J Syst Sci Complex (2012) 25: 209-226

TOWARDS A THEORY OF GAME-BASED
NON-EQUILIBRIUM CONTROL SYSTEMS*

Yifen MU : Lei GUO

DOI: 10.1007/s11424-012-1065-6
Received: 18 March 2011 / Revised: 6 September 2011
©The Editorial Office of JSSC & Springer-Verlag Berlin Heidelberg 2012

Abstract This paper considers optimization problems for a new kind of control systems based on
non-equilibrium dynamic games. To be precise, the authors consider the infinitely repeated games
between a human and a machine based on the generic 2 X 2 game with fixed machine strategy of finite
k-step memory. By introducing and analyzing the state transfer graphes (STG), it will be shown that
the system state will become periodic after finite steps under the optimal strategy that maximizes the
human’s averaged payoff, which helps us to ease the task of finding the optimal strategy considerably.
Moreover, the question whether the optimizer will win or lose is investigated and some interesting
phenomena are found, e.g., for the standard Prisoner’s Dilemma game, the human will not lose to
the machine while optimizing her own averaged payoff when k = 1; however, when k > 2, she may
indeed lose if she focuses on optimizing her own payoff only. The robustness of the optimal strategy
and identification problem are also considered. It appears that both the framework and the results are
beyond those in the classical control theory and the traditional game theory.

Key words Heterogeneous players, non-equilibrium dynamical games, optimization, state transfer
graph, win-loss criterion.

1 Introduction

Over the past half century, a great deal of research effort has been devoted to adaptive control
systems, and much progress has been made in both theory and applications!!=8l. A survey of
some basic concepts, methods and results in adaptive systems can be found in [9], where the
basic framework together with some fundamental theoretic difficulties in adaptive systems is
elaborated on in detail. In the traditional parametric adaptive control, the controller may
be regarded as a single agent acting on the system based on the information or measurement
received, which is usually designed by incorporating an estimation mechanism: The agent
(controller) makes decision based on the parameter estimates of the uncertain (time-varying)
parameters that influence the dynamic behavior of the system. Note that in this framework,
the time-varying parameter process may be regarded as the strategy of another ‘agent’; save
that the action of this ‘agent’ usually does not depend on the control actions, and that it has
no intention to gain its ‘payoff’.
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Furthermore, in many practical systems, especially social, economic, biological and ecolog-
ical systems, people often encounter with the so-called complex adaptive systems (CAS) as
introduced by Holland in [10]. In a CAS, as summarized in [11], a large number of components,
called agents, interact with and adapt to (or learn) each other and the environment, leading to
some (possibly unexpected) macro phenomena called emergence. Despite of the flexibility in
modeling a wide class of complex systems by CAS, it brings great challenge to understand the
evolution of a CAS mathematically, since the traditionally used mathematical tools appear to
give limited help in the study of CAS, as pointed out in [11].

As an attempt towards initiating a theoretical investigation of CAS, we will, in this paper,
consider a dynamic game framework that is somewhat beyond the current (adaptive) control
framework. Intuitively, we will consider a scenario where two heterogeneous agents in a system,
play a repeated noncooperative gamel'?| but the law for generating the actions of one agent is
assumed to be fixed. Specifically, we will consider infinitely repeated games between a human
and a machine where the machine’s strategy is assumed to be fixed with k-step memory and
may be unknown to the human.

We would like to point out that, to the best of the authors’ knowledge, the above non-
equilibrium dynamic game framework is neither contained in the traditional control theory, nor
considered in the framework of the mainstream game theory. One most related direction is the
differential games!!'?! but assumptions on the agents are actually the same as in the mainstream
game theory, where all agents (players) stand in a symmetric position in either rationality or
role, in order to reach some kind of equilibrium. Whereas, in our framework, the agents do not
share a similar mechanism for decisions making and do not have the same level of rationality,
since the two players in our framework play as the roles of a controller and a plant, respectively.
And this is of fundamental importance, since in many complex systems, the agents are usually
heterogenous, and they may indeed differ in either their information obtained or their ability
in utilizing it. There are two points still worth mentioning.

First, it is the Stackelberg game, where the players have different roles as ‘leader(s)’ and
‘follower(s)” and the leader can take his/her strategy first and enforce the followers to respond
to it, see e.g., [12-13]. In the current paper, the follower can be regarded as the human and
the leader be the machine with fixed strategy in a Prisoner’s Dilemma game. In our work, the
follower would like to optimize both her payoff and relative payoff over the infinite time horizon,
which is different from the existing works in both the problem formulation and the analytical
methods.

Second, it is worth mentioning that there have been considerable investigations in game
theory in relation to adaptation and learning, which can be roughly divided into two directions.
One is called evolutionary game theory!'*~17] where all the agents (often in a large population)
are programmed to use certain actions to play with all other agents or randomly matched,
which will spread or diminish according to the payoff. The evolutionary stable equilibrium
(ESS) is a key concept in the existing research. The other direction is the learning theory in
games'8~19 which considers whether and how the long-run behaviors of individual agents will
arrive at some equilibrium. In both the directions, the players in the games are equal in their
ability to learn or adapt to the strategies of their opponents and there is no difference in roles
of players and thus no hierarchy in the system. Some recent works can be found in [20-22].

This work is partly inspired by R. Axelrod’s work!?3=2%! where in his simulation based on
the Prisoner’s Dilemma game, the best-played strategy emerged as a result of evolution. More
researches on repeated Prisoner’s Dilemma game can be found in [26-28]. The optimal strategy
in this paper, however, will be obtained by optimization. To this end, we need to analyze the
state transfer graph (STG) for machine strategy with k-step memory. We will show that the
optimal strategy that maximizes the human’s averaged payoff is actually periodic after finite
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steps. General results for other games are also studied. And parts of the results in the paper
were presented in [29-30], only that this paper is more complete.

