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Abstract

The main purpose of this paper is to understand and characterize the maximum capability of the feedback mechanism for a
basic class of scalar discrete-time semiparametric minimum-phase control systems, where both parametric and nonparametric
uncertainties are included. We will demonstrate that the necessary and sufficient condition to stabilize the class of systems is
L < 3

2
+
√
2, where L is the Lipschitz constant describing the “size” of the uncertainty of the nonparametric part. This critical

value is the same as that first obtained in [11] for a class of purely nonparametric systems, which shows that the capability of
feedback is not influenced by the parameterized uncertainty in the systems, as long as the corresponding parametric nonlinear
function has a linear growth rate. While the necessity proof is directly obtainable from [11], the main task of of this paper is
to prove the sufficiency part.
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1 Introduction

The understanding and characterization of the capabil-
ity of feedback in dealing with system uncertainties has
been a central issue in control theory. Adaptive control
and robust control have been two typical design meth-
ods (cf.e.g., [1]-[6]), either has its own advantages and
disadvantages. However, for the purpose of understand-
ing the maximum capability of feedback, the adaptive
control design seems to be more relevant, since there is
usually a learning mechanism embedded in the adaptive
feedback loop, and thus adaptive control is expected to
be able to deal with larger class of uncertainties than
those can be dealt with by robust control.

The adaptive control of linear systems has been un-
derstood fairly well (cf.e.g., [1]-[3]), and some advances
for continuous-time nonlinear systems are also avail-
able (cf.[4]). But for adaptive control of discrete-time
or sampled-data nonlinear systems, essential difficulties
will emerge when the growth rate of the nonlinear func-
tion involved is faster than linear. Indeed, it has been
shown in a series of works (cf.e.g., [7]-[9]) that in this
case, there are fundamental limitations to the capability
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of feedback, unless the parametric nonlinearities has a
linear growth rate (cf.[10]) or the sampling rate is fast e-
nough (cf.e.g., [16],[17]). Furthermore, if the uncertainty
is characterized by a nonparametric function, feedback
still has certain limitations in dealing with this kind of
uncertainties, even if the nonparametric function has a
linear growth rate [11].

If fact, consider the following basic nonparametric con-
trol system as studied in Xie and Guo [11]:

yt+1 = f(yt) + ut + wt+1, t ≥ 0, (1)

where the nonlinear function f(·) is assumed to be un-
known. To measure the system uncertainty induced by
the unknown function f(·) quantitatively, they intro-
duced a semi-norm ∥ · ∥ (called the generalized Lipschitz
norm) in the space of all nonlinear functions F . For any
L > 0, define

F ′(L) , {f ∈ F : ∥f∥ ≤ L}. (2)

Then, Xie and Guo [11] found and showed that the
necessary and sufficient condition for the existence of
a stabilizing feedback control for system (1) with any

f ∈ F ′(L), is L < 3
2 +

√
2, a number which is beyond

one’s intuition. This means that L = 3
2 +

√
2 is the crit-

ical value in characterizing the largest “size” of uncer-
tainty for the system to be stabilized by feedback.
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Later on, [12] studied the stabilization of a class of non-
linearly parameterized uncertain systems:

yt+1 = ayt + f(yt) + ut + wt+1, t ≥ 0.

This model contains an additional unknown parameter
a besides the nonparametric uncertainty considered in
[11]. The author of [12] used the method of recurrent
objective inequalities to estimate the uncertainty, and
showed that L < 3

2 +
√
2 is again a sufficient condition

for the system to be stabilized.

In the current paper, we will study uncertain system-
s based on and far beyond those considered previous-
ly in [11], [12] and [13], where [13] studied the adap-
tive stabilization of a class of nonlinearly parameter-
ized systems. To be precise, we will study a basic class
of scalar minimum-phase semiparametric systems which
contain both nonparametric and parametric parts. As
is well known in statistics, semiparametric models en-
joy some flexibility in modeling practical nonlinear sys-
tems (cf.[14]). It turns out that the critical value for the

feedback capability in this case is still L = 3
2 +

√
2, re-

gardless of the increased uncertainties in the parametric
part. Perhaps, the most striking point is that uncertain
parameters in the input channel do not change the ca-
pability of feedback in the present case, because in the
purely parametric case with nonlinear growing function,
the uncertain parameter in the input channel does in-
deed degrade the capability of feedback (cf.e.g., [7], [8]).
Related results but for a much simplified model were re-
cently presented in [15]. While the necessity proof is di-
rectly obtainable from [11], the main task of the current
paper is to prove the sufficiency part.

