣
b+1

)
. (25)

To apply Lemma 3.5 in [19], we take ak = log |ytk
|, then

the outputs will be bounded when b + 1 < 4, which
contradicts to our assumption. Hence, the sufficiency is
proved. ¥

4 The Proof of Necessity

We introduce a stochastic imbedding approach to the
proof of necessity. Let (Ω,F , P ) be a probability space,
and let θ ∈ R2 be a random vector and {wt}∞t=1 be a
stochastic process on this probability space respectively.
(In fact, θ and {wt}∞t=1 are different from those defined
in the assumptions A1) - A2), we use the same notation
just for convenience.) We consider the stochastic system
in the form (2).

Assume that θ has a spherical p.d.f. p(θ), which satisfies

p(θ) =





c(2−1R2 − ‖θ̃c‖2) if 0 ≤ ‖θ̃c‖ ≤ R/2;

c(R− ‖θ̃c‖)2 if R/2 ≤ ‖θ̃c‖ ≤ R;

0 otherwise

(26)

where θ̃c = θ−θc with θc =
(

θ1 + θ1

2
,
θ2 + θ2

2

)T

being

the center of the uncertain domain, and

R = min
{

θ1 − θ1

2
,
θ2 − θ2

2

}
,

and where c is some constant to make
∫

‖θ̃c‖≤R

p(θ)dθ = 1.

Also, let us take {wt} to be an independent sequence
which is independent of θ with wt having a Gaussian

p.d.f. qt(z) defined by N

(
0,

1
t2

)
:

qt(z) =
t√
2π

exp
(
−z2t2

2

)
, (27)

Obviously, {wt} satisfies A1) almost surely for large
enough t, since by (27)

lim
t→∞

wt = 0, a.s.

Remark 4.1 We need to note that {θ : ‖θ̃c‖ ≤ R} ⊂
[θ1, θ1]× [θ2, θ2] by (26) and the definition of R, see Fig
1. The distribution of the noise in (27) also shows that
|wt| ≤ w for all large enough t ≥ 1.

r
&%

'$

(θ1, θ2) (θ1, θ2)

(θ1, θ2) (θ1, θ2)

θc R

Fig.1. The area of θ

We will first show that in the above stochastic frame-
work, if b ≥ 3, then for any feedback control ut ∈ Fy

t ,
σ{yi, 0 ≤ i ≤ t}, there always exists an initial condition
y0 and a set D with positive probability such that the
output signal yt of the closed-loop control system tends
to infinity at a rate faster than exponential on D. Then
in the last part of this subsection, we will find a point in
D which corresponds to some values of θ and {wt}∞t=1,
and we will see that these deterministic values are suffi-
cient for the proof of necessity of Theorem 2.1. Thus by
imbedding a random distribution, we are able to solve
the problem in the original deterministic framework.

To prove the above fact, we first give a lemma which
can be obtained by a little modification of the proof of
[18, Theorem 3.2.2-Theorem 3.2.6 and Remark 3.2.3].
We will give the proof in Appendix A.

Lemma 4.1 Consider the following dynamical system:

yk+1 = θτφk + wk+1, k = 0, 1, · · · ,

where φk , (f(yk), uk)τ , y0 > x′ is deterministic and
yi = 0, ∀i < 0; the unknown parameter vector θ with
p.d.f. p(θ) defined in (26) is independent of {wk} which
is an independent random sequence with distribution de-
fined in (27). Then for t = 1, 2, · · · ,

E[(θ − θ̂t)(θ − θ̂t)τ |Fy
t ] ≥

{
t2

t−1∑

k=0

φkφτ
k + KI

}−1

,

where θ̂t , E{θ|Fy
t }, t = 1, 2, · · · ; and K > 0 is some

constant; I denotes the identity matrix. Furthermore,
there exists some D ⊂ Ω with P (D) > 0 such that on D
for t = 0, 1, · · · ,

E[y2
t+1|Fy

t ] ≤ (K1(t + 1)4 + 4)(y2
t+1 + K2) + 1,

where K1,K2 > 0 are some constants.