The remainder of this paper is organized as follows. In Section 2, the problem is formulated.
In Section 3, the state transfer graph (STG) is defined with some useful properties given.
Section 4 gives the main results by answering questions proposed in Section 2. Some proofs are
given in Section 5. And Section 6 concludes the paper with some remarks.

2 Problem Formulation

Consider a generic 2 x 2 game (there are 2 players in the game and either has 2 action
options) with the payoff matrix as shown below in Figure 1.

Player II
A B
A (a1, bry) (a12, b12)
Player I
B
(@21, bar) (a2, bx)

Figure 1 The payoff matrix of the generic 2 x 2 game

Figure 1 can represent many different games. When the parameters a;j,b;; satisfy a;; =
bji, Vi, j, the game is called symmetric. Below are some well known examples.

Example 2.1 The Prisoner’s Dilemma (PD) game is described in Figure 2 below, where
the parameters satisfy the standard conditions??!:

t>r>p>s,
- t+s (1)
T .
2
Player 1T
C D
C () (s 9)
Player I

D (t5) @ p)

Figure 2 The payoff matrix of the Prisoner’s Dilemma game

In this story, the two players are two confederate suspects who simultaneously choose their
actions ‘C’ or ‘D’, where ‘C’ means the player cooperates with the partner, and ‘D’ means the
player defects the partner. From (1), it is easy to see that the action profile (D,D) is the unique
Nash Equilibrium, which can be dominated by (C,C) in the Pareto sense.

Example 2.2 The Snowdrift game can also be described by Figure 2, but the parameters
satisfy t > r > s > pand 2-r > t+s. The action ‘C’ or ‘D’ means that two drivers who
encounter on a snowy road, will or will not shovel the snowdrift in order to drive off the road.
The profile (C,D) and (D,C) are the two pure strategy Nash equilibria here.
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For all the 2 x 2 games described by Figure 1, the Nash equilibrium can be computed easily.
The purpose of this paper is, however, not to investigate the Nash or other equilibrium. Instead,
we will consider the scenario where Player I has the ability to identify her opponent and search
for the best strategy in order to optimize her payoff, while Player II acts according to a given
and fixed strategy. This problem is somewhat different from the traditional control problem
or the classical game problem, and may be regarded as a starting point towards a theory of
game-based control systems.

Vividly, let Player I be a human (we say it is a ‘she’ henceforth) while her opponent Player
II be a machine. Assume they both know the payoff matrix. The action set of both players
is denoted as A = {C, D}, and the time set is discrete, ¢ = 0,1,--- . At time ¢, both players
choose their actions and get their payoffs simultaneously. Let h(t) denote the human’s action
at t and m(t) the machine’s.

Define the history set up to time ¢, Hy, as

Hy = {(m(0), h(0);m(1), A(1); -+ ym(t — 1), h(t — 1))},

and the set of all histories is H = |J H;.

t
As a start, we assume the strategy of both players are deterministic mappings from H to
A. Assume that the human’s action at any time ¢ is a mapping ¢(¢) from H; to A. However,
the machine’s strategy is confined to have finite k-step-memory:

mE+1)=f(mit—k+1),h(t—k+1);---;m(t—1),h(t—1);m(t),h(t)), (2)

which, apparently, is a discrete function from {0,1}?* to {0,1}, where and hereafter, 0 and 1
stand for ‘C’, ‘D’, respectively.
Now, we define the state s(t) of the game as

k—
HEST (22 mt— D)+ 22 h(t -1} + 1. (3)
=0

,_.

Obviously, it establishes a one-to-one correspondence between the vector set {0,1}?* and the
integer set {1,2,---,22%}. For convenience, in what follows we denote s(t) = s; when s(t) = 1.
When k = 1, the above state definition reduces to

s(t) =2 x m(t) + h(t) + 1, (4)

which establishes a one-to-one correspondence between (m(t), h(t)) and the value set s(t) €
{81, S92, 83, 84} with S; = i

s() (m(2),h(1))
S (0,0

52 (0,1)

53 (1,0)

84 (1,1
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ON GAME-BASED NON-EQUILIBRIUM CONTROL SYSTEMS 213

Furthermore, the machine strategy (2) with £ = 1 can be parameterized as

m(t+1) = f(m(t), h(t))
= arl{s()=s,y T @2l{s()=s,} T @31 {s(t)=s5} + Qal{s(t)=s4}

4
= Zail{s(t):si}7 (5)
=1

which can be simply denoted as a vector A = (a1, as,as,as) with a; being 0 or 1.

Given the strategies of both players together with the initial state, the game can be carried on
and a unique sequence of states {s(1), s(2),-- -} will be produced, which is called a realization.
Throughout this paper, s(t) is assumed to be observable to both players.

Obviously, each state s(t) corresponds to a unique (m(t), h(t)), which further corresponds
to the payoffs for the human and machine, denoted by p(t) £ p(s(t)) and p,(t) = pm(s(t)),
respectively. Further, we define the relative payoff w(t) of the human to the machine at ¢ as

w(t) = w(s(t)) = sgn{p(t) — pm(t)}, (6)
where sgn(-) is the sign function and sgn(0) = 0. The relative payoff w(t) defines whether the
human win (w(t) = 1), or lose (w(t) = —1), or tie in the game at time ¢.