In the rest of the paper, we will present the main results
in Section 2, and give their proofs in Section 3. Finally,
Section 4 will conclude the paper with some remarks.

2 Main results

Consider the following scalar discrete-time semipara-
metric control model:

yt+1 = f(yt) + g(θ, ϕt, ut) + wt+1, t ≥ 0, (3)

where {yt}, {ut} and {wt} are the system output,
input and disturbance sequences, respectively, θ ∈
Rm is an unknown parameter vector, and ϕt =
(yt, · · · yt−p+1, ut−1, · · ·ut−q+1) is the regression vector
with p ≥ 1, q ≥ 2, and f(·), g(·) are nonlinear functions.
We make the following assumptions:

A1)The unknown parameter vector θ = (β1, β2, · · · , βm)
belongs to a bounded rectangle in Rm, denoted by
Θ = {θ : |βi| ≤ K, 1 ≤ i ≤ m}, where K > 0 is a known
constant.

A2) The nonlinear function f(·) : R1 −→ R1 is un-
known a priori, but belongs to a class of generalized Lip-
schitz functions denoted by F (L) , {f(·) : |f(x1) −
f(x2)| ≤ L|x1 − x2|+ γ, L > 0, γ > 0, ∀ x1, x2 ∈ R1}.

A3) The nonlinear function g(·) : Rm+p+q → R1 is
known and differentiable with respect to each argument,
which satisfies for any θ ∈ Rm, ϕt ∈ Rp+q−1, ut ∈ R1:

1) ∥∂g(θ,ϕt,ut)
∂θ ∥ ≤ M(∥ϕt∥+ |ut|), ∀t ≥ 0, where M > 0

is a known constant and ∥ · ∥ is the Euclidean norm;

2) ∥∂g(θ,ϕt,ut)
∂ϕt

∥ ≤ M, ∀t ≥ 0;

3) |∂g(θ,ϕt,ut)
∂ut

| ≥ b,∀t ≥ 0, where b is a positive number.

A4) The unknown disturbance sequence {wt} has a
known upper bound w, i.e.,

|wt| ≤ w, ∀ t ≥ 0.

A5) (Minimum-phase condition). There are constants
c1 > 0, c2 > 0 and λ ∈ (0, 1) such that the input se-
quence is bounded by the output and disturbance se-
quences in the sense that,

u2
t−1 ≤ c21

t∑
i=−p+1

λ2(t−i)(y2i + w2
i ) + c22, ∀t ≥ 1. (4)

Remark 2.1 Assumption A1) requires that the un-
known parameter vector θ lies in a compact set; Assump-
tion A2) is the generalized Lipschitz condition first in-
troduced in [11]. Assumption A3) can be regarded as
certain linear growth condition on the nonlinear func-
tion g(·). This condition is necessary in a certain sense
because there is an unknown nonparametric nonlinear
function in the system, and there are no constraints on
the values of p and q (cf.[10]); The minimum-phase con-
dition in Assumption A5) is also a basic requiremen-
t even in the case where the parametric part is linear:
yt+1 = f(yt) + a1yt + · · · + apyt−p+1 + b1ut + · · · +
bqut−q+1 +wt+1, for which Condition A5) is equivalent
to the standard minimum-phase condition meaning that
all the roots of the polynomial b1+b2z+ · · ·+bqz

q−1 = 0
lie outside of the unit circle.

To investigate the capability and limitations of feedback,
we need the following precise definition of feedback [11].