In the following lemma, we will estimate the determi-
nants of two matrices which will appear in the proof
of the next proposition. It is easy to see that the two
are modifications of the information matrices in Least
Square-algorithm.
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Lemma 4.2 Assume that for some λ > 1 and t ≥ 1,
|yi| ≥ |yi−1|λ, i = 1, 2, · · · , t, and that the initial condi-
tion y0 ≥ max{1, x′} is sufficiently large, then the deter-
minants of the matrices

P−1
t+1 , KI + (t + 1)2

t∑

i=0

φiφ
τ
i (28)

Q−1
t+1 , P−1

t + φtφ
τ
t (29)

satisfy

|P−1
t+1| ≤ M(t + 1)4 max

{
|yt|2(b+1), |yb

t−1yt+1|2
}

;

|Q−1
t+1| ≥ ϑ2

2 · (|f(yt)yt − f(yt−1)yt+1| − 2w|f(yt)|)2 ,

where K > 0 is defined in Lemma 4.1 and M > 1 is a
random variable.

Proof. See Appendix B.

Remark 4.2 If |f(yt−1)yt+1| <
1
2
|f(yt)yt|, then we

have for large enough |y0|,

|Q−1
t+1| ≥ ϑ2

2 ·
(

1
2
|f(yt)yt| − 2w|f(yt)|

)2

≥ ϑ2
2 ·

(c1

2
|yb+1

t | − 2wc2|yt|b
)2

≥ ϑ2
2c

2
1

8
|yt|2(b+1).

On the other hand, if |f(yt−1)yt+1| ≥ 1
2
|f(yt)yt|, then we

have c2|yb
t−1yt+1| ≥ c1

2
|yb+1

t |. Moreover, if λ =
b + 1

2
,

we have for large |y0| and b ≥ 3,

|yt+1| ≥ c1

2c2

|yb+1
t |

|yb
t−1|

≥ c1

2c2
|yt|b+1− 2b

b+1

≥ µ|yt|b−1 ≥ µ|yt|
b+1
2 ,

where µ is some constant we defined latter in the proof
of Proposition 4.1.

Remark 4.3 It is very easy to check that the upper
bound of |Pt+1| still holds for t = −1, where yi , 1 for
i < 0.

Proposition 4.1 Assume that the conditions of Lemma
4.1 hold. Then for any ut ∈ Fy

t , there always exists a y0

and a set D ⊂ Ω with positive probability such that the
output signal |yt| ↗ ∞ on D whenever b ≥ 3.

Proof. It is easy to see that E[wt+1|Fy
t ] = Ewt+1 = 0

by (27). By (2) we know that

yt+1 = φτ
t θ̃t + φτ

t θ̂t + wt+1, (30)

where θ̃t , θt− θ̂t. Consequently, by the fact E[θ̃t|Fy
t ] =

0 and E[wt+1|Fy
t ] = 0 it follows that for any ut ∈ Fy

t ,

E[y2
t+1|Fy

t ] = φτ
t E[θ̃tθ̃

τ
t |Fy

t ]φt + (φτ
t θ̂t)2 + E[w2

t+1|Fy
t ]

≥ φτ
t E[θ̃tθ̃

τ
t |Fy

t ]φt + E[w2
t+1|Fy

t ]. (31)

By Lemma 4.1, we have on D,

E[y2
t+1|Fy

t ]≥ φτ
t

{
t2

t−1∑

k=0

φkφτ
k + KI

}−1

φt

= (φτ
t Ptφt + 1)− 1

=
|P−1

t + φtφ
τ
t |

|P−1
t | − 1 (32)

=
|Q−1

t+1|
|P−1

t | − 1, t ≥ 1, (33)

where Pt, Qt are defined by (28) and (29).

Hence by Lemma 4.1 again, we have for t ≥ 0,

y2
t+1 ≥

1
K1(t + 1)4 + 4

·
[
|Q−1

t+1|
|P−1

t | −K2(K1(t + 1)4 + 4)− 2

]
on D. (34)

Now, we proceed to show that on D for sufficiently large
|y0|,

|yt| ≥ µ|yt−1|
b+1
2 , t = 1, 2, · · · , (35)

where µ is some constant we defined latter.

We adopt the induction argument. First, we consider the
initial case. Since

E[(θ − θ̂0)(θ − θ̂0)τ |Fy
0 ] = E[(θ − θ̂0)(θ − θ̂0)τ ] ≥ σ2

θI,

where σ2
θ is some constant. We have by (31) that

E[y2
1 |Fy

0 ] ≥ σ2
θ‖φ0‖2. Then by (34)

y2
1 ≥

1
K1 + 4

(σ2
θ‖φ0‖2 − 2)−K2

≥ σ2
θ

4 + K1
y2b
0 − 1

2(4 + K1)
−K2 on D.