For any realizations, the averaged payoff (or ergodic payoff®!l) of the human is defined as

Pl = Tlim ;Zp(t) (7)

. 1
Wi = Thm TZ w(t). (8)

The basic problems we are going to address are as follows: Q1) How can the human choose
her strategy g:(-) so as to obtain an optimal averaged payoff? And how is the case when the
machine can make mistakes? Q2) In addition to optimality, will the human win the machine
averagely, i.e., W1 > 0?7 Q3) When the machine’s strategy is unknown to the human, can she
still obtain an optimal payoff?

The following sections will give some answers to these questions.

3 Analysis: The State Transfer Graph

First, note that the question Q1) raised in Section 2 is a Markov decision problem with
deterministic transition probabilities, which can be solved by the algorithms in [31]. However,
we care about more here like the property of the states under the solution and the answer of Q2)
and Q3), about which we cannot find much help from [31]. Hence, we will solve the problem in
the following new way.

Now, before defining the state transfer graph (STG) of a machine strategy, we list some
basic concepts in graph theory®?. Only finite graphs (with finite vertices and finite edges) are
considered.

Let G = (V, E) be a directed graph with vertex set V' and edge set E.

@ Springer
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Definition 3.1 A walk W is defined as an alternating sequence of vertices and edges, like
vy €1 V1 €g -+ Uj_1 eyuy, abbreviated as vgvy - - - v;_1v;, where e; = v;_jv; is the edge from v;_
to v;, 1 <14 < [. The total number of edges [ is called the length of W.

If vy = vy, then W is called closed, otherwise is called open.

Definition 3.27 We ignore the constraint that the length [ > 2 and include ‘loop’ in
the concept of ‘cycle’. A walk W, vovy ---v_1v, is called a path (directed), if the vertices

v, V1, -+ , v are distinct. A closed walk W: wvgvy -+ vj_1v;, vg = vy, [ > 1, is called a cycle
(directed) if the vertices vy, - ,v; are distinct .

Definition 3.3 The outdegree of a vertex v is the number of edges starting from v, denoted
by deg™ (v).

Now, we are in a position to define the STG:

A directed graph with 22% vertices {s1, s2, - - , S92x } is called the state transfer graph (STG)
of a given machine strategy with k-step-memory, if it contains all the possible walks representing
the state transfer process of the game together with any possible human strategy. In other
words, an STG contains all the one-step paths or cycles.

When k = 1, for a machine strategy A = (a1, as2,as,a4), the STG is a directed graph
with the vertices being the state s(t) € {s1,s2,s3,s4} with s; = ¢ and the edge s;s; exists if
s(t + 1) = s; can be realized from s(t) = s; by choosing h(t + 1) = 0 or 1. Since s; = 4, by (4)
and (5), it follows that

the edge s;s; exists & s; =2 X a; +1or s; =2 X a; + 2, 9)

and the way to realize this transfer is to take the human’s action as h = (s; — 1)mod 2 by (4).

By the definition, one machine strategy leads to one STG, and vice versa. The following
example illustrates how to draw the STG for a given strategy.

Example 3.1 Consider the ALL C strategy A = (0,0,0,0) of the machine, and set the
parameters in the PD game’s payoff matrix as s = 0,p = 1,7 = 3,¢ = 5. Then the STG of
A =(0,0,0,0) can be drawn as Figure 3, in which s1(3,0) means that under the state s;, the
human gets her payoff vector P(s1) = (p(s1),w(s1)) = (r,sgn(r —r)) = (3,0). The directed
edge s1s9 illustrates that if the human takes action D, she can transfer the state from s; to s
with payoff vector (5,1). The rest part can be explained similarly.

h=0 h=1

h=1
$1(3,0) $2(5, 1) J

4 A

(o] )

S4(1, 0) $3(0,-1)

Figure 3 STG of the machine strategy ALL C A = (0,0,0,0)

From this example, we can see that the STG contains all the useful information needed to
find the optimal strategy of the human. To this end, we establish some basic properties of STG,
after introducing the following definitions.

fThe Definition 3.2 of cycle is a little different from [32].
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Definition 3.4 A state s; is called reachable from the state s;, if there exists a path
(or cycle) starting from s; and ending with s;. All the vertices which are reachable from s;
constitute a set, called the reachable set of the state s;.

Thus, the reachability of s; from s; means that there exists a finite sequence of human
actions, such that the state s(-) can be transferred from s; to s;.

Furthermore, we define the payoff of a walk on STG as follows.

Definition 3.5 The averaged payoff of an open walk W = wvgvy ---v; on an STG, with
vg # vy, is defined as

s P(vo) +p(v1) +---+p(ur)

2 10
and the averaged payoff of a closed walk W = vgvy - - - vy, with vg = vy, is defined as
pWép(vo)+p(vl)+'.'+p(vl—1). (11)

l

Now, we give some simple properties of STG and since they are easy to prove here we will
omit the proofs.

Lemma 3.1 For a given STG, any closed walk can be divided into finite cycles, such that
the edge set of the walk equals the union of the edges of these cycles. In addition, any open walk
can be divided into finite cycles plus a path.

We note here that although the partition may not be unique, it does not influence the
calculation of the averaged payoff.

Lemma 3.2 Assume that a closed walk W = vgvy - - - v, with length L, can be partitioned
into cycles Wy, Wa, -+ Wy, m > 1, with their respective lengths being Ly, Lo, -+, L,,. Then,
pw, the averaged payoff of W can be written as

pw = 1P (12)
j=1
where p1,pa, -+, pm are the averaged payoffs of the cycles W1, Wa, -+, W,,, respectively.

4 Main Results

4.1 The Optimal Strategy of the Human and Its Robustness

Theorem 4.1 For any machine strategy with finite k-step memory, there always exists a
human strateqy g: : H — A which is also with k-step-memory, such that the human’s payoff
is maximized and the resulting state sequence {s(t)}22, will become periodic after some finite
time.