Definition 2.1 A sequence {ut} is called a feedback con-
trol law if at any time t ≥ 0, ut is a (causal) function of
all the observations up to the time t: {yi, i ≤ t}, i.e.,

ut = ht(y−p+1, · · · , yt), (5)

where ht(·) : Rt+p → R1 can be any Lebesgue measurable
(nonlinear and/or time-varying) mapping.
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Then we have the following main result of the paper:

Theorem 2.1 The necessary and sufficient con-
dition to stabilize the uncertain system (3) with any

(f, θ) ∈ {F (L),Θ} is L < 3
2 +

√
2. To be precise, we

have the following.

1) If L < 3
2 +

√
2, then there exists a feedback control

law {ut} such that for any (f, θ) ∈ {F (L),Θ}, the corre-
sponding closed-loop control system (3) is globally stable
in the sense that

sup
t≥0

(|yt|+ |ut|) < ∞, ∀ϕ0 ∈ Rp+q−1. (6)

2) If L ≥ 3
2 +

√
2, then for any feedback control (5),

there always exists some (f, θ) ∈ {F (L),Θ} such that
the corresponding closed-loop system (3) is unstable, i.e.,

sup
t≥0

|yt| = ∞. (7)

Remark 2.2 This result shows that the critical value
on the measure of uncertainty for the system (3) to be

stabilized is still 3
2 +

√
2, the same as that first found

for a purely nonparametric model in [11], i.e., for the
special case where g(·) ≡ ut in (3). This is somewhat
unexpected, because in the purely parametric case, an
additional unknown parameter in the input channel will
be bound to reduce the critical value b (which represents
the growth rate of the nonlinear function) for feedback
stabilization from b = 4 to b = 3 (cf.e.g., [7], [8]).

3 Proofs of the main theorem

Before proving the theorem, we present some lemmas
and notations extending those in [11] which will be used
in our analyses.

Lemma 3.1 Let L ∈ (0, 3
2+

√
2), d ≥ 0 be two constants

and ϵ be a small positive number satisfying ϵ < 1
2 , L+ϵ <

3
2 +

√
2− 4ϵ. If a sequence {an, n ≥ 0} satisfies

an+1 ≤ L(an − an−1) + (
1

2
+ ϵ)an + d, n ≥ 1, (8)

with a0 = 0 and a1 = 1, then there exists some d0 > 0
such that whenever d ∈ [0, d0], there exists some N ≥ 1
such that

an ≥ an−1, 1 ≤ n ≤ N and aN+1 < aN . (9)

Proof : Suppose that

an ≥ an−1, ∀n ≥ 1. (10)

Then an ≥ 1 and xn , an

an−1
≥ 1 for all n ≥ 2. Dividing

each side of (8) by an, we have

xn+1 ≤ L(1− 1

xn
) +

1

2
+ ϵ+ d. (11)

Denote b , lim
n→∞

xn ≥ 1, then we have

b ≤ L(1− 1

b
) +

1

2
+ ϵ+ d.

It is easy to see that b ̸= 1 provided that d ∈ [0, 1
2−ϵ). So

L≥
b2 − ( 12 + ϵ+ d)b

b− 1

≥ 2

√
1

2
− ϵ− d+

3

2
− ϵ− d. (12)

However, by the assumption L+ ϵ < 3
2 +

√
2− 4ϵ, there

must exist a positive number d0 satisfying

L+ ϵ <
3

2
− d0 +

√
2− 4ϵ− 4d0.

So, for any d ∈ [0, d0],

L+ ϵ <
3

2
− d+

√
2− 4ϵ− 4d, (13)

which contradicts (12). Hence the supposition (10) is
incorrect and the proof of the lemma is completed. 2

Lemma 3.2 LetL and ϵ be defined as in Lemma 3.1, and
let d ≥ 0 and n0 ≥ 0 be two constants. If a nonnegative
sequence {hn, n ≥ 0} satisfies for any n ≥ n0,

hn+1 ≤
(
L max

0≤i≤n
hi − (

1

2
− ϵ)

n∑
i=0

hi + d
)+

, (14)

where (x)+ , max{x, 0}, then lim
n→∞

n∑
i=0

hi < ∞.