Hence (35) holds for t = 1 when |y0| is large enough.

Now, let us assume that for some t ≥ 1,

|yi| ≥ µ|yi−1|
b+1
2 , i = 1, 2, · · · , t, on D, (36)
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then by Lemma 4.2 and Remark 4.3, it follows that for
t ≥ 1

|P−1
t | ≤ Mt4 max

{|yb+1
t−1 |2, |yb

t−2yt|2
}

;

|Q−1
t+1| ≥ ϑ2

2 · (|f(yt)yt − f(yt−1)yt+1| − 2w|f(yt)|)2 ,

where yt , 1 for any t < 0. By Remark 4.2, we only need
to consider the case where

|Q−1
t+1| ≥

ϑ2
2c

2
1

8
|yt|2(b+1).

Consequently, by (34) we have

y2
t+1 ≥

|Q−1
t+1|

|P−1
t | − (K1(t + 1)4 + 4)K2 − 2

K1(t + 1)4 + 4

≥ 1
K1(t + 1)4 + 4


 ϑ2

2c
2
1

8Mt4
y
2(b+1)
t

max
{

y
2(b+1)
t−1 , y2b

t−2y
2
t

}

−(K1(t + 1)4 + 4)K2 − 2
]
.

Note that by (36), for large enough |y0|, the above in-
equality satisfies

y2
t+1 ≥ (37)

ϑ2
2c

2
1

16Mt4(K1(t + 1)4 + 4)
· y

2(b+1)
t

max
{

y
2(b+1)
t−1 , y2b

t−2y
2
t

} .

Denote

xt =





√
16Mt4(K1t

4 + 4)
ϑ2

2c
2
1

yt, t ≥ 1

y0, t = 0

1, t < 0

,

then the inequality (37) can be rewritten as

x2
t+1 ≥∣∣∣∣
max{1, (t− 1)4(K1(t− 1)4 + 4)}

t4(K1t4 + 4)

∣∣∣∣
b+1 (

xt

xt−1

)2(b+1)

or

x2
t+1 ≥

∣∣∣∣
max{1, (t− 2)4(K1(t− 2)4 + 4)}

t4(K1t4 + 4)

∣∣∣∣
b (

xt

xt−2

)2b

Since the coefficient of the R.H.S of the above two in-
equalities tends to 1 as t → ∞, it is easy to see that

there exists some constant ν > 0 such that

|xt+1| ≥ ν

∣∣∣∣
xt

xt−1

∣∣∣∣
b+1

or |xt+1| ≥ ν

∣∣∣∣
xt

xt−2

∣∣∣∣
b

Hence let at = log
|xt|
ν

, we have

at+1 ≥ (b+1)(at−at−1) or at+1 ≥ b(at−at−2).

Now, notice that when b ≥ 3, we have λ2 − (b + 1)λ +

(b + 1) ≤ 0 for λ =
b + 1

2
∈ (1, b + 1), and then

λ3 − bλ2 + b < 0.

Let P (x) = x2−(b+1)x+(b+1) or P (x) = x3−bx2+b,

then P (x) ≤ 0 for x =
b + 1

2
. By [9, Lemma 3.3] and

(36), we get at+1 ≥ λat for some λ ≥ 1, which implies

|xt+1| ≥
∣∣∣xt

ν

∣∣∣
λ

.

Consequently, by the definition of xt,

|yt+1| ≥ 1
νλ

∣∣∣∣
16M

ϑ2
2c

2
1

∣∣∣∣
λ−1 (K1t

8 + 4t4)λ

(t + 1)4(K1(t + 1)4 + 4)
|yt|λ.

Note t + 1 ≤ 2t for t ≥ 1, we have

|yt+1| ≥ 1
28νλ

∣∣∣∣
16M(K1t

8 + 4t4)
ϑ2

2c
2
1

∣∣∣∣
λ−1

|yt|λ

≥ 1
28νλ

∣∣∣∣
16M(K1 + 4)

ϑ2
2c

2
1

∣∣∣∣
λ−1

|yt|λ.

So, |yt+1| ≥ µ|yt|λ holds if we let

µ =
1

28νλ

∣∣∣∣
16M(K1 + 4)

ϑ2
2c

2
1

∣∣∣∣
λ−1

.