Remark 4.1 From the proof in Section 5.1, when the state enters into the optimal cycle,
the limit P, exists. Also, the optimal payoff value will depend on the initial state. This can be
seen from the proof: If the two states share the same reachable set in the STG of the machine
strategy, the optimal payoff will be the same, otherwise the optimal payoffs might be different.

Now, what if the machine makes mistakes with a tiny probability € at each time? Here, we
investigate the simplest case with £k = 1. Then the machine strategy can be described as

f(t) = {m(t), w?th probab%l%ty 1—¢, (13)
1—m(t), with probability e,
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where y
m(t) =Y ail{s(—1)=s,}- (14)
=1

The error probability € is assumed to be sufficiently small and known. Now, if the machine
makes mistakes at t = 7,79, -+, 7, -+, it will jump’ from one planned action to the other.
Assume the human acts as if the machine does not make mistakes, the state will ‘jump’ as
below:

81 k> 83 S2 k> 84; S3 > S1; S4+— Sz,

where — means ‘jump to’. Obviously, 7;,7 =1,2,3,--- are random variables.
Naturally, we assume that 7; is independent of the history of the system. Then the random
sequence {19 = 0,71, 72, -+ ,T;, - } constitutes a homogeneous independent increment process

with 7, — 7;_1,% > 1 satisfying a geometric distribution
P(Ti — Ti—1 — l) = (]. — E)lil - €

with the expectation E(r; — 7,—1) = ; Then we have
Theorem 4.2 For any machine strategy (13) and any initial state, we have

P < PE < P’ +0(e), (15)

where P° is the expected payoff obtained using h°, the optimal strategy of the human against the
deterministic machine strategy (14), and P¢ is the supremum of all the expected payoffs using
any human strategies.

Remark 4.2 Theorem 4.2 implies that for any machine strategy (13) with an error proba-
bility e, the human’s optimal strategy against the deterministic machine strategy (14) can still
get a near-optimal payoff, which implies its robustness in some sense.

4.2 Can the Human Win When She Optimizes?

To answer question Q2) and investigate the relationship between the optimal payoff criteria
and the win-lose criteria, we have the following theorem, showing pretty complex phenomena
which can not be seen in the classical adaptive control systems.

Theorem 4.3 Let the machine strategy be with 1-step memory.

i) Consider the general 2 x 2 game with payoff matriz as Figure 1. Then, except the trivial
case a;; < byj, Vi,j, for any machine strategy and any initial state, there always ewist such
payoff parameters that the human will lose, i.e., WE < 0, when she optimizes her averaged
payolf.

ii) For the symmetric 2 x 2 game with any payoff parameters and any initial state, there exist
such 2 and only 2 machine strategies A" = (0,1,0,1) or A” = (1,0,1,0), that the the human’s
optimal strategy against them will never lose.

In the Appendix 1, we will give the specific conditions of the payoff parameter as a table in
Figure 5 to illustrate Theorem 4.3 ii). Considering the win-lose criterion for particular games
in Examples 2.1 and 2.2, we have

Proposition 4.1 Let the machine’s strategy be with 1-step memory.

i) For the Prisoner’s Dilemma game, the human’s optimal strategy will not lose to any
machine.

il) For the Snowdrift game, there exists such machine strategy that the human will lose to it
when she just optimizes her payoff.

Clearly, it is the game structure that brings about this somewhat complex win-loss phe-
nomenon. What interests us most is that such one-sided optimization problem (for the human)
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may not always win even if the opponent has a fixed strategy. This phenomenon should be
noticed for optimizers who face more than 1 criterions.

If the machine strategy has a larger memory length k, and thus it has a larger strategy set,
then intuitively, it will become harder for the human to win. The proposition below shows it is
true.

Proposition 4.2 For the Prisoner’s Dilemma game, when k = 2, there exist such machine
strategies, that the human’s optimal strategy will lose.

Proposition 4.2 can be proved by a counterexample for the machine strategy ‘2 Tits for 1
Tat’. The details are in Section 5.

4.3 How to Find the Optimal Strategy of the Human?

By Theorem 4.1, the repeated PD game will enter a cycle of states under the optimal
human strategy. This enables us to find the optimal human strategy by searching the optimal
elementary cycle on the STG. We illustrate this by the example below.

Example 4.1 Let the machine strategy be ALL C A = (0,0,0,0), and set the parameters
in the PD game’s payoff matrix as s = 0,p = 1,7 = 3,t = 5. Take the initial state as
s(0) = s3 = (1,0). The reachable set of s3 is {s1, s2}, thus, it is enough to draw the induced

transfer ‘subgraph’ as in Figure 4.

S §2

Figure 4 The transfer subgraph of ALL C strategy with s(0) = s3

Obviously, there are three elementary cycles on the graph

Wi ={s1}, Wa={s2}, Wz ={s1,s2}
and by (10), the averaged payoffs of the human are, respectively,

p(s1) + p(s
pwy =p(s1) =3, pw, =p(s2) =5, puy = (1)2 (52)

=4.

Apparently, the optimal payoff corresponds to the cycle Wa = {s3}. To induce the system
state enters into this cycle, the human just take h(1) =1 and h(t) = 1,t > 2.

This search procedure, actually includes two steps: First, find all the elementary cycles (or
circuits in some literature); and second, compute the payoffs of every elementary cycle by (10)
and compare them. Apparently, the first step is a key one. Luckily, the search problem has been
studied since long time ago in the literaturel®3). In the Appendix, an effective search algorithm
is given.

4.4 How to Identify the Unknown Machine’s Strategy?

As we have shown, when the machine strategy is known, the human can find her optimal
strategy. So a natural question is: What if the machine’s strategy is unknown? One way is
to identify the machine strategy (within finite steps) before optimizing. However, one must be
very cautious to do identification. We will see this point in the next proposition.