Proof : We use the contradiction argument. Suppose
that

n∑
i=0

hi → ∞. (15)

We first show that

L max
0≤i≤n

hi − (
1

2
− ϵ)

n∑
i=0

hi + d > 0, ∀n ≥ n0. (16)

Otherwise, if there is some n1 ≥ n0 such that (16) does
not hold, then we must have hn1+1 = 0. So (16) does
not hold for n1 + 1, then hn1+2 = 0. Repeating this
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argument, we see that hn = 0 for all n ≥ n1 + 1, then
(15) does not hold, contradicting our supposition.

Now, by (16), we rewrite (14) as

hn+1 ≤ L max
0≤i≤n

hi − (
1

2
− ϵ)

n∑
i=0

hi + d. (17)

By (15), (17) and hn ≥ 0, there must be max
0≤i≤n

hi → ∞.

Hence, there exists some n1 > n0 such that

hn1 > max
0≤i≤n1−1

hi, and hn1 ≥ d

d0
, (18)

where d0 is defined in Lemma 3.1. Moreover, we can
choose a strictly increasing subsequence {hnj , j ≥ 1}
from {hn, n > n1} such that hnj+1 > hnj and

hn ≤ hnj , ∀nj ≤ n < nj+1. (19)

Then by (17)-(19), we have for j ≥ 1,

hnj+1
≤L max

0≤i≤nj+1−1
hi − (

1

2
− ϵ)

nj+1−1∑
i=0

hi + d

≤Lhnj − (
1

2
− ϵ)

j∑
k=1

hnk
+ d. (20)

Let a0 , 0, and aj , 1
hn1

j∑
k=1

hnk
, j ≥ 1, so aj+1 − aj =

1
hn1

hnj+1 . Then

aj+1 − aj ≤ L(aj − aj−1)− (
1

2
− ϵ)aj +

d

hn1

.

Thus we have a0 = 0, a1 = 1, and

aj+1 ≤ L(aj − aj−1) + (
1

2
+ ϵ)aj +

d

hn1

. (21)

From this, by Lemma 3.1, we have for some J ≥
1, aJ+1 < aJ . Then we must have hnJ+1

< 0, which
contradicts hn ≥ 0, ∀n ≥ 0. Hence lemma 3.2 holds. 2

Lemma 3.3 Consider the following equation,

Ft = f(yt) + g(θ, ϕt, ut) + wt+1 − yt+1, t ≥ 0. (22)

Under the condition of A3), there exists a map
h : Rm+p+q+1 → R1 such that ut = h(f(yt), θ, ϕt, vt),
where vt = wt+1 − yt+1. Furthermore, there exist two
positive constants, M1,M2 such that for any f(yt), ϕt,
and vt,

|h(·)| ≤ M1(|f(yt)|+ ∥ϕt∥+ |vt|) +M2. (23)

Proof : By the system (3), Ft ≡ 0 for any t ≥ 0, and

|∂Ft

∂ut
| = |∂g(θ,ϕt,ut)

∂ut
| ≥ b. By the Implicit Function The-

orem, there is a function h(·) : Rm+p+q+1 → R1, and
h(·) = h(f(yt), θ, ϕt, vt) such that ut = h(·). Besides,
h(·) is differentiable and satisfies

∂h

∂f(yt)
= −(

∂Ft

∂ut
)−1 ∂Ft

∂f(yt)
= −(

∂Ft

∂ut
)−1,

∂h

∂ϕt
= −(

∂Ft

∂ut
)−1 ∂Ft

∂ϕt
= −(

∂Ft

∂ut
)−1 ∂gt

∂ϕt
,

∂h

∂vt
= −(

∂Ft

∂ut
)−1 ∂Ft

∂vt
= −(

∂Ft

∂ut
)−1.