By induction, we know that (35) is true. Thus, for large
enough |y0|, the output sequence {yt} diverges to infinity
exponentially fast, and so we have supt≥0 |yt| = ∞. ¥

The proof of the necessity of Theorem 2.1. In
the stochastic framework, note that any controller
ut = ht(y0, · · · , yt) is measurable to Fy

t . By Proposi-
tion 4.1, for any given control law {ut}, there at least
exists a sample point ω∗ ∈ D ⊂ Ω with θ(ω∗) = θ∗
and wt(ω∗) = w∗t for any t ≥ 1 such that for some y∗0 ,
the absolute values of the output |yt(ω∗)| = |y∗t | ↗ ∞.
Since there exists some t∗ ≥ 1 such that |w∗t | ≤ w for
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all large t ≥ t∗, without loss of generality, we suppose
|w∗t | ≤ w for all t. Otherwise, we can take y0 = yt∗ , and
start with the time t∗.

That is, for any given Lebesgue function h(·), there exist
some θ∗ and {w∗t } satisfying assumptions A1)-A2) and
a y∗0 such that the absolute values of the outputs

y∗t+1 = θ∗1y∗t
b + θ∗2ht(y∗0 , · · · , y∗t ) + w∗t+1

monotonously increase to infinity, which gives the neces-
sity conclusion of Theorem 2.1. ¥

5 Conclusion

We have found and established a new critical theorem
for global stabilization of a basic class of discrete-time
nonlinear systems, with unknown parameters in both
the system channel and control channel. This furthered
our understanding of the maximum capability of feed-
back in dealing with uncertainties, especially for the case
where the control channel contains uncertain parame-
ters. For further investigation it would be interesting to
get similar results for nonparametric systems and for
continuous-time systems with sampled-data control. It
would also be interesting to consider more general model
classes with an unified treatment.
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A The Proof of Lemma 4.1

To prove Lemma 4.1, we need several lemmas as given
below. The first lemma below is a standard conditional
Cramer-Rao inequality (see, e.g. [18], [21]).

Lemma A.1 Let x be random vector, and let θ be a
parameter vector with p.d.f. p(θ) defined in (26). Then
for any measurable vector function g(x, θ) having partial
derivatives of first order w.r.t. θ, and let Exg(x, θ) and

Ex
∂g(x, θ)

∂θ
exist, where Exy , E(y|x) for any random
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variable y. Then we have

Ex[g(x, θ)− Exg(x, θ)][g(x, θ)− Exg(x, θ)]τ

≥Ex
∂g(x, θ)

∂θ

{
Ex

[
∂ log p(x, θ)

∂θ
· ∂τ log p(x, θ)

∂θ

]}−1

Eτ
x

∂g(x, θ)
∂θ

.

Applying this lemma to the dynamical system defined
by (2), we can further get the following result.

Lemma A.2 Let θ be a parameter vector with p.d.f. p(θ)
defined in (26), and be independent of {wk}, which is an
independent random sequence with p.d.f. qt(z) defined in
(27). Then, for t ≥ 1

Ex(θ − θ̂t)(θ − θ̂t)τ ≥ E−1
x Ft(θ), (A.1)

where x , {y1, · · · , yt} and

Ft(θ) , −
t∑

k=1

∂2 log qk(yk − fk−1)
∂θ2

+ KI,

where K > 0 is some random variable, and fk−1 ,
θτφk−1, φk−1 = (f(yk−1), uk−1) defined in Lemma (4.1).

Proof. Directly applying Lemma A.1, we have

Ex(θ − θ̂t)(θ − θ̂t)τ

≥
{

Ex

[
∂ log p(x, θ)

∂θ
· ∂τ log p(x, θ)

∂θ

]}−1

=−
{

Ex

[
∂2 log p(x, θ)

∂θ2

]}−1

,

where the equality follows from [18]. Hence,

Ex(θ − θ̂t)(θ − θ̂t)τ

≥−
{

Ex

[
∂2[log p(x|θ) + log p(θ)]

∂θ2

]}−1

. (A.2)

Note that by the Bayes rule and the dynamical equation
(2), we have

p(x|θ) = p(y1, y2, · · · , yt|θ)
= p(y1|θ, y0)p(y2|θ, y0, y1) · · · p(yt|θ, y0, · · · , yt−1)
= q1(y1 − f0) · q2(y2 − f1) · · · qt(yt − ft−1).

Consequently, we have

∂2 log p(x|θ)
∂θ2

=
t∑

k=1

∂2 log qk(yk − fk−1)
∂θ2

.