A machine strategy parameterized by a vector A (like in (5) for the case of k = 1), is called
identifiable if there exists a human strategy such that the vector A can be reconstructed from
the corresponding realization and the initial state.
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Proposition 4.3 i) A machine strateqy with k-step-memory is identifiable if and only if its
corresponding STG is strongly connected.

i) There exists such non-identifiable machine strategy, that the identification can lead to a
worse payoff for the human.

Part i) of Proposition 4.3 is quite intuitive and can be used to make confirm the existence
of the unidentifiable machine strategy and help to find them. For example, when k = 1, the
STG of the machine strategy A = (0,0,*,%) or A = (x,%,1,1) is not strongly connected, so
they are not identifiable: From any initial state, only part of the entries of A = (a1, a2, as,a4)
can be identified. However, if the machine makes mistakes like in Theorem 4.2, the strategy
will become identifiable: From any state s;, there is a positive probability to reach any state s;,
i.e., the STG of the machine strategy will be strongly connected. Hence, any machine strategy
can be completely identified provided long enough time.

Part ii) of Proposition 4.3 can be proved by giving an example: If the machine takes the
non-identifiable strategy A = (0,1,1,1), then by acting with ‘C’ blindly, the human can get a
payoff r by the PD payoff matrix at each time. However, once he tries to identify the machine’s
strategy, he may use the ‘D’ to probe it. Then the machine will be provoked and acts with ‘D’
forever. That will lead to a worse human payoff p < r afterwards. Thus, identification here
must be very cautious.

Below we give an identifying strategy for the human when the machine strategy has a k = 1
memory:

0, if ay() is not known before time ¢ + 1,

X (16)

h(t+1):{

otherwise.

)

Proposition 4.4 For any identifiable machine strateqy with k = 1, it can be identified
using the above human strategy with at most 8 steps from any initial state.

5 Proofs of the Main Results

5.1 Proof of Theorem 4.1

Note that the optimization problem Q1) is actually a Markov decision problem where the
transition probabilities are reduced to deterministic ones. So, Theorem 4.1 may be deduced
from Theorem 9.1.8 in [31]. However, that proof needs concepts of optimal equations. Here we
give an elementary and more intuitive proof using the property of the STG we defined for any
machine strategy.

Proof We first consider the case where k = 1.

Note that under the conditions of Theorem 4.1, any cycle on the STG has a period not
greater than 4. Without generality, the STG is assumed to be strongly connected. Then by
searching on the STG, we can find a cycle W* with period d < 4 such that the corresponding
averaged payoff p* is maximized among all possible cycles.

Clearly, a sequence {s*(¢)}72; on the STG can be constructed so that the state starting
from s(0) will enter into the cycle W* within smallest possible steps, say, Typ. Obviously, the
payoff of this realization equals p* by definition. If the STG is not strongly connected, search
on the reachable set of every state.

Next, we proceed to prove that the averaged payoff of any state sequence {s(t)}$2; will not
be greater than p*.

Let us consider any state sequence {s(1),s(2),---,s(L)} with length L > 4. By Lemma 3.1,
the walk s(1)s(2)---s(L) on STG can be divided into finite cycles (plus a path with vertices
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e < 4, if the walk is open). In the following, we need only to consider the little more complicated
case of open walks.

Let the cycles be denoted as Wy, Wy, - -+ | W,, with lengths being Lq, Lo, --- , L,, and aver-
aged payoffs being p1, po, - - - , pn, respectively. Then, it is easy to see that L = L1 +---+ L, +e.
Suppose the path is vivg - - - v.. Then we have

Ly Ly p(v1) + -+ p(ve)
L A

1 Ln
Lp1+"'+ Lpn+ L
where 0 < A < « with « being a constant, and L —4 < L; +---+ L, < L.

Now, for the above L, suppose that there are m optimal cycles W* contained in the sequence
{s*(t)}L,. Then we have {s*(1),---,s*(L)} = {s*(1),---,s"(To — 1)} U {m cycles W*} U
{remaining states of number f} with 7p — 1 < 4 and f <d <4. Then L =Ty — 1+ md + f,
and the averaged payoff of {s*(¢)}£; is

(17)

. md p*(s(1)) + - +p*(s(Tp — 1)) + > p(remaining states)

PL= [P + I
Ly+--+ Ly md— (L1 +---+ Ly) B
Ay * *
< I P+ I P (18)
where 0 < B < 3 with 2 being a constant, and L — 6 < md < L.
From (17) and (18), we have
pL—pL—{L(pl—pH— +L(pn—p)}— I R
Ly Ly Z A-B
- ) e Yy — 1
{Bo-mea om0 8 (19)
where | Z |< v with 7 being a constant.
Since all p; < p*, we have the first part of (19) satisfies
Ll Ln
P —p*) < 0.
L =P )+t (e —p7) S0
Consequently, by letting L — oo, we know that for any state sequence {s(t)}$2;,
PE(s(1) = lim pr < Jim p} =p°. (20)

From the definition of STG, by taking suitable {h*(¢)}, the human can induce the system
state into the optimal cycle W* within finite steps, and Theorem 2.1 holds for k£ = 1.

Next, when the machine strategy is of general finite k-step-memory, by a similar argument,
the optimal state sequence {s*(¢)}$2; can still be shown to be a cycle after finite steps. In order
to induce the system state into the optimal cycle, the human can choose optimal strategy g*
by solving the following equation

g7 (7(0), 5 (L), 8" (E = 1), 5" (1)) = 9" (s" (1)) = (s"(t+ 1) = 1) mod 2.