So, under Condition 3) of Assumption A3), we know
that | ∂h

∂f(yt)
| ≤ 1

b , |
∂h
∂ϕt

| ≤ M
b , | ∂h∂vt

| ≤ 1
b . By the Mean

Value Theorem, there is

h(f(yt), θ, ϕt, vt)− h(0, θ, 0, 0)

=
∂h(f(yt), θ, ϕt, φ1t)

∂vt
vt +

∂h(f(yt), θ, φ2t, 0)

∂ϕt
ϕt

+
∂h(φ3t, θ, 0, 0)

∂f(yt)
f(yt),

where φ1t, φ2t, φ3t are some vectors between [0, vt],
[0, ϕt] and [0, f(yt)] respectively. If no misunderstanding
exists, here the interval [0, ϕt] means the straight line
between the vectors 0 and ϕt, etc. Because θ is bounded
and h(·) is continuous, h(0, θ, 0, 0) is bounded by some
positive constant M2, i.e., |h(0, θ, 0, 0)| ≤ M2. Setting
M1 = max( 1b ,

M
b ), we get

|h(·)| ≤ M1(|f(yt)|+ ∥ϕt∥+ |vt|) +M2. (24)

Hence the proof is completed. 2

Now, we split the rectangle Θ into n small rectangles.
For any given ϵ1 > 0, if n is large enough, the diameter
of each rectangle can be less than ϵ1. We will show how
to choose ϵ1 later. We label these small rectangles as
Sn
j , and randomly pick n points {θj , j = 1, 2, · · ·n} from

them respectively. These points are used to estimate the
unknown parameter vector θ. Though the estimation is
not on line and may not be so accuracy, it is still helpful
to stabilize the system (3) due to the deliberate partition.

Next, we recall the notations introduced in [11], which
will be used in the following proofs. Denote

bt , max
−p+1≤i≤t

yi, bt , min
−p+1≤i≤t

yi, (25)

and

it , argmin
−p+1≤i≤t−1

|yt − yi|, i.e.,

|yt − yit | = min
−p+1≤i≤t−1

|yt − yi|. (26)
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The length of the history of the trajectory is defined as

Bt , [bt, bt], △Bt , Bt −Bt−1,

|Bt| , |bt − bt|, |△Bt| , |Bt| − |Bt−1|, (27)

where △B−p+1 , B−p+1.

When using θj to replace the real parameter vector θ,
the estimate of the unknown value f(yt) at time instant
t is defined by the formula

f̂j(yt) , yit+1 − g(θj , ϕit , uit), 1 ≤ j ≤ n. (28)

Take u0 = 0, t0 = 1, for j ≥ 1,

tj , inf
{
t > tj−1 :

|yt −
bt−1 + bt−1

2
| > L|yt−1 − yit−1 |+ γ + 2w

+Mϵ1(∥ϕt−1∥+ ∥ϕit−1∥)
+Mϵ1(|ut−1|+ |uit−1 |),

or
|ut−1| > M1

[
L|Bt−1|+ γ + |f(y0)|
+Mϵ1(∥ϕit−1∥+ |uit−1 |) + ∥ϕt−1∥

+|
bt−1 + bt−1

2
|+ w

]
+M2

}
. (29)

Finally, the adaptive controller is defined as follows:

ut =



0 t = 0 or t ≥ tn

h(f̂1(yt), θ1, ϕt,−
bt+bt

2 ) 1 ≤ t < t1
...

h(f̂j(yt), θj , ϕt,−
bt+bt

2 ) tj−1 ≤ t < tj
...

h(f̂n(yt), θn, ϕt,−
bt+bt

2 ) tn−1 ≤ t < tn

(30)

Remark 3.1 The function estimate (28) can be regard-
ed as the nearest neighbor estimate (cf.[18]) for f(·) if
we use the jth parameter estimate θj to replace the real
parameter θ.

Remark 3.2 The two inequalities in (29) serve as the
criteria to check whether the parameter estimate θj is
good enough or not. As will be proved in the following
paragraph, if θj is a good estimate of θ, then neither of
the two inequalities will hold. The time tj is defined as
the first time that the jth parameter estimate θj is found
not so good. So, we switch to the next parameter θj+1

as a new estimate.