So, comparing with (A.2), we only need to prove that

−Ex
∂2 log p(θ)

∂θ2
≤ KI, a.s. (A.3)

where K > 0 is some random variable.

First, it can be shown that
∂2p(θ)
∂θ2

and

1
p(θ)

(
∂p(θ)
∂θ

)(
∂p(θ)
∂θ

)τ

are bounded, then with some simple manipulations we
have

−∂2 log p(θ)
∂θ2

=
1

p2(θ)

(
∂p(θ)
∂θ

)(
∂p(θ)
∂θ

)τ

− 1
p(θ)

∂2p(θ)
∂θ2

≤ C

p(θ)
I,

where C > 0 is some constant. Then

−Ex
∂2 log p(θ)

∂θ2
≤ CI · Ex

1
p(θ)

. (A.4)

Note that E[X|Ft] is a.s. bounded for any integrable

random variable X by [22, p.245], we have Ex
1

p(θ)
a.s.

bounded since E
1

p(θ)
= 1, which gives (A.3). ¥

Lemma A.3 Under the conditions of Lemma A.2, we
have

Ft(θ) ≤ t2
t−1∑

k=0

φkφτ
k + KI

where Ft(θ) is defined in Lemma A.2 and K > 0 is some
constant.

Proof. Since qk(yk − fk−1) =
k√
2π

exp{−k2

2
(yk −

fk−1)2}, k = 1, 2, · · · , t we have

∂2 log qk(yk − fk−1)
∂θ2

=
∂

∂θ2
{−k2

2
(yk − fk−1)2}

=−k2φk−1φ
τ
k−1,

which gives the lemma by the definition of Ft(θ). ¥

By Lemmas A.2- A.3, we get the following proposition
immediately.

10



Proposition A.1 Under the conditions of Lemma A.2,
for the dynamical equation (2) with arbitrarily determin-
istic initial value y0, we have

E[(θ − θ̂t)(θ − θ̂t)τ |Fy
t ] ≥

{
t2

t−1∑

k=0

φkφτ
k + KI

}−1

,(A.5)

where x , {y1, · · · , yt}.

The proof of Lemma 4.1. By Proposition A.1, we only
need to prove the second conclusion of Lemma 4.1.

First, note that all the stochastic calculates in this pa-
per hold almost surely. Denote Θ0 as the corresponding
domain of random variable θ on this probability 1 sam-
pling set. Define

∆t ,
{

θ ∈ Θ : |θτφt| < δ

(t + 1)2
‖φt‖

}
,

0 < δ <
1

2SP
∑∞

t=0

1
(t + 1)2

, t ≥ 0,

where P , sup
θ∈Θ

p(θ) =
cR2

4
, and S , supL∈L Vp−1(L ∩

Θ) with L denotint the set of all (p − 1)-dimensional
hyperplane and Vp−1(·) denoting the Lebesgue measure
on Rp−1. Since Θ is bounded, we have S < ∞.

Recursively define Θt+1 , Θt −∆t, t = 0, 1, · · · , where
Θ0 ⊂ Θ is defined above. Let Θ∞ , limt→∞Θt, D ,
{ω : θ ∈ Θ∞}.

Now, by almost the same proof of [18], we know that

P ({ω : θ ∈ ∆t}) ≤ PS
2δ

(t + 1)2
. So,

P ({ω : θ ∈
∞⋃

t=0

∆t})≤
∞∑

t=0

P ({ω : θ ∈ ∆t})

≤ PS
∞∑

t=0

2δ

(t + 1)2
< 1,

which implies

P (D) ≥ 1− P ({ω : θ ∈
∞⋃

t=0

∆t}) > 0.

Now, let ω∗ ∈ D be any fixed point, and let θt

be a random variable sequence such that |θτ
t φt| =

maxθ∈Θ |θτφt|. Then by the definitions of D and ∆t, we

have

[θτ
t φt − θτ (ω∗)φt]2 ≤ ‖θt − θ(ω∗)‖2‖φt‖2

≤ (2R)2(t + 1)4

δ2
|θτ (ω∗)φt|2, (A.6)

where R is defined in (26). Consequently, by noting that
w2

t ≤ K2, a.s. for some random constant K2 > 0, and
the fact maxθ∈Θ(θτφt)2 is measurable Fy

t , we have for
any ω∗ ∈ D,

Exy2
t+1 = Ex(θτφt)2 + Ew2

t+1

≤max
θ∈Θ

(θτφt)2 + 1

≤ 2(θτ (ω∗)φt)2 + 2[θτ
t φt − θτ (ω∗)φt]2 + 1

≤
(

2 +
4R2(t + 1)4

δ2

)
(θτ (ω∗)φt)2 + 1.