Finally, by the definition of the state in (3), ¢g* is still with k-step-memory. This completes the
proof.
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5.2 Proof of Theorem 4.2

Apparently P° < P?.

Denote P* as the optimal averaged payoff using the optimal strategy h®, against the deter-
ministic machine strategy (14). Easily we have P < P*. So to prove the right-hand-side of
(15), we just need to prove P* < P° + O(e).

Now, let the human use h°. The machine will make mistakes at 73,4 = 1,2,--- . Assume
a sample path of 7; being 71 = Ty,7 = Tb,---. Then the system states s(t) are s(m) =
s(0),s(1),--- ,s(T1), -+ ,8(T2),---. And the states between s(7;) and s(741) are composed of

the transition states and the optimal cycles which may change after the ‘jump’.

Now, we divide all the machine strategies into three classes:

Class i) The deterministic machine strategy A = {a1, az, ag, a4} corresponding to a strongly
connected STG, i.e., a; + az > 0;a3 + a4 < 2. There are 9 such strategies. Then the optimal
cycle will be the same for any initial state and thus will be the same before and after the ‘jump’.

For any finite IV, assume that there are K ‘jumps’ at 7, ---,7x. Define 9 = 0 and
Trk+1 = IN. Assume also that there are ¢; transition states which are not at the optimal cycle.
Then we have 1 < ¢ <4,1=0,1,--- , K+ 1, and

P* — Py

_pr_ E{p(transition states near ;) + p(optimal cycles on the inteval |17, 7741]) }
N

_pr_ E{ P*- (N —(q0+q +--+qrx+1)) +p{(q + --- + gx 1) transition states}}
N N

- E{ P* - ((go+ -+ qr+1)) —p{(go + - - - + qr+1) transition states} }
B N

<E{P*'((QO+"'+(]K+1))_pmin'(q0+"‘+QK+1)}
- N

qo+ -+ qr41)
N
K+2
N

:(P*_pmin)'E(

S(P*_pmin)'4'E

)

where ¢ = 4 - (P* — pmin) 18 a positive constant, and pp,i, is the minimum payoff value in the
payoff matrix.

Let N — oo, we have

P*— P’ <c-e=0(e),

ie., P* < P+ O(e).

Class ii) The machine strategy A = (0,0,0,0) or A = (1,1,1,1) or A = (0,0,0,1) or
A = (0,0,1,0), corresponding to an STG not strongly connected. Then for the former two
strategies, all the states share the same reachable set, while for the latter two, the different
reachable set share the same optimal cycle. Hence, the optimal cycle is also the same before
and after the jump. By similar arguments to case i), we get P* — P < c-e = O(e).

Class iii) The remaining three machine strategies A = (0,1,1,1), A = (1,0,1,1) or A =
(0,0,1,1). Then there are two different optimal cycles from different initial states. And after
T;, the states in one reachable set will jump to the new reachable set.

@ Springer



ON GAME-BASED NON-EQUILIBRIUM CONTROL SYSTEMS 221

Take A = (0,1,1,1) as an example. The reachable set of s1 is {s1, s2, 83, 84} with the optimal
cycle being {s2}, while the other states will reach to {s3, s4} with the optimal cycle being {s4}.
However, since the jump must happen, the state can not stay in only one cycle forever. So for
the human, the optimal payoff can be obtained by the alternation of the two optimal cycles
and R is the corresponding optimal strategy. Compute the payoff difference between P* and
PY near the transition time, we have P* — PY < ¢ - ¢.

To sum up, for any 1-step-memory machine strategy, we have P*— P° < O(g), which implies
P? < PY 4+ O(g). This completes the proof.

5.3 Proof of Theorem 4.3

Proof of i) There are 16 machine strategies with 1-step-memory in total and we can
analyze their STGs one by one.

Take A = (1,0,0,0) as an example and all the others are similar.

There are 3 possible cycles on its STG, i.e., C; = {s2}, Ca = {s1, 3}, C3{s1, 4} with

b11+b21  sgn(bii—air)+sgn(bzi —az1) )
2 ) 2 ?

5 . Then the optimal cycle is C; and it loses at the same
time, i.e., w; = sgn(by; —aq1) < 0, if and only if
b1 + bay

b2 > 5

b b 21
bis > 11-;- 227 (21)

b1 < aii.

the respective payoff vector Py = (b12,sgn(b11 — a11)), P2 = (
P: = (b11+b22 Sgn(bu—a11)+Sgn(b22—a22))
3 — 2 )

Easy to see that the above inequalities are solvable. Thus we get such parameters a;;, b;;, that
the human who optimizes her payoff only will lose to the machine strategy A = (1,0,0,0).
Similarly, we can get the parameters conditions under which the cycles Cs, C3 are optimal but
loses.

Theorem 4.3 ii) can be obtained similarly.

5.4 Proof of Propositions 4.1 and 4.2

Here we only prove the conclusion for the PD game by contradiction argument, thanks to
the relationships among the payoff parameters ¢ > r > p > s and 2-r > t 4+ s. The statement
for the Snowdrift game is easy.

Proof for Proposition 4.1 1) We need only to prove that, when k = 1, for any machine
strategy, on the optimal cycle, the human will not lose to the machine.

Note that by (6), w(s1) = w(ss) = 0, w(s2) = 1, and w(ss) = —1. Hence, in the optimal
cycle with w < 0, there must be a s3 and no ss. This fact makes the optimal cycle one of
the following forms: {s3}, {s3,s1}, {S3,84}, {83,51,84} or {s3,s4,51}. Easy to see that the
optimal cycle can not be {s3, s4}, {83, 51,84} or {s3,84,51}. So we just need to prove that for
any machine strategy A = (a1, a2, a3,a4), {s3} and {s3,s1} cannot be the optimal cycle. Use
the contradiction argument.