Remark 3.3 Actually, we cannot use the unknown in-
formation |f(y0)| in the second inequality in (29). How-
ever, what we only need is the upper bound of |f(y0)|. If

we take u0 = 0, from the data y0, y1 and ϕ0, we can eas-
ily calculate the bound of |f(y0)| because the function
g(·) is continuous and θ is bounded. So, here we still use
|f(y0)| for simplicity.

Lemma 3.4 If tj < ∞, 1 ≤ j ≤ n, then the unknown
parameter vector θ /∈ Sn

j .

Proof: Suppose θ ∈ Sn
j , then we have ∥θ−θj∥ ≤ ϵ1, and

for any t ∈ [tj−1, tj), ut = h(f̂j(yt), θj , ϕt,−
bt+bt

2 ). So

ut = h(f(yit) + g(θ, ϕit , uit)− g(θj , ϕit , uit)

+wit+1, θj , ϕt,−
bt + bt

2
), (31)

which means

g(θj , ϕt, ut) =−f(yit)− g(θ, ϕit , uit) + g(θj , ϕit , uit)

−wit+1 +
bt + bt

2
.

Then the closed-loop system is

yt+1 = f(yt) + g(θ, ϕt, ut) + wt+1

= f(yt)− f(yit) + [g(θ, ϕt, ut)− g(θj , ϕt, ut)]
−[g(θ, ϕit , uit)− g(θj , ϕit , uit)]

+
bt + bt

2
+ wt+1 − wit+1 . (32)

So, we have

|yt+1 −
bt + bt

2
| ≤L|yt − yit |+M∥θ − θj∥(∥ϕt∥+ |ut|)

+M∥θ − θj∥(∥ϕit∥+ |uit |) + γ + 2w
≤L|yt − yit |+Mϵ1(|ut|+ |uit |)
+Mϵ1(∥ϕt∥+ ∥ϕit∥) + γ + 2w. (33)

Now we calculate the bound of f(yt). From the definition
of Bt, it is easy to see that for any t ≥ 0,

|yt − y0| ≤ |Bt| ⇒ |yt| ≤ |Bt|+ |y0|,
|f(yt)− f(y0)| ≤ L|yt − y0|+ γ ≤ L|Bt|+ γ

⇒ |f(yt)| ≤ L|Bt|+ |f(y0)|+ γ. (34)

From (28), (31) and Lemma 3.3, we have

|ut| ≤M1

[
|f̂i(yt)|+ ∥ϕt∥+ |bt + bt

2
|
]
+M2

≤M1

[
L|Bt|+ γ + |f(y0)|+Mϵ1(∥ϕit∥+ |uit |)

+∥ϕt∥+ |bt + bt
2

|+ w
]
+M2. (35)

Taking t = tj − 1, from (33), (35) and the definition of
tj , we get the contradiction. Hence the lemma is true.2
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Proof of Theorem 2.1:

Sufficiency: Under the condition L < 3
2 +

√
2, we use

the controller designed in (30). In Lemma 3.4 we have
shown that if θ ∈ Sn

i , then ti = ∞. Because θ ∈
∪n

i=1 S
n
i ,

we must have some i0, 1 ≤ i0 ≤ n, ti0 = ∞. Let j0 ∈
[0, i0 − 1] be the first integer that tj0+1 = ∞, then tj0 <
∞. This integer always exists by the fact that t0 < ∞
but ti0 = ∞. Now we have for any t ≥ tj0 ,

|yt+1 −
bt + bt

2
| ≤L|yt − yit |+Mϵ1(|ut|+ |uit |)

+Mϵ1(∥ϕt∥+ ∥ϕit∥) + γ + 2w, (36)

|ut| ≤M1

[
L|Bt|+ γ + |f(y0)|+Mϵ1(∥ϕit∥+ |uit |)

+∥ϕt∥+ |bt + bt
2

|+ w
]
+M2. (37)