Hence,

[Exy2
t+1](ω

∗)

≤
(

2 +
4R2(t + 1)4

δ2

)
(θτφt)2(ω∗) + 1

=
(

2 +
4R2(t + 1)4

δ2

)
[yt+1(ω∗)− wt+1(ω∗)]2 + 1

=
(

4 +
8R2(t + 1)4

δ2

)
(y2

t+1(ω
∗) + K2) + 1

≤ (
4 + K1(t + 1)4

)
(y2

t+1(ω
∗) + K2) + 1,

where K1 =
8R2

δ2
is a constant. Hence the proof is com-

pleted. ¥

B The Proof of Lemma 4.2

It is not hard to find that the determinate of matrices
P−1

t+1 and Q−1
t+1 are determined by the largest three ele-

ments yt−1, yt, yt+1 from the proof bellow.

The proof of Lemma 4.2. By (29) and the assumption
|yt| ≥ |yt−1|λ, we have

|Q−1
t+1|

= |KI + t2
t−1∑

i=0

φiφ
τ
i + φtφ

τ
t | ≥ |φtφ

τ
t + φt−1φ

τ
t−1|

= |f(yt)ut−1 − f(yt−1)ut|2 (B.1)
= ϑ2

2|f(yt)(wt − yt)− f(yt−1)(wt+1 − yt+1)|2 (B.2)
≥ ϑ2

2 · (|f(yt)yt − f(yt−1)yt+1| − 2w|f(yt)|)2 ,

where the last equality follows from (14) in the proof of
sufficiency.
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Now, we estimate |P−1
t+1|. Let

Ii,j = [f(yi)uj − f(yj)ui]2,

then it can be calculated that

|P−1
t+1|

= |KI + (t + 1)2
t∑

i=0

φiφ
T
i |

=

∣∣∣∣∣
K + (t + 1)2

∑t
i=0 f2(yi) (t + 1)2

∑t
i=0 f(yi)ui

(t + 1)2
∑t

i=0 f(yi)ui K + (t + 1)2
∑t

i=0 u2
i

∣∣∣∣∣

=

(
K + (t + 1)2

t∑

i=0

f2(yi)

)(
K + (t + 1)2

t∑

i=0

u2
i

)
−

(t + 1)4
(

t∑

i=0

f(yi)ui

)2

= (t + 1)4
∑

0≤i<j≤t

Ii,j +

K(t + 1)2
(

t∑

i=0

f2(yi) +
t∑

i=0

u2
i

)
+ K2. (B.3)

First, notice that similar to (B.1)-(B.2),

Ii,j = O(y2b
j y2

i+1 + y2b
i y2

j+1). (B.4)

Hence, we have

∑

0≤i<j≤t−1

Ii,j = O


 ∑

0≤i<j≤t−1

(y2b
j y2

i+1 + y2b
i y2

j+1)




= O

(
t(t− 1)

2
· (y2(b+1)

t−1 + y2b
t−2y

2
t )

)

= o
(
y
2(b+1)
t + y2b

t−1y
2
t+1

)
(B.5)

Moreover, by the system (2),

u2
i =

(
(yi+1 − wi+1)− θ1f(yi)

θ2

)2

= O(y2
i+1 + y2b

i ),

then by the assumption of the lemma, we have
(

t∑

i=0

f2(yi) +
t∑

i=0

u2
i

)
= O

(
t∑

i=0

(y2
i+1 + y2b

i )

)

= O
(
y2

t+1 + y2b
t

)

= o
(
y
2(b+1)
t + y2b

t−1y
2
t+1

)
. (B.6)

Moreover, apparently,

K2 = o
(
y
2(b+1)
t + y2b

t−1y
2
t+1

)
. (B.7)

Substituting (B.5)-(B.7) into (B.3), we have for some
random variable M > 0,

|P−1
t+1|= O

(
(t + 1)4(y2(b+1)

t + y2b
t−1y

2
t+1)

)

≤M(t + 1)4 max
{

y
2(b+1)
t , y2b

t−1y
2
t+1

}

Hence, the proof is completed. ¥
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