1) Suppose the optimal cycle is {s3}, then as = 1, so s4 is reachable from s3. Whatever
state will be reached from sy, we will get a new cycle with positive payoff after 3 steps at most.
But s3 corresponds to the payoff s, so the payoff of the cycle {s3} is smaller than the new cycle.
Contradiction.

2) If the optimal cycle is {s3, s1}, we know a3 = 0,a; = 1. Note that the state so gives the
largest human payoff ¢, and so if az = 0, then the cycle {s3, s2,s1} will have more payoff; and
if ap = 1, then the cycle {s3, s2} will have more payoff. Contradiction.
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Thus, the optimal cycle will not lose to the machine. That completes the proof.

To prove Proposition 4.2, we will construct an example of the machine’s strategy with k = 2
— ‘2 Tits for 1 Tat’, i.e., only when the machine gets the largest payoff ¢ from the action profile
(D,C) for 2 consecutive times, it will act a ‘C’ 1 time in return. When the human plays against
such a machine strategy, she may lose if she only concentrates on optimizing her payoff, which
implies that she should not be ‘too greedy’ if she also cares about win or loss.

Proof of Proposition 4.2 k = 2, by (2), the machine will choose its action at ¢+ 1 based on
the sequence (m(t — 1), h(t — 1);m(t), h(t)). From (3), the system state at time ¢ becomes

s(t) 28 -m(t—1)+4-h(t—1)+2-m(t) +h(t) +1, (22)

and the state space can be denoted as {si,s2,83,+-, 16} with s; = ¢, = 1,2,--- ,16. The
payoff of the human at each state s(t) can be defined as

q(s(t)) = p2-m(t) +h(t) +1) =p((s(t) = 1) mod 4+1).

Similar to (5), the machine’s strategy can be written as

16
m(t+1) = Z ailisy=iy (23)
i=1
and denoted as a vector A = (a1, a9, - ,aip) for simplicity.

Similar to (9), the STG of any machine strategy of 2-memory can be easily drawn, under
the rules below,

s; links to sj < s; =4-[(i—1) mod 4]+2-a;+ 1, when h = 0;
orsj=4-[(t—1) mod 4]+2-a;+2, when h=1. (24)

Now, if the machine uses the strategy ‘2 Tits for 1 Tat’, it will take the action m(t+1) =0
only under the history (m(t — 1) = 1,h(t — 1) = 0;m(t) = 1,h(t) = 0), which corresponds to
the state s(t) = s11 by (22), i.e., the strategy corresponds to the vector A’ = (a},ab, - ,dlg),
where a}; =0, a, =1, if i # 11. Let the initial state be s; and the state transfer (sub) graph.

Then by searching the optimal elementary cycle on the subgraph, we see that the optimal
one is {s10, s7, 811} with the averaged payoff g On the other hand, it is not difficult to calculate
the relative payoff of the cycle, which equals — ;, which means the human loses.

5.5 Proof of Proposition 4.4

When a machine strategy is of 1 memory, from (5) we know that
m(t+1)= Qs (t)- (25)
Since the machine strategy is unknown, we will use the human strategy to excite the system so
as to identify it.

Note that, according to (16), when the human is about to choose his action h(¢+ 1), he can
only use the past information up to time ¢. Thus the rule (16) can be written as (1) = 0, and

0, if s(t) & {s(0),---,s(t—1)}, t>1,

. (26)
1, otherwise.

h(m):{

Now, denote s(0) = s(¢1). Consider s(t2), s(t3), s(t4), where s(t,,) # s(t),Vt =0,1,+-  typ—
1,Vm = 2,3,4. Then by (25) and (26), we have to —t1 < 2, t3 —to < 2, ¢4 —t3 < 3. We will
prove them one by one.
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1) To prove to — t1 < 2, we just notice that each state in the STG can reach two states by
the human’s action taking 0 or 1.

2) To prove t3 — to < 2, we use the contradiction argument and suppose t3 — to > 2. Then,
by (26), we have h(ta +1) = 0 and h(t2+2) = 1 and s(t2 + 1), s(t2 + 2) belong to {s(t1), s(t2)}.

Now, we divide the states {s1, s2, 83,84} into two sets Ry = {s1,s2} and Ry = {s3, 84},
which will be denoted as I = {i1,i2},JJ = {j1,J2}, i1 < i2, j1 < j2 in the following proof at
random. Hence, we have the possible cases:

i) s(t1),s(t2) belong to the same R;, say I. Then s(ty + 1) = i1 and s(t3 + 2) = i2. Thus,
i1 can reach iy directly and vice versa. This contradicts with the identifiability.

ii) s(t1), s(t2) belong to different R;, i.e., I, J. Then we have s(t2+1) = i1 and s(t2+2) = ja.
Thus, i1 can reach j1,j2 not 41,42 directly, which implies that s(t2) = jo and hence s(t1) = 4;.
By (26), we have s(t; + 1) = ji, which contradicts with s(t2) = jo.