From Condition A5) and the inequalities in (34), we
have for any t ≥ 0,

|ut−1| ≤ c1

t∑
i=−p+1

λt−i(|Bt|+ |y0|) +
c1

1− λ
w + c2

≤ a1|Bt|+ b1, (38)

where a1 , c1
1−λ , b1 , c1

1−λ (|y0| + w) + c2 are both con-
stants, and

∥ϕt∥=
√
y2t + · · ·+ y2t−p+1 + u2

t−1 · · ·+ u2
t−q+1

≤ p|Bt|+ p|y0|+ q(a1|Bt|+ b1)
= a2|Bt|+ b2, (39)

where a2 , p+ qa1, b2 , p|y0|+ qb1 are both constants.
The two inequalities above imply that both |ut−1| and
∥ϕt∥ are bounded by a linear growth rate of |Bt|. It is
easy to note that

|bt + bt
2

− y0| ≤
1

2
|Bt| ⇒ |bt + bt

2
| ≤ 1

2
|Bt|+ |y0|. (40)

So, from inequalities (37)-(40), we get the bound of ut:

|ut| ≤M1

[
L|Bt|+ γ + |f(y0)|

+Mϵ1(a1|Bt|+ b1 + a2|Bt|+ b2)

+a2|Bt|+ b2 +
1

2
|Bt|+ y0 + w

]
+M2

= a3|Bt|+ b3, (41)

where a3 , M1[L+Mϵ1(a1+a2)+a2+
1
2 ], b3 , M1[γ+

|f(y0)|+Mϵ1(b1+ b2)+ b2+ y0+w]+M2 are constants
depending on ϵ1. This means that |ut| is also bounded
by a linear growth rate of |Bt|.

From (36)-(41), we have for any t ≥ tj0 ,

|yt+1 −
bt + bt

2
≤L|yt − yit |+ (a1 + 2a2 + a3)Mϵ1|Bt|
+(b1 + 2b2 + b3)Mϵ1 + γ + 2w. (42)

Now we show how to choose ϵ1. We can take ϵ1 small
enough that

ϵ , (a1 + 2a2 + a3)Mϵ1 (43)

satisfying ϵ < 1
2 , L+ ϵ < 3

2 +
√
2− 4ϵ as in Lemma 3.1.

This can always be achieved because (a1+2a2+a3)Mϵ1
is an increasing function of ϵ1. So

|yt+1 −
bt + bt

2
| ≤L|yt − yit |+ ϵ|Bt|+ γ + 2w

+(b1 + 2b2 + b3)Mϵ1. (44)

Similar to [11], we have

|yt − yit | ≤ max
−p+1≤i≤t

|△Bi|,

|△Bt+1| = max
{
|yt+1 −

bt + bt
2

| − 1

2
|Bt|, 0

}
.

So, from (44), for t ≥ j0,

|△Bt+1| ≤
{
L max

−p+1≤i≤t
|△Bi| − (

1

2
− ϵ)|Bt|

+(b1 + 2b2 + b3)Mϵ1 + γ + 2w
}+

. (45)

If Denoting ht , |△Bt| , we can get the same form as
(14) in Lemma 3.2. So, by Lemma 3.2, we have

lim
t→∞

t∑
i=−p+1

|△Bi| < ∞, (46)

which means that |Bt| =
t∑

i=−p+1

|△Bi| is bounded, i.e.,

sup
t≥−p+1

|yt| < ∞.This shows that the controller designed

in (30) stabilizes the system (3).

Necessity: If taking g(θ, ϕt, ut) ≡ ut , we have the same
model as in [11]. The same method can be applied in the
necessity part. So the impossible part is obvious and the
proof details will not be presented here. 2

4 Concluding remarks

In this paper, we have investigated the feedback capa-
bility for a basic class of semiparametric systems, and
have established some interesting results. The “parame-
ter switching”method is used to estimate the parametric

6



part and the “nearest neighbor” idea is used to estimate
the nonparametric part. The controller thus designed
has shown to enjoy the maximum capability in stabiliz-
ing the uncertain systems described by a critical value
L = 3

2 +
√
2. Although it may be desirable to simplify

or to improve the designed control algorithm when nec-
essary, it is sufficient in theory to help us to characterize
the maximum capability of feedback as investigated in
the paper.
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