3) To prove t4 — t3 < 3, we will use contradiction argument still. Suppose t4 — t3 > 3, then
by (26), h(ts +1) = 0. So s(ts + 1) = i1. Moreover, h(ts +2) = 1, h(ts + 3) = 1. Now, the
ordered pair (s(ts +2),s(t3 + 3)) varies in the four possible combinations below.

i) (s(ts +2),s(ts) + 3)) = (i2,i2). Then i; can reach iy directly and vice versa, which
contradicts with the identifiability.

ii) (s(ts + 1),s(ts +2)) = (i2,j2). Then iy can reach j; directly, which contradicts with
{s(t1), s(t2), s(t3)} = {ir,i2, jo}-

iii) (s(ts +1),s(ts +2)) = (j2,42), which is similar to case 2).

iv) (s(ts +1),s(ts +2)) = (j2,72). Then, both i; and js reach ji,js directly. By (26), ji
must appear after iy or jo. Hence, {s(t1), s(t2), s(t3)} = {41,71,72}- From the identifiability, j;
reach to i1, 9 directly, and s(ts + 1) = i1 can be reached from j; only. Thus, s(t3) = ji. Thus,
s(t1 + 1) # j1, which implies that s(t; + 1) =41 by h(1) = 0. So s(t1) = ji, which contradicts

Now, at time ¢4 + 1, all the entries a; can be identified. So all the needed steps are

l+ta=14(ts—t3)+(tz—to)+(ta—t1)+t1 <1+3+2+24+0=38.

Then the proof is completed.

6 Conclusion Remarks

In an attempt to study adaptive systems beyond the traditional framework of adaptive
control, we have, in this paper, studied some optimization and identification problems in a
non-equilibrium dynamic game framework where two heterogeneous agents, called ‘human’ and
‘machine’; play a repeated 2 x 2 game. By using the concept and properties of the state transfer
graph (STG), we are able to establish some interesting theoretical results, which we may not
have in the traditional control framework. For example, we have shown that: i) The optimal
strategy of the game is periodic after finite steps; i) Optimizing one’s payoff solely may lose to
the opponent eventually; and iii) Probing the system improperly for identification may lead to
a degraded payoff of the human. It goes without saying that there may be many implications
and extensions of these results.

However, it would be more challenging to establish a mathematical theory for more complex
systems, where many (possibly heterogeneous) agents interact with learning and adaptation.
To that end, we hope that the current paper may serve as a starting point. Also, there are many
other computational methods to handle such problems, like the Rational Learning algorithms,
or Generic Programming, and so on. We would like to leave them as the future work.
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Appendix 1

The conditions of w < 0 from the initial state s; for symmetric 2 x 2 games are in Figure5.
below. The payoff parameters in Figure 1 are taken as a11 = a,a21 = b,a12 = ¢, a22 = d. The
v/ means that ‘W < 0 is possible’.

b<c b>c
machine w<0 conditions opt cycle | W<0 conditions opt cycle
(0,0,0,0) N b>a 52 X
(0,0,0,1) N b>a, 52 X
(0,0,1,0) N b>a 52 X
(0,0,1,1) N b>a 52 X
(0,1,0,0) N d>c,b+d>2a $2 84 X
(0,1,0,1) X X
(0,1,1,0) N b+d>2c,b+d>2a | s, 54 N c>a,2c¢>b+d s3
(0,1,1,1) X N c>a,c>d 53
(1,0,0,0) N 2b>a+c,2b>b+d | s, N atc>2b,c>d $3 81
(1,0,0,1) N b>d,2b>a+c S N a+c>2b,a+c>2d | s3 5,
(1,0,1,0) X X
(1,0,1,1) | X v c>d 53
(1,1,0,0) N b>a,d>c S 84 N c>d,a>b 5381
(1,1,0,1) X N a+tc>2d,a>b 5381
(1,1,1,0) N b+d>2c,b+d>2a | s; 54 N 2¢>a+d2c>b+d | 53
(1,1,1,1) X N c>d 53

Figure 5 The conditions that w < 0 is possible from s;

Appendix 2

An algorithm for searching optimal elementary cycle on an STG.

Step 0 Take any initial state of the system and fix it.

Step 1 Draw the STG according to the machine strategy and (9);

Step 2 Solve the reachable set of the initial state and get the transfer subgraph;

Step 3 Search on the transfer subgraph for all the elementary cycles and record them:;

Step 4 Compute averaged payoffs of all the cycles and get the optimal one.

In the steps above, Step 3 is the key one and we discribe it in detail now. Notice that on
the STG, the outdegree of any state is 2, thus, the STG can be stored as a tree: for a state s;,
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the two reachable states from s; are called its left son when the human action h = 0 and its
right son when the human action h = 1, denoted as Is{s;}, rs{s;}, respectively.

For a STG (or subgraph) G = (V, E) with |V| = m states (vertices), namely vy, va, -+, Uy,
we travel on it.

Step 3.1 i =1, t = 1; Build a stack ps of length m + 1, set ps(1) = v;, t = 2;

Step 3.2 For t € [2,m + 1],

case 1 ps(t) = Empty,

Push into Is{ps(t — 1)} if it is not NULL, else push into rs{ps(t — 1)}.

1) If ps(t) equals the blossom point 7, which means we get a cycle, then output states in the
stack in the order ps(1),--- ,ps(t) and set t = t;

2) If ps(t) dos not equal ¢ and not equal NULL, set ¢t = ¢t + 1 ift < m + 1 and set ¢ = t else.

3) If ps(t) equals NULL, set t =t — 1.

case 2 ps(t) # Empty,

If ps(t) = rs{ps(t — 1)}, flip out the top state of the stack, and set t =¢ — 1.

Else (ps(t) = ls{ps(t — 1)}), flip it out and push into rs{ps(t — 1)}.

1) If the top state of the stack ps(t) is NULL, flip it out and set t =t — 1;

2) If the top state equals the blossom state (which means that a cycle id found), output the
states of the stack in order and set t = t;

3) If the top state does not equal NULL and the blossom state, set ¢t = ¢ if t = m + 1 and
set t =1t 4+ 1 else.

Step 3.3 Set sons of state v; Null and set i =7 + 1;

If i =m+1, end. Else, build a stack ps of length m 4+ 1 — (¢ — 1), set ps(1) = v;,t = 2, and
go back to Step 3.2.